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Preface

Was plane geometry your favorite math course in high school? Did you like prov-

ing theorems? Are you sick of memorizing integrals? If so, real analysis could be

your cup of tea. In contrast to calculus and elementary algebra, it involves neither

formula manipulation nor applications to other fields of science. None. It is pure

mathematics, and I hope it appeals to you, the budding pure mathematician.

This book is set out for college juniors and seniors who love math and who profit

from pictures that illustrate the math. Rarely is a picture a proof, but I hope a good

picture will cement your understanding of why something is true. Seeing is believing.

Chapter 1 gets you off the ground. The whole of analysis is built on the system

of real numbers R, and especially on its Least Upper Bound property. Unlike many

analysis texts that assume R and its properties as axioms, Chapter 1 contains a

natural construction of R and a natural proof of the LUB property. You will also see

why some infinite sets are more infinite than others, and how to visualize things in

four dimensions.

Chapter 2 is about metric spaces, especially subsets of the plane. This chapter

contains many pictures you have never seen. ε and δ will become your friends. Most

of the presentation uses sequences and limits, in contrast to open coverings. It may

be less elegant but it’s easier to begin with. You will get to know the Cantor set well.

Chapter 3 is about Freshman Calculus – differentiation, integration, L’Hôpital’s

Rule, and so on, for functions of a single variable – but this time you will find out

why what you were taught before is actually true. In particular you will see that a

bounded function is integrable if and only if it is continuous almost everywhere, and

how this fact explains many other things about integrals.

Chapter 4 is about functions viewed en masse. You can treat a set of functions

as a metric space. The “points” in the space aren’t numbers or vectors – they are

functions. What is the distance between two functions? What should it mean that a

sequence of functions converges to a limit function? What happens to derivatives and

integrals when your sequence of functions converges to a limit function? When can

you approximate a bad function with a good one? What is the best kind of function?

What does the typical continuous function look like? (Answer: “horrible.”)

Chapter 5 is about Sophomore Calculus – functions of several variables, partial

derivatives, multiple integrals, and so on. Again you will see why what you were

taught before is actually true. You will revisit Lagrange multipliers (with a picture

vii



proof), the Implicit Function Theorem, etc. The main new topic for you will be

differential forms. They are presented not as mysterious “multi-indexed expressions,”

but rather as things that assign numbers to smooth domains. A 1-form assigns to

a smooth curve a number, a 2-form assigns to a surface a number, a 3-form assigns

to a solid a number, and so on. Orientation (clockwise, counterclockwise, etc.) is

important and lets you see why cowlicks are inevitable – the Hairy Ball Theorem.

The culmination of the differential forms business is Stokes’ Formula, which unifies

what you know about div, grad, and curl. It also leads to a short and simple proof

of the Brouwer Fixed Point Theorem – a fact usually considered too advanced for

undergraduates.

Chapter 6 is about Lebesgue measure and integration. It is not about measure

theory in the abstract, but rather about measure theory in the plane, where you can

see it. Surely I am not the first person to have rediscovered J.C. Burkill’s approach

to the Lebesgue integral, but I hope you will come to value it as much as I do. After

you understand a few nontrivial things about area in the plane, you are naturally led

to define the integral as the area under the curve – the elementary picture you saw in

high school calculus. Then the basic theorems of Lebesgue integration simply fall out

from the picture. Included in the chapter is the subject of density points – points at

which a set “clumps together.” I consider density points central to Lebesgue measure

theory.

At the end of each chapter are a great many exercises. Intentionally, there is no

solution manual. You should expect to be confused and frustrated when you first

try to solve the harder problems. Frustration is a good thing. It will strengthen you

and it is the natural mental state of most mathematicians most of the time. Join the

club! When you do solve a hard problem yourself or with a group of your friends, you

will treasure it far more than something you pick up off the web. For encouragement,

read Sam Young’s story at http://legacyrlmoore.org/reference/young.html.

I have adopted Moe Hirsch’s star system for the exercises. One star is hard, two

stars is very hard, and a three-star exercise is a question to which I do not know the

answer. Likewise, starred sections are more challenging.

Berkeley, California, USA Charles Chapman Pugh
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1
Real Numbers

1 Preliminaries

Before we discuss the system of real numbers it is best to make a few general remarks

about mathematical outlook.

Language

By and large, mathematics is expressed in the language of set theory. Your first

order of business is to get familiar with its vocabulary and grammar. A set is a

collection of elements. The elements are members of the set and are said to belong

to the set. For example, N denotes the set of natural numbers, 1, 2, 3, . . . . The

members of N are whole numbers greater than or equal to 1. Is 10 a member of N?

Yes, 10 belongs to N. Is 0 a member of N? No. We write

x ∈ A and y �∈ B

to indicate that the element x is a member of the set A and y is not a member of B.

Thus, 6819 ∈ N and 0 �∈ N.

We try to write capital letters for sets and small letters for elements of sets.

Other standard sets have standard names. The set of integers is denoted by Z,

which stands for the German word Zahlen. (An integer is a positive whole number,

zero, or a negative whole number.) Is
√
2 ∈ Z? No,

√
2 �∈ Z. How about −15? Yes,

−15 ∈ Z.

© Springer International Publishing Switzerland 2015
C.C. Pugh, Real Mathematical Analysis, Undergraduate Texts
in Mathematics, DOI 10.1007/978-3-319-17771-7 1
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2 Real Numbers Chapter 1

The set of rational numbers is called Q, which stands for “quotient.” (A

rational number is a fraction of integers, the denominator being nonzero.) Is
√
2 a

member of Q? No,
√
2 does not belong to Q. Is π a member of Q? No. Is 1.414 a

member of Q? Yes.

You should practice reading the notation “{x ∈ A :” as “the set of x that belong

to A such that.” The empty set is the collection of no elements and is denoted by

∅. Is 0 a member of the empty set? No, 0 �∈ ∅.
A singleton set has exactly one member. It is denoted as {x} where x is the

member. Similarly if exactly two elements x and y belong to a set, the set is denoted

as {x, y}.
If A and B are sets and each member of A also belongs to B then A is a subset

of B and A is contained in B. We write†

A ⊂ B.

Is N a subset of Z? Yes. Is it a subset of Q? Yes. If A is a subset of B and B is a

subset of C, does it follow that A is a subset of C? Yes. Is the empty set a subset of

N? Yes, ∅ ⊂ N. Is 1 a subset of N? No, but the singleton set {1} is a subset of N.

Two sets are equal if each member of one belongs to the other. Each is a subset of

the other. This is how you prove two sets are equal: Show that each element of the

first belongs to the second, and each element of the second belongs to the first.

The union of the sets A and B is the set A ∪ B, each of whose elements belongs

to either A, or to B, or to both A and to B. The intersection of A and B is the set

A ∩ B each of whose elements belongs to both A and to B. If A ∩ B is the empty

set then A and B are disjoint. The symmetric difference of A and B is the set

AΔB each of whose elements belongs to A but not to B, or belongs to B but not to

A. The difference of A to B is the set A�B whose elements belong to A but not

to B. See Figure 1.

