Ross 34.2

If $F(x)=\int_{0}^{x} e^{t^{2}} \mathrm{~d} t$, then:

$$
\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} \mathrm{~d} t=\lim _{x \rightarrow 0} \frac{F(x)-F(0)}{x}
$$

This is just $F^{\prime}(0)$, which by the fundamental theorem of calculus is $e^{0}=1$.
If $F(x)=\int_{0}^{x} e^{t^{2}}$ again, then:

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{3}^{3+h} e^{t^{2}}=\frac{F(3+h)-F(3)}{h}=F^{\prime}(3)=e^{9}
$$

Ross 34.5

Given continuous f, we want to show that $F(x)=\int_{x-1}^{x+1} f(t) \mathrm{d} t$ is differentiable and we want to find f^{\prime}. We can define $h(x)=\int_{0}^{x} f(t) \mathrm{d} t$. Our goal is to show that:

$$
\lim _{\epsilon \rightarrow 0} \frac{F(x+\epsilon)-F(x)}{\epsilon}=\frac{\int_{x+\epsilon-1}^{x+\epsilon+1} f(t) \mathrm{d} t-\int_{x-1}^{x+1} f(t) \mathrm{d} t}{\epsilon}
$$

exists at all x. We can separate each integral and realize that:

$$
\lim _{\epsilon \rightarrow 0} \frac{\int_{x+\epsilon-1}^{x+\epsilon+1} f(t) \mathrm{d} t-\int_{x-1}^{x+1} f(t) \mathrm{d} t}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{h(x+\epsilon+1)-h(x+1)}{\epsilon}-\lim _{\epsilon \rightarrow 0} \frac{h(x+\epsilon-1)-h(x-1)}{\epsilon}
$$

the first term on the RHS is just $h^{\prime}(x+1)=f(x+1)$, the second term is $h^{\prime}(x-1)=f(x-1)$. Therefore F^{\prime} exists and $F^{\prime}(x)=f(x+1)-f(x-1)$

Ross 34.7

We want to find $\int_{0}^{1} x \sqrt{1-x^{2}} \mathrm{~d} x$. Let $u=1-x^{2}$, then $\frac{\mathrm{d} u}{\mathrm{~d} x}=-2 x$, so:

$$
\int_{0}^{1} x \sqrt{1-x^{2}} \mathrm{~d} x=\frac{1}{2} \int_{0}^{1} \sqrt{u} \mathrm{~d} u
$$

when we evaluate the bounds, we're taking the interval from 1 to 0 , so we swap the bounds and multiply by -1 , which cancels with the $-\frac{1}{2}$.

$$
\frac{1}{2} \int_{0}^{1} \sqrt{u} \mathrm{~d} u=\frac{1}{2}\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{0}^{1}=\frac{1}{3}
$$

