Ross 33.4

We want to give an example of a function on $[0,1]$ that isn't integrable, but for which $|f|$ is integrable:

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ -1 * x \notin \mathbb{Q} & \end{cases}
$$

Since our domain is $[0,1]$ we know that for any interval in a partition of $[0,1]$ will contain a rational and irrational number, and therefore:

$$
U(f)-L(f)=1-(-1)=2 \neq 0
$$

Ross 33.7

We're given a bounded function on $[a, b]$ where $\exists B>0$ such that $\mid f(x) \leq B$ for all $x \in[a, b]$.
a. We first want to show that:

$$
U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 B[U(f, P)-L(f, P)]
$$

Let a_{i} be the point in the $i^{\text {th }}$ interval that realizes the maxmimum value of f^{2}, and let b_{i} be the point that realizes the minimum value. Then $\forall i$, we have that $f\left(a_{i}\right)-f\left(b_{i}\right) \leq \sup _{I_{i}} f-\inf _{I_{i}} f$ because the supremum could be larger and the infimum could be smaller. We also know by assumption that $f\left(a_{i}\right)+f\left(b_{i}\right) \leq 2 B$. Also let Δ_{i} be the length of the $i^{\text {th }}$ segment. We have:

$$
\begin{aligned}
U\left(f^{2}, P\right)-L\left(f^{2}, P\right) & =\sum_{i=1}^{n}\left(f^{2}\left(a_{i}\right)-f^{2}\left(b_{i}\right)\right) \Delta_{i} \\
& =\sum_{i=1}^{n}\left(f\left(a_{i}\right)-f\left(b_{i}\right)\right)\left(f\left(a_{i}\right)+f\left(b_{i}\right)\right) \Delta_{i} \\
& \leq \sum_{i=1}^{n} 2 B\left(\sup _{I_{i}} f-\inf _{I_{i}} f\right) \Delta_{i} \\
& =2 B[U(f, P)-L(f, P)]
\end{aligned}
$$

as desired
b. Now we want to show that f being integrable on $[a, b]$ implies f^{2} being integrable on $[a, b]$. Let $\epsilon>0$. Since f is integrable on $[a, b]$, there exists P such that:

$$
\begin{aligned}
& U(f, P)-L(f, P)<\frac{\epsilon}{2 B} \\
\Longrightarrow & 2 B(U(f, P)-L(f, P))<\epsilon \\
\Longrightarrow & U\left(f^{2}, P\right)-L\left(f^{2}, P\right)<\epsilon
\end{aligned}
$$

where the last implication follows from part (a)

Ross 33.13

Suppose that f, g continuous on $[a, b]$ such that:

$$
\int_{a}^{b} f=\int_{a}^{b} g
$$

We want to show that theres $x \in[a, b]$ such that $f(x)=g(x)$. We use the intermediate value theorem: $\int_{a}^{b} f-g=0$, which means that there exists f such that:

$$
\begin{gathered}
(f-g)(x)=\frac{1}{b-a} \int_{a}^{b} f-g=0 \\
\Longrightarrow(f-g)(x)=0 \Longrightarrow f(x)=g(x)
\end{gathered}
$$

Ross 35.4

Given that $F(t)=\sin (t)$ for $t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, we want to compute the following integrals:
a. We simplify the integral as follows:

$$
\int_{0}^{\frac{\pi}{2}} x \mathrm{~d} F=\int_{0}^{\frac{\pi}{2}} x \cos (x) \mathrm{d} x
$$

Now we use integration by parts:

$$
\int_{0}^{\frac{\pi}{2}} x \cos (x) \mathrm{d} x=[x \sin (x)+\cos (x)]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}-1
$$

b. We simplify the integral as follows:

$$
\int_{0}^{\frac{\pi}{2}} x \mathrm{~d} F=\int_{0}^{\frac{\pi}{2}} x \cos (x) \mathrm{d} x
$$

Now we use integration by parts:

$$
\int_{0}^{\frac{\pi}{2}} x \cos (x) \mathrm{d} x=[x \sin (x)+\cos (x)]_{\frac{\pi}{2}}^{\frac{\pi}{2}}=\frac{\pi}{2}-\frac{\pi}{2}=0
$$

Ross 35.9a

Given that f is continuous on $[a, b]$, we want to show that there is $x \in[a, b]$ such that:

$$
\int_{a}^{b} f \mathrm{~d} F=f(x)[F(b)-F(a)]
$$

Pick α, β such that $\inf f=f(\alpha)$, $\sup f=f(\beta)$, where the supremum and infimum are taken over $[a, b]$. Then:

$$
f(\alpha) \int_{a}^{b} \mathrm{~d} F \leq \int_{a}^{b} f \mathrm{~d} F \leq f(\beta) \int_{a}^{b} \mathrm{~d} F \Longrightarrow f(\alpha)[F(b)-F(a)] \leq \int_{a}^{b} f \mathrm{~d} F \leq f(\beta)[F(b)-F(a)]
$$

We divide by $[F(b)-F(a)]$ and apply the intermediate value theorem to get $\gamma \in[\alpha, \beta]$ such that

$$
f(\gamma)=\frac{1}{F(b)-F(a)} \int_{a}^{b} f \mathrm{~d} F
$$