A class is a collection of sets. The sets are members of the class. For example

we could consider the class E of sets of even natural numbers. Is the set {2, 15} a

member of E? No. How about the singleton set {6}? Yes. How about the empty

set? Yes, each element of the empty set is even.

When is one class a subclass of another? When each member of the former belongs

also to the latter. For example the class T of sets of positive integers divisible by 10

†When some mathematicians write A ⊂ B they mean that A is a subset of B, but A �= B. We

do not adopt this convention. We accept A ⊂ A.
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Figure 1 Venn diagrams of union, intersection, and differences

is a subclass of E, the class of sets of even natural numbers, and we write T ⊂ E.
Each set that belongs to the class T also belongs to the class E. Consider another

example. Let S be the class of singleton subsets of N and let D be the class of subsets

of N each of which has exactly two elements. Thus {10} ∈ S and {2, 6} ∈ D. Is S a

subclass of D? No. The members of S are singleton sets and they are not members of

D. Rather they are subsets of members of D. Note the distinction, and think about

it.

Here is an analogy. Each citizen is a member of his or her country – I am an

element of the USA and Tony Blair is an element of the UK. Each country is a

member of the United Nations. Are citizens members of the UN? No, countries are

members of the UN.

In the same vein is the concept of an equivalence relation on a set S. It is

a relation s ∼ s′ that holds between some members s, s′ ∈ S and it satisfies three

properties: For all s, s′, s′′ ∈ S

(a) s ∼ s.

(b) s ∼ s′ implies that s′ ∼ s.

(c) s ∼ s′ ∼ s′′ implies that s ∼ s′′.

Figure 2 on the next page shows how the equivalence relation breaks S into

disjoint subsets called equivalence classes† defined by mutual equivalence: The

equivalence class containing s consists of all elements s′ ∈ S equivalent to s and

is denoted [s]. The element s is a representative of its equivalence class. Think

again of citizens and countries. Say two citizens are equivalent if they are citizens of

the same country. The world of equivalence relations is egalitarian: I represent my

equivalence class USA just as much as does the president.

†The phrase “equivalence class” is standard and widespread, although it would be more consistent

with the idea that a class is a collection of sets to refer instead to an “equivalence set.”

A

B

A ∪ B A \ B

B \ A AΔB

AΔBA ∩ B
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t
[t]

[s] = [s′]

s

s′

Figure 2 Equivalence classes and representatives

Truth

When is a mathematical statement accepted as true? Generally, mathematicians

would answer “Only when it has a proof inside a familiar mathematical framework.”

A picture may be vital in getting you to believe a statement. An analogy with

something you know to be true may help you understand it. An authoritative teacher

may force you to parrot it. A formal proof, however, is the ultimate and only reason

to accept a mathematical statement as true. A recent debate in Berkeley focused the

issue for me. According to a math teacher from one of our local private high schools,

his students found proofs in mathematics were of little value, especially compared to

“convincing arguments.” Besides, the mathematical statements were often seen as

obviously true and in no need of formal proof anyway. I offer you a paraphrase of

Bob Osserman’s response.

But a convincing argument is not a proof. A mathematician gener-

ally wants both, and certainly would be less likely to accept a convincing

argument by itself than a formal proof by itself. Least of all would a math-

ematician accept the proposal that we should generally replace proofs with

convincing arguments.

There has been a tendency in recent years to take the notion of proof

down from its pedestal. Critics point out that standards of rigor change

from century to century. New gray areas appear all the time. Is a proof

by computer an acceptable proof? Is a proof that is spread over many

journals and thousands of pages, that is too long for any one person to

master, a proof? And of course, venerable Euclid is full of flaws, some

filled in by Hilbert, others possibly still lurking.
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Clearly it is worth examining closely and critically the most basic notion

of mathematics, that of proof. On the other hand, it is important to bear

in mind that all distinctions and niceties about what precisely constitutes

a proof are mere quibbles compared to the enormous gap between any

generally accepted version of a proof and the notion of a convincing ar-

gument. Compare Euclid, with all his flaws to the most eminent of the

ancient exponents of the convincing argument – Aristotle. Much of Aris-

totle’s reasoning was brilliant, and he certainly convinced most thoughtful

people for over a thousand years. In some cases his analyses were exactly

right, but in others, such as heavy objects falling faster than light ones,

they turned out to be totally wrong. In contrast, there is not to my

knowledge a single theorem stated in Euclid’s Elements that in the course

of two thousand years turned out to be false. That is quite an aston-

ishing record, and an extraordinary validation of proof over convincing

argument.

Here are some guidelines for writing a rigorous mathematical proof. See also

Exercise 0.

1. Name each object that appears in your proof. (For instance, you might begin

your proof with a phrase, “Consider a set X, and elements x, y that belong to

X,” etc.)

2. Draw a diagram that captures how these objects relate, and extract logical

statements from it. Quantifiers precede the objects quantified; see below.

3. Become confident that the mathematical assertion you are trying to prove is

really true before trying to write down a proof of it. If there a specific function

involved – say sinxα – draw the graph of the function for a few values of α

before starting any ε, δ analysis. Belief first and proof second.

4. Proceed step by step, each step depending on the hypotheses, previously proved

theorems, or previous steps in your proof.

5. Check for “rigor”: All cases have been considered, all details have been tied

down, and circular reasoning has been avoided.

6. Before you sign off on the proof, check for counterexamples and any implicit

assumptions you made that could invalidate your reasoning.
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Logic

Among the most frequently used logical symbols in math are the quantifiers ∀
and ∃. Read them always as “for each” and “there exists.” Avoid reading ∀ as “for

all,” which in English has a more inclusive connotation. Another common symbol is

⇒. Read it as “implies.”

The rules of correct mathematical grammar are simple: Quantifiers appear at the

beginning of a sentence, they modify only what follows them in the sentence, and

assertions occur at the end of the sentence. Here is an example.

(1) For each integer n there is a prime number p which is greater than n.

In symbols the sentence reads

∀n ∈ Z ∃ p ∈ P such that p > n,

where P denotes the set of prime numbers. (A prime number is a whole number

greater than 1 whose only divisors in N are itself and 1.) In English, the same idea

can be reexpressed as

(2) Every integer is less than some prime number.

or

(3) A prime number can always be found which is bigger than any integer.

These sentences are correct in English grammar, but disastrously WRONG when

transcribed directly into mathematical grammar. They translate into disgusting

mathematical gibberish:

(WRONG (2)) ∀n ∈ Z n < p ∃ p ∈ P

(WRONG (3)) ∃ p ∈ P p > n ∀n ∈ Z.

Moral Quantifiers first and assertions last. In stating a theorem, try to apply the

same principle. Write the hypothesis first and the conclusion second. See Exercise 0.

The order in which quantifiers appear is also important. Contrast the next two

sentences in which we switch the position of two quantified phrases.

(4) (∀n ∈ N) (∀m ∈ N) (∃ p ∈ P ) such that (nm < p).

(5) (∀n ∈ N) (∃ p ∈ P ) such that (∀m ∈ N) (nm < p).
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(4) is a true statement but (5) is false. A quantifier modifies the part of a sentence

that follows it but not the part that precedes it. This is another reason never to end

with a quantifier.

Moral Quantifier order is crucial.

There is a point at which English and mathematical meaning diverge. It concerns

the word “or.” In mathematics “a or b” always means “a or b or both a and b,” while

in English it can mean “a or b but not both a and b.” For example, Patrick Henry

certainly would not have accepted both liberty and death in response to his cry of

“Give me liberty or give me death.” In mathematics, however, the sentence “17 is a

prime or 23 is a prime” is correct even though both 17 and 23 are prime. Similarly,

in mathematics a ⇒ b means that if a is true then b is true but that b might also

be true for reasons entirely unrelated to the truth of a. In English, a ⇒ b is often

confused with b ⇒ a.

Moral In mathematics “or” is inclusive. It means and/or. In mathematics a ⇒ b is

not the same as b ⇒ a.

It is often useful to form the negation or logical opposite of a mathematical sen-

tence. The symbol ∼ is usually used for negation, despite the fact that the same

symbol also indicates an equivalence relation. Mathematicians refer to this as an

abuse of notation. Fighting a losing battle against abuse of notation, we write ¬
for negation. For example, if m,n ∈ N then ¬(m < n) means it is not true that m is

less than n. In other words

¬(m < n) ≡ m ≥ n.

(We use the symbol ≡ to indicate that the two statements are equivalent.) Similarly,

¬(x ∈ A) means it is not true that x belongs to A. In other words,

¬(x ∈ A) ≡ x 
∈ A.

Double negation returns a statement to its original meaning. Slightly more interesting

is the negation of “and” and “or.” Just for now, let us use the symbols & for “and”

and ∨ for “or.” We claim

(6) ¬(a & b) ≡ ¬a ∨ ¬b.

(7) ¬(a ∨ b) ≡ ¬a & ¬b.
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For if it is not the case that both a and b are true then at least one must be false.

This proves (6), and (7) is similar. Implication also has such interpretations:

(8) a ⇒ b ≡ ¬a ⇐ ¬b ≡ ¬a ∨ b.

(9) ¬(a ⇒ b) ≡ a & ¬b.

What about the negation of a quantified sentence such as

¬(∀n ∈ N, ∃ p ∈ P such that n < p).

The rule is: change each ∀ to ∃ and vice versa, leaving the order the same, and negate

the assertion. In this case the negation is

∃n ∈ N, ∀p ∈ P, n ≥ p.

In English it reads “There exists a natural number n, and for all primes p we have

n ≥ p.” The sentence has correct mathematical grammar but of course is false. To

help translate from mathematics to readable English, a comma can be read as “and,”

“we have,” or “such that.”

All mathematical assertions take an implication form a ⇒ b. The hypothesis is

a and the conclusion is b. If you are asked to prove a ⇒ b, there are several ways

to proceed. First you may just see right away why a does imply b. Fine, if you are

so lucky. Or you may be puzzled. Does a really imply b? Two routes are open to

you. You may view the implication in its equivalent contrapositive form ¬a ⇐ ¬b as

in (8). Sometimes this will make things clearer. Or you may explore the possibility

that a fails to imply b. If you can somehow deduce from the failure of a implying b

a contradiction to a known fact (for instance, if you can deduce the existence of a

planar right triangle with legs x, y but x2 + y2 
= h2, where h is the hypotenuse),

then you have succeeded in making an argument by contradiction. Clearly (9) is

pertinent here. It tells you what it means that a fails to imply b, namely that a is

true and simultaneously b is false.

Euclid’s proof that N contains infinitely many prime numbers is a classic example

of this method. The hypothesis is that N is the set of natural numbers and that P

is the set of prime numbers. The conclusion is that P is an infinite set. The proof of

this fact begins with the phrase “Suppose not.” It means to suppose, after all, that

the set of prime numbers P is merely a finite set, and see where this leads you. It

does not mean that we think P really is a finite set, and it is not a hypothesis of a

theorem. Rather it just means that we will try to find out what awful consequences
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would follow from P being finite. In fact if P were† finite then it would consist of m

numbers p1, . . . , pm. Their product N = 2 · 3 · 5 · · · · · pm would be evenly divisible

(i.e., remainder 0 after division) by each pi and therefore N + 1 would be evenly

divisible by no prime (the remainder of pi divided into N + 1 would always be 1),

which would contradict the fact that every integer ≥ 2 can be factored as a product

of primes. (The latter fact has nothing to do with P being finite or not.) Since the

supposition that P is finite led to a contradiction of a known fact, prime factorization,

the supposition was incorrect, and P is, after all, infinite.

Aficionados of logic will note our heavy use here of the “law of the excluded

middle,” to wit, that a mathematically meaningful statement is either true or false.

The possibilities that it is neither true nor false, or that it is both true and false, are

excluded.

Notation The symbol � indicates a contradiction. It is used when writing a proof

in longhand.

Metaphor and Analogy

In high school English, you are taught that a metaphor is a figure of speech in

which one idea or word is substituted for another to suggest a likeness or similarity.

This can occur very simply as in “The ship plows the sea.” Or it can be less direct,

as in “His lawyers dropped the ball.” What give a metaphor its power and pleasure

are the secondary suggestions of similarity. Not only did the lawyers make a mistake,

but it was their own fault, and, like an athlete who has dropped a ball, they could

not follow through with their next legal action. A secondary implication is that their

enterprise was just a game.

Often a metaphor associates something abstract to something concrete, as “Life

is a journey.” The preservation of inference from the concrete to the abstract in this

metaphor suggests that like a journey, life has a beginning and an end, it progresses

in one direction, it may have stops and detours, ups and downs, etc. The beauty of

a metaphor is that hidden in a simple sentence like “Life is a journey” lurk a great

many parallels, waiting to be uncovered by the thoughtful mind.

†In English grammar, the subjunctive mode indicates doubt, and I have written Euclid’s proof in

that form – “if P were finite” instead of “if P is finite,” “each prime would divide N evenly,” instead

of “each prime divides N evenly,” etc. At first it seems like a fine idea to write all arguments by

contradiction in the subjunctive mode, clearly exhibiting their impermanence. Soon, however, the

subjunctive and conditional language becomes ridiculously stilted and archaic. For consistency then,

as much as possible, use the present tense.
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Metaphorical thinking pervades mathematics to a remarkable degree. It is of-

ten reflected in the language mathematicians choose to define new concepts. In his

construction of the system of real numbers, Dedekind could have referred to A|B as

a “type-2, order preserving equivalence class,” or worse, whereas “cut” is the right

metaphor. It corresponds closely to one’s physical intuition about the real line. See

Figure 3. In his book, Where Mathematics Comes From, George Lakoff gives a com-

prehensive view of metaphor in mathematics.

An analogy is a shallow form of metaphor. It just asserts that two things are

similar. Although simple, analogies can be a great help in accepting abstract concepts.

When you travel from home to school, at first you are closer to home, and then you

are closer to school. Somewhere there is a halfway stage in your journey. You know

this, long before you study mathematics. So when a curve connects two points in

a metric space (Chapter 2), you should expect that as a point “travels along the

curve,” somewhere it will be equidistant between the curve’s endpoints. Reasoning

by analogy is also referred to as “intuitive reasoning.”

Moral Try to translate what you know of the real world to guess what is true in

mathematics.

Two Pieces of Advice

A colleague of mine regularly gives his students an excellent piece of advice. When

you confront a general problem and do not see how to solve it, make some extra

hypotheses, and try to solve it then. If the problem is posed in n dimensions, try

it first in two dimensions. If the problem assumes that some function is continuous,

does it get easier for a differentiable function? The idea is to reduce an abstract

problem to its simplest concrete manifestation, rather like a metaphor in reverse. At

the minimum, look for at least one instance in which you can solve the problem, and

build from there.

Moral If you do not see how to solve a problem in complete generality, first solve it

in some special cases.

Here is the second piece of advice. Buy a notebook. In it keep a diary of your

own opinions about the mathematics you are learning. Draw a picture to illustrate

every definition, concept, and theorem.
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2 Cuts
We begin at the beginning and discuss R = the system of all real numbers from a

somewhat theological point of view. The current mathematics teaching trend treats

the real number system R as a given – it is defined axiomatically. Ten or so of

its properties are listed, called axioms of a complete ordered field, and the game

becomes to deduce its other properties from the axioms. This is something of a

fraud, considering that the entire structure of analysis is built on the real number

system. For what if a system satisfying the axioms failed to exist? Then one would

be studying the empty set! However, you need not take the existence of the real

numbers on faith alone – we will give a concise mathematical proof of it.

It is reasonable to accept all grammar school arithmetic facts about

The set N of natural numbers, 1, 2, 3, 4, . . ..

The set Z of integers, 0, 1,−1,−2, 2, . . . .

The set Q of rational numbers p/q where p, q are integers, q 
= 0.

For example, we will admit without question facts like 2 + 2 = 4, and laws like

a+ b = b+a for rational numbers a, b. All facts you know about arithmetic involving

integers or rational numbers are fair to use in homework exercises too.† It is clear

that N ⊂ Z ⊂ Q. Now Z improves N because it contains negatives and Q improves

Z because it contains reciprocals. Z legalizes subtraction and Q legalizes division.

Still, Q needs further improvement. It doesn’t admit irrational roots such as
√
2 or

transcendental numbers such as π. We aim to go a step beyond Q, completing it to

form R so that

N ⊂ Z ⊂ Q ⊂ R.

As an example of the fact that Q is incomplete we have

1 Theorem No number r in Q has square equal to 2; i.e.,
√
2 
∈ Q.

Proof To prove that every r = p/q has r2 
= 2 we show that p2 
= 2q2. It is fair to

assume that p and q have no common factors since we would have canceled them out

beforehand.

Case 1. p is odd. Then p2 is odd while 2q2 is not. Therefore p2 
= 2q2.

†A subtler fact that you may find useful is the prime factorization theorem mentioned above. Any

integer ≥ 2 can be factored into a product of prime numbers. For example, 120 is the product of

primes 2 · 2 · 2 · 3 · 5. Prime factorization is unique except for the order in which the factors appear.

An easy consequence is that if a prime number p divides an integer k and if k is the product mn of

integers then p divides m or it divides n. After all, by uniqueness, the prime factorization of k is just

the product of the prime factorizations of m and n.
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Case 2. p is even. Since p and q have no common factors, q is odd. Then p2 is divisible

by 4 while 2q2 is not. Therefore p2 
= 2q2.

Since p2 
= 2q2 for all integers p, there is no rational number r = p/q whose square

is 2.

The set Q of rational numbers is incomplete. It has “gaps,” one of which occurs at√
2. These gaps are really more like pinholes; they have zero width. Incompleteness

is what is wrong with Q. Our goal is to complete Q by filling in its gaps. An elegant

method to arrive at this goal is Dedekind cuts in which one visualizes real numbers

as places at which a line may be cut with scissors. See Figure 3.

A

B

Figure 3 A Dedekind cut

Definition A cut in Q is a pair of subsets A,B of Q such that

(a) A ∪B = Q, A 
= ∅, B 
= ∅, A ∩B = ∅.
(b) If a ∈ A and b ∈ B then a < b.

(c) A contains no largest element.

A is the left-hand part of the cut and B is the right-hand part. We denote the

cut as x = A|B. Making a semantic leap, we now answer the question “what is a real

number?”

Definition A real number is a cut in Q.

R is the class† of all real numbers x = A|B. We will show that in a natural way R

is a complete ordered field containing Q. Before spelling out what this means, here

are two examples of cuts.

†The word “class” is used instead of the word “set” to emphasize that for now the members of R

are set-pairs A|B, and not the numbers that belong to A or B. The notation A|B could be shortened

to A since B is just the rest of Q. We write A|B, however, as a mnemonic device. It looks like a cut.



Section 2 Cuts 13

(i) A|B = {r ∈ Q : r < 1} | {r ∈ Q : r ≥ 1}.
(ii) A|B = {r ∈ Q : r ≤ 0 or r2 < 2} | {r ∈ Q : r > 0 and r2 ≥ 2}.

It is convenient to say that A|B is a rational cut if it is like the cut in (i): For

some fixed rational number c, A is the set of all rationals < c while B is the rest of Q.

The B-set of a rational cut contains a smallest element c, and conversely, if A|B is a

cut in Q and B contains a smallest element c then A|B is the rational cut at c. We

write c∗ for the rational cut at c. This lets us think of Q ⊂ R by identifying c with

c∗. It is like thinking of Z as a subset of Q since the integer n in Z can be thought of

as the fraction n/1 in Q. In the same way the rational number c in Q can be thought

of as the cut at c. It is just a different way of looking at c. It is in this sense that we

write

N ⊂ Z ⊂ Q ⊂ R.

There is an order relation x ≤ y on cuts that fairly cries out for attention.

Definition If x = A|B and y = C|D are cuts such that A ⊂ C then x is less than

or equal to y and we write x ≤ y. If A ⊂ C and A 
= C then x is less than y and

we write x < y.

The property distinguishing R from Q and which is at the bottom of every signifi-

cant theorem about R involves upper bounds and least upper bounds or, equivalently,

lower bounds and greatest lower bounds.

M ∈ R is an upper bound for a set S ⊂ R if each s ∈ S satisfies

s ≤ M.

We also say that the set S is bounded above by M . An upper bound for S that

is less than all other upper bounds for S is a least upper bound for S. The least

upper bound for S is denoted l.u.b.(S). For example,

3 is an upper bound for the set of negative integers.

−1 is the least upper bound for the set of negative integers.

1 is the least upper bound for the set of rational numbers 1− 1/n with n ∈ N.

−100 is an upper bound for the empty set.

A least upper bound for S may or may not belong to S. This is why you should say

“least upper bound for S” rather than “least upper bound of S.”
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2 Theorem The set R, constructed by means of Dedekind cuts, is complete† in the

sense that it satisfies the

Least Upper Bound Property: If S is a nonempty subset of R

and is bounded above then in R there exists a least upper bound for S.

Proof Easy! Let C ⊂ R be any nonempty collection of cuts which is bounded above,

say by the cut X|Y . Define

C = {a ∈ Q : for some cutA|B ∈ C we have a ∈ A} and D = the rest of Q.

It is easy to see that z = C|D is a cut. Clearly, it is an upper bound for C since the

A for every element of C is contained in C. Let z′ = C ′|D′ be any upper bound for

C. By the assumption that A|B ≤ C ′|D′ for all A|B ∈ C, we see that the A for every

member of C is contained in C ′. Hence C ⊂ C ′, so z ≤ z′. That is, among all upper

bounds for C, z is least.

The simplicity of this proof is what makes cuts good. We go from Q to R by

pure thought. To be more complete, as it were, we describe the natural arithmetic

of cuts. Let cuts x = A|B and y = C|D be given. How do we add them? subtract

them? . . . Generally the answer is to do the corresponding operation to the elements

comprising the two halves of the cuts, being careful about negative numbers. The

sum of x and y is x+ y = E|F where

E = {r ∈ Q : for some a ∈ A and for some c ∈ C we have r = a+ c}
F = the rest of Q.

It is easy to see that E|F is a cut in Q and that it doesn’t depend on the order in

which x and y appear. That is, cut addition is well defined and x+ y = y + x. The

zero cut is 0∗ and 0∗+ x = x for all x ∈ R. The additive inverse of x = A|B is

−x = C|D where

C = {r ∈ Q : for some b ∈ B, not the smallest element of B, r = −b}
D = the rest of Q.

Then (−x) + x = 0∗. Correspondingly, the difference of cuts is x− y = x+ (−y).

Another property of cut addition is associativity:

(x+ y) + z = x+ (y + z).

†There is another, related, sense in which R is complete. See Theorem 5 below.
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This follows from the corresponding property of Q.

Multiplication is trickier to define. It helps to first say that the cut x = A|B is

positive if 0∗ < x or negative if x < 0∗. Since 0 lies in A or B, a cut is either

positive, negative, or zero. If x = A|B and y = C|D are positive cuts then their

product is x · y = E|F where

E = {r ∈ Q : r ≤ 0 or ∃ a ∈ A and ∃ c ∈ C such that a > 0, c > 0, and r = ac}

and F is the rest of Q. If x is positive and y is negative then we define the product

to be −(x · (−y)). Since x and −y are both positive cuts this makes sense and is

a negative cut. Similarly, if x is negative and y is positive then by definition their

product is the negative cut −((−x) · y), while if x and y are both negative then their

product is the positive cut (−x) · (−y). Finally, if x or y is the zero cut 0∗we define

x · y to be 0∗. (This makes five cases in the definition.)

Verifying the arithmetic properties for multiplication is tedious, to say the least,

and somehow nothing seems to be gained by writing out every detail. (To pursue

cut arithmetic further you could read Landau’s classically boring book, Foundations

of Analysis.) To get the flavor of it, let’s check the commutativity of multiplication:

x · y = y · x for cuts x = A|B, y = C|D. If x, y are positive then

{ac : a ∈ A, c ∈ C, a > 0, c > 0} = {ca : c ∈ C, a ∈ A, c > 0, a > 0}

implies that x · y = y · x. If x is positive and y is negative then

x · y = −(x · (−y)) = −((−y) · x) = y · x.

The second equality holds because we have already checked commutativity for positive

cuts. The remaining three cases are checked similarly. There are twenty seven cases

to check for associativity and twenty seven more for distributivity. All are simple

and we omit their proofs. The real point is that cut arithmetic can be defined and it

satisfies the same field properties that Q does:

The operation of cut addition is

well defined, natural, commutative, associative, and

has inverses with respect to the neutral element 0∗.
The operation of cut multiplication

is well defined, natural, commutative, associative,

distributive over cut addition, and has inverses of

nonzero elements with respect to the neutral element 1∗.
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By definition, a field is a system consisting of a set of elements and two oper-

ations, addition and multiplication, that have the preceding algebraic properties –

commutativity, associativity, etc. Besides just existing, cut arithmetic is consistent

with Q arithmetic in the sense that if c, r ∈ Q then

c∗+ r∗ = (c+ r)∗ and c∗· r∗= (cr)∗.
By definition, this is what we mean when we say that Q is a subfield of R. The cut

order enjoys the additional properties of

transitivity x < y < z implies x < z.

trichotomy Either x < y, y < x, or x = y, but only one of the three things

is true.

translation x < y implies x+ z < y + z.

By definition, this is what we mean when we say that R is an ordered field.

Besides, the product of positive cuts is positive and cut order is consistent with Q

order: c∗< r∗ if and only if c < r in Q. By definition, this is what we mean when we

say that Q is an ordered subfield of R. To summarize

3 Theorem The set R of all cuts in Q is a complete ordered field that contains Q

as an ordered subfield.

The magnitude or absolute value of x ∈ R is

|x| =
{

x if x ≥ 0

−x if x < 0.

Thus, x ≤ |x|. A basic, constantly used fact about magnitude is the following.

4 Triangle Inequality For all x, y ∈ R we have |x+ y| ≤ |x|+ |y|.

Proof The translation and transitivity properties of the order relation imply that

adding y and −y to the inequalities x ≤ |x| and −x ≤ |x| gives
x+ y ≤ |x|+ y ≤ |x|+ |y|

−x− y ≤ |x| − y ≤ |x|+ |y|.
Since

|x+ y| =
{
x+ y if x+ y ≥ 0

−x− y if x+ y ≤ 0

and both x+ y and −x− y are less than or equal to |x|+ |y|, we infer that |x+ y| ≤
|x|+ |y| as asserted.
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Next, suppose we try the same cut construction in R that we did in Q. Are there

gaps in R that can be detected by cutting R with scissors? The natural definition of

a cut in R is a division A|B, where A and B are disjoint, nonempty subcollections of

R with A∪B = R, and a < b for all a ∈ A and b ∈ B. Further, A contains no largest

element. Each b ∈ B is an upper bound for A. Therefore y = l.u.b.(A) exists and

a ≤ y ≤ b for all a ∈ A and b ∈ B. By trichotomy,

A|B = {x ∈ R : x < y} | {x ∈ R : x ≥ y}.
In other words, R has no gaps. Every cut in R occurs exactly at a real number.

Allied to the existence of R is its uniqueness. Any complete ordered field F

containing Q as an ordered subfield corresponds to R in a way preserving all the

ordered field structure. To see this, take any ϕ ∈ F and associate to it the cut A|B
where

A = {r ∈ Q : r < ϕ in F} B = the rest of Q.

This correspondence makes F equivalent to R.

Upshot The real number system R exists and it satisfies the properties of a complete

ordered field. The properties are not assumed as axioms, but are proved by logically

analyzing the Dedekind construction of R. Having gone through all this cut rigmarole,

we must remark that it is a rare working mathematician who actually thinks of R as

a complete ordered field or as the set of all cuts in Q. Rather, he or she thinks of R

as points on the x-axis, just as in calculus. You too should picture R this way, the

only benefit of the cut derivation being that you should now unhesitatingly accept

the least upper bound property of R as a true fact.

Note ±∞ are not real numbers, since Q|∅ and ∅|Q are not cuts. Although some

mathematicians think of R together with −∞ and +∞ as an “extended real number

system,” it is simpler to leave well enough alone and just deal with R itself. Nev-

ertheless, it is convenient to write expressions like “x → ∞” to indicate that a real

variable x grows larger and larger without bound.

If S is a nonempty subset of R then its supremum is its least upper bound when

S is bounded above and is said to be +∞ otherwise; its infimum is its greatest lower

bound when S is bounded below and is said to be −∞ otherwise. (In Exercise 19 you

are asked to invent the notion of greatest lower bound.) By definition the supremum

of the empty set is −∞. This is reasonable, considering that every real number, no

matter how negative, is an upper bound for ∅, and the least upper bound should be

as far leftward as possible, namely −∞. Similarly, the infimum of the empty set is

+∞. We write supS and inf S for the supremum and infimum of S.
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Cauchy sequences

As mentioned above there is a second sense in which R is complete. It involves the

concept of convergent sequences. Let a1, a2, a3, a4, . . . = (an), n ∈ N, be a sequence

of real numbers. The sequence (an) converges to the limit b ∈ R as n → ∞
provided that for each ε > 0 there exists N ∈ N such that for all n ≥ N we have

|an − b| < ε.

The statistician’s language is evocative here. Think of n = 1, 2, . . . as a sequence of

times and say that the sequence (an) converges to b provided that eventually all its

terms nearly equal b. In symbols,

∀ ε > 0 ∃N ∈ N such that n ≥ N ⇒ |an − b| < ε.

If the limit b exists it is not hard to see (Exercise 20) that it is unique, and we write

lim
n→∞ an = b or an → b.

Suppose that lim
n→∞ an = b. Since all the numbers an are eventually near b they are

all near each other; i.e., every convergent sequence obeys a Cauchy condition:

∀ ε > 0 ∃N ∈ N such that if n, k ≥ N then |an − ak| < ε.

The converse of this fact is a fundamental property of R.

5 Theorem R is complete with respect to Cauchy sequences in the sense that if

(an) is a sequence of real numbers which obeys a Cauchy condition then it converges

to a limit in R.

Proof First we show that (an) is bounded. Taking ε = 1 in the Cauchy condition

implies there is an N such that for all n, k ≥ N we have |an − ak| < 1. Take K large

enough that −K ≤ a1, . . . , aN ≤ K. Set M = K + 1. Then for all n we have

−M < an < M,

which shows that the sequence is bounded.

Define a set X as

X = {x ∈ R : ∃ infinitely many n such that an ≥ x}.
−M ∈ X since for all n we have an > −M , while M /∈ X since no xn is ≥ M . Thus

X is a nonempty subset of R which is bounded above by M . The least upper bound

property applies to X and we have b = l. u. b. X with −M ≤ b ≤ M .
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We claim that an converges to b as n → ∞. Given ε > 0 we must show there is

an N such that for all n ≥ N we have |an − b| < ε. Since (an) is Cauchy and ε/2 is

positive there does exist an N such that if n, k ≥ N then

|an − ak| < ε

2
.

Since b − ε/2 is less than b it is not an upper bound for X, so there is x ∈ X with

b − ε/2 ≤ x. For infinitely many n we have an ≥ x. Since b + ε/2 > b it does not

belong to X, and therefore for only finitely many n do we have an > b+ ε/2. Thus,

for infinitely many n we have

b− ε

2
≤ x ≤ an ≤ b+

ε

2
.

Since there are infinitely many of these n there are infinitely many that are ≥ N .

Pick one, say an0 with n0 ≥ N and b− ε/2 ≤ an0 ≤ b+ ε/2. Then for all n ≥ N we

have

|an − b| ≤ |an − an0 |+ |an0 − b| <
ε

2
+

ε

2
= ε

which completes the verification that (an) converges. See Figure 4.

b+ ε/2b− ε/2 b

an0

−M M

an

Figure 4 For all n ≥ N we have |an − b| < ε.

Restating Theorem5 gives the

6 Cauchy Convergence Criterion A sequence (an) in R converges if and only if

∀ε > 0 ∃N ∈ N such that n, k ≥ N ⇒ |an − ak| < ε.

Further description of R

The elements of R�Q are irrational numbers. If x is irrational and r is rational

then y = x+ r is irrational. For if y is rational then so is y − r = x, the difference of

rationals being rational. Similarly, if r 
= 0 then rx is irrational. It follows that the

reciprocal of an irrational number is irrational. From these observations we will show

that the rational and irrational numbers are thoroughly mixed up with each other.

Let a < b be given in R. Define the intervals (a, b) and [a, b] as

(a, b) = {x ∈ R : a < x < b}
[a, b] = {x ∈ R : a ≤ x ≤ b}.



20 Real Numbers Chapter 1

7 Theorem Every interval (a, b), no matter how small, contains both rational and

irrational numbers. In fact it contains infinitely many rational numbers and infinitely

many irrational numbers.

Proof Think of a, b as cuts a = A|A′, b = B|B′. The fact that a < b implies the set

B�A is a nonempty set of rational numbers. Choose a rational r ∈ B�A. Since B

has no largest element, there is a rational s with a < r < s < b. Now consider the

transformation

T : t �→ r + (s− r)t.

It sends the interval [0, 1] to the interval [r, s]. Since r and s− r are rational, T sends

rationals to rationals and irrationals to irrationals. Clearly [0, 1] contains infinitely

many rationals, say 1/n with n ∈ N, so [r, s] contains infinitely many rationals. Also

[0, 1] contains infinitely many irrationals, say 1/n
√
2 with n ∈ N, so [r, s] contains

infinitely many irrationals. Since [r, s] contains infinitely many rationals and infinitely

many irrationals, the same is true of the larger interval (a, b).

Theorem7 expresses the fact that between any two rational numbers lies an irra-

tional number, and between any two irrational numbers lies a rational number. This

is a fact worth thinking about for it seems implausible at first. Spend some time

trying to picture the situation, especially in light of the following related facts:

(a) There is no first (i.e., smallest) rational number in the interval (0, 1).

(b) There is no first irrational number in the interval (0, 1).

(c) There are strictly more irrational numbers in the interval (0, 1) (in the cardi-

nality sense explained in Section 4) than there are rational numbers.

The transformation in the proof of Theorem 7 shows that the real line is like

rubber: stretch it out and it never breaks.

A somewhat obscure and trivial fact about R is its Archimedean property: for

each x ∈ R there is an integer n that is greater than x. In other words, there exist

arbitrarily large integers. The Archimedean property is true for Q since p/q ≤ |p|. It
follows that it is true for R. Given x = A|B, just choose a rational number r ∈ B

and an integer n > r. Then n > x. An equivalent way to state the Archimedean

property is that there exist arbitrarily small reciprocals of integers.

Mildly interesting is the existence of ordered fields for which the Archimedean

property fails. One example is the field R(x) of rational functions with real coeffi-

cients. Each such function is of the form

R(x) =
p(x)

q(x)
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where p and q are polynomials with real coefficients and q is not the zero polynomial.

(It does not matter that q(x) = 0 at a finite number of points.) Addition and

multiplication are defined in the usual fashion of high school algebra, and it is easy to

see that R(x) is a field. The order relation on R(x) is also easy to define. If R(x) > 0

for all sufficiently large x then we say that R is positive in R(x), and if R − S is

positive then we write S < R. Since a nonzero rational function vanishes (has value

zero) at only finitely many x ∈ R, we get trichotomy: either R = S, R < S, or S < R.

(To be rigorous, we need to prove that the values of a rational function do not change

sign for x large enough.) The other order properties are equally easy to check, and

R(x) is an ordered field.

Is R(x) Archimedean? That is, given R ∈ R(x), does there exist a natural number

n ∈ R(x) such that R < n? (A number n is the rational function whose numerator is

the constant polynomial p(x) = n, a polynomial of degree zero, and whose denomina-

tor is the constant polynomial q(x) = 1.) The answer is “no.” Take R(x) = x/1. The

numerator is x and the denominator is 1. Clearly we have n < x, not the opposite,

so R(x) fails to be Archimedean.

The same remarks hold for any positive rational function R = p (x)/q (x) where

the degree of p exceeds the degree of q. In R(x), R is never less than a natural

number. (You might ask yourself: exactly which rational functions are less than n?)

The ε-principle

Finally let us note a nearly trivial principle that turns out to be invaluable in

deriving inequalities and equalities in R.

8 Theorem (ε-principle) If a, b are real numbers and if for each ε > 0 we have

a ≤ b+ ε then a ≤ b. If x, y are real numbers and for each ε > 0 we have |x− y| ≤ ε

then x = y.

Proof Trichotomy implies that either a ≤ b or a > b. In the latter case we can

choose ε with 0 < ε < a− b and get the absurdity

ε < a− b ≤ ε.

Hence a ≤ b. Similarly, if x 
= y then choosing ε with 0 < ε < |x − y| gives the

contradiction ε < |x− y| ≤ ε. Hence x = y. See also Exercise 12.
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3 Euclidean Space

Given sets A and B, the Cartesian product of A and B is the set A × B of all

ordered pairs (a, b) such that a ∈ A and b ∈ B. (The name comes from Descartes

who pioneered the idea of the xy-coordinate system in geometry.) See Figure 5.

Figure 5 The Cartesian product A×B

The Cartesian product of R with itself m times is denoted Rm. Elements of Rm

are vectors, ordered m-tuples of real numbers (x1, . . . , xm). In this terminology real

numbers are called scalars and R is called the scalar field. When vectors are added,

subtracted, and multiplied by scalars according to the rules

(x1, . . . , xm) + (y1, . . . , ym) = (x1 + y1, . . . , xm + ym)

(x1, . . . , xm) − (y1, . . . , ym) = (x1 − y1, . . . , xm − ym)

c(x1, . . . , xm) = (cx1, . . . , cxm)

then these operations obey the natural laws of linear algebra: commutativity, as-

sociativity, etc. There is another operation defined on Rm, the dot product (also

called the scalar product or inner product). The dot product of x = (x1, . . . , xm) and

y = (y1, . . . , ym) is

〈x, y〉 = x1y1 + . . .+ xmym.

Remember: the dot product of two vectors is a scalar, not a vector. The dot product

operation is bilinear, symmetric, and positive definite; i.e., for any vectors x, y, z ∈ Rm
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and any c ∈ R we have

〈x, y + cz〉 = 〈x, y〉 + c〈x, z〉
〈x, y〉 = 〈y, x〉
〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x is the zero vector.

The length or magnitude of a vector x ∈ Rm is defined to be

|x| =
√

〈x, x〉 =
√
x21 + . . . + x2m.

See Exercise 16 which legalizes taking roots. Expressed in coordinate-free language,

the basic fact about the dot product is the

9 Cauchy-Schwarz Inequality For all x, y ∈ Rm we have 〈x, y〉 ≤ |x||y|.

Proof Tricky! For any vectors x, y consider the new vector w = x+ ty, where t ∈ R

is a varying scalar. Then

Q(t) = 〈w,w〉 = 〈x+ ty, x+ ty〉

is a real-valued function of t. In fact, Q(t) ≥ 0 since the dot product of any vector

with itself is nonnegative. The bilinearity properties of the dot product imply that

Q(t) = 〈x, x〉 + 2t〈x, y〉 + t2〈y, y〉 = c + bt + at2

is a quadratic function of t. Nonnegative quadratic functions of t ∈ R have nonpositive

discriminants, b2−4ac ≤ 0. For if b2−4ac > 0 then Q(t) has two real roots, between

which Q(t) is negative. See Figure 6.

Q positive,
no real roots Q non-negative,

one double root Q both positive
and negative,
two real roots

t-axis

y
-a
x
is

b2 − 4ac < 0 b2 − 4ac = 0 b2 − 4ac > 0

Figure 6 Quadratic graphs
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But b2 − 4ac ≤ 0 means that 4〈x, y〉2 − 4〈x, x〉〈y, y〉 ≤ 0, i.e.,

〈x, y〉2 ≤ 〈x, x〉〈y, y〉.

Taking the square root of both sides gives 〈x, y〉 ≤√〈x, x〉√〈y, y〉 = |x||y|. (We use

Exercise 17 here and below without further mention.)

The Cauchy-Schwarz inequality implies easily the Triangle Inequality for vec-

tors: For all x, y ∈ Rm we have

|x+ y| ≤ |x|+ |y|.

For |x + y|2 = 〈x + y, x + y〉 = 〈x, x〉 + 2〈x, y〉 + 〈y, y〉. By Cauchy-Schwarz,

2〈x, y〉 ≤ 2|x||y|. Thus,

|x+ y|2 ≤ |x|2 + 2|x||y| + |y|2 = (|x|+ |y|)2.

Taking the square root of both sides gives the result.

The Euclidean distance between vectors x, y ∈ Rm is defined as the length of

their difference,

|x− y| =
√

〈x− y, x− y〉 =
√
(x1 − y1)2 + . . . + (xm − ym)2.

From the Triangle Inequality for vectors follows the Triangle Inequality for dis-

tance. For all x, y, z ∈ Rm we have

|x− z| ≤ |x− y| + |y − z|.

To prove it, think of x− z as the vector sum (x− y) + (y− z) and apply the Triangle

Inequality for vectors. See Figure 7.

Geometric intuition in Euclidean space can carry you a long way in real analysis,

especially in being able to forecast whether a given statement is true or not. Your

geometric intuition will grow with experience and contemplation. We begin with

some vocabulary.

In real analysis, vectors in Rm are referred to as points in Rm. The jth coordinate

of the point (x1, . . . , xm) is the number xj appearing in the jth position. The jth

coordinate axis is the set of points x ∈ Rm whose kth coordinates are zero for all

k 
= j. The origin of Rm is the zero vector, (0, . . . , 0). The first orthant of Rm is

the set of points x ∈ Rm all of whose coordinates are nonnegative. When m = 2,

the first orthant is the first quadrant. The integer lattice is the set Zm ⊂ Rm of
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Figure 7 How the Triangle Inequality gets its name

origin

first quadrant

x1-axis

x
2
-a
x
is

(4, 1)

Figure 8 The integer lattice and first quadrant
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ordered m-tuples of integers. The integer lattice is also called the integer grid. See

Figure 8.

A box is a Cartesian product of intervals

[a1, b1]× · · · × [am, bm]

in Rm. (A box is also called a rectangular parallelepiped.) The unit cube in

Rm is the box [0, 1]m = [0, 1]× · · · × [0, 1]. See Figure 9.

vertex

box cube

Figure 9 A box and a cube

The unit ball and unit sphere in Rm are the sets

Bm = {x ∈ Rm : |x| ≤ 1}
Sm−1 = {x ∈ Rm : |x| = 1}.

The reason for the exponent m − 1 is that the sphere is (m − 1)-dimensional as

an object in its own right although it does live in m-space. In 3-space, the surface of

a ball is a two-dimensional film, the 2-sphere S2. See Figure 10.

A set E ⊂ Rm is convex if for each pair of points x, y ∈ E, the straight line

segment between x and y is also contained in E. The unit ball is an example of a

convex set. To see this, take any two points in Bm and draw the segment between

them. It “obviously” lies in Bm. See Figure 11.

To give a mathematical proof, it is useful to describe the line segment between

x and y with a formula. The straight line determined by distinct points x, y ∈ Rm

is the set of all linear combinations sx+ ty where s+ t = 1, and the line segment is

the set of these linear combinations where s and t are ≤ 1. Such linear combinations
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B2 = disc S2 = sphere

Figure 10 A 2-disc B2 with its boundary circle, and a 2-sphere S2 with its

equator

Figure 11 Convexity of the ball

sx + ty with s + t = 1 and 0 ≤ s, t ≤ 1 are called convex combinations. The line

segment is denoted as [x, y]. (This notation is consistent with the interval notation

[a, b]. See Exercise 27.) Now if x, y ∈ Bm and sx+ ty = z is a convex combination of

x and y then, using the Cauchy-Schwarz Inequality and the fact that 2st ≥ 0, we get

〈z, z〉 = s2〈x, x〉 + 2st〈x, y〉 + t2〈y, y〉
≤ s2|x|2 + 2st|x||y| + t2|y|2
≤ s2 + 2st + t2 = (s+ t)2 = 1.

Taking the square root of both sides gives |z| ≤ 1, which proves convexity of the

ball.
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Inner product spaces

An inner product on a vector space V is an operation 〈 , 〉 on pairs of vectors

in V that satisfies the same conditions that the dot product in Euclidean space does:

Namely, bilinearity, symmetry, and positive definiteness. A vector space equipped

with an inner product is an inner product space. The discriminant proof of the

Cauchy-Schwarz Inequality is valid for any inner product defined on any real vector

space, even if the space is infinite-dimensional and the standard coordinate proof

would make no sense. For the discriminant proof uses only the inner product prop-

erties, and not the particular definition of the dot product in Euclidean space.

Rm has dimension m because it has a basis e1, . . . , em. Other vector spaces are

more general. For example, let C([a, b],R) denote the set of all of continuous real-

valued functions defined on the interval [a, b]. (See Section 6 or your old calculus

book for the definition of continuity.) It is a vector space in a natural way, the

sum of continuous functions being continuous and the scalar multiple of a continuous

function being continuous. The vector space C([a, b],R), however, has no finite basis.

It is infinite-dimensional. Even so, there is a natural inner product,

〈f, g〉 =

∫ b

a
f(x)g(x) dx.

Cauchy-Schwarz applies to this inner product, just as to any inner product, and we

infer a general integral inequality valid for any two continuous functions,∫ b

a
f (x)g(x) dx ≤

√∫ b

a
f(x)2 dx

√∫ b

a
g(x)2 dx.

It would be challenging to prove such an inequality from scratch, would it not? See

also the first paragraph of the next chapter.

A norm on a vector space V is any function | | : V → R with the three properties

of vector length: Namely, if v, w ∈ V and λ ∈ R then

|v| ≥ 0 and |v| = 0 if and only if v = 0,

|λv| = |λ| |v| ,
|v + w| ≤ |v| + |w| .

An inner product 〈 , 〉 defines a norm as |v| = √〈v, v〉, but not all norms come

from inner products. The unit sphere {v ∈ V : 〈v, v〉 = 1} for every inner product is

smooth (has no corners) while for the norm

|v|max = max{|v1|, |v2|}
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defined on v = (v1, v2) ∈ R2, the unit sphere is the perimeter of the square {(v1, v2) ∈
R2 : |v1| ≤ 1 and |v2| ≤ 1}. It has corners and so it does not arise from an inner

product. See Exercises 46, 47, and the Manhattan metric on page 76.

The simplest Euclidean space beyond R is the plane R2. Its xy-coordinates can

be used to define a multiplication,

(x, y) • (x′, y′) = (xx′ − yy′, xy′ + x′y).

The point (1, 0) corresponds to the multiplicative unit element 1, while the point (0, 1)

corresponds to i =
√−1, which converts the plane to the field C of complex numbers.

Complex analysis is the study of functions of a complex variable, i.e., functions f(z)

where z and f(z) lie in C. Complex analysis is the good twin and real analysis the

evil one: beautiful formulas and elegant theorems seem to blossom spontaneously in

the complex domain, while toil and pathology rule the reals. Nevertheless, complex

analysis relies more on real analysis than the other way around.

4 Cardinality
Let A and B be sets. A function f : A → B is a rule or mechanism which, when

presented with any element a ∈ A, produces an element b = f(a) of B. It need not

be defined by a formula. Think of a function as a device into which you feed elements

of A and out of which pour elements of B. See Figure 12. We also call f a mapping

Figure 12 The function f as a machine

or a map or a transformation. The set A is the domain of the function and B is
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its target, also called its codomain. The range or image of f is the subset of the

target

{b ∈ B : there exists at least one element a ∈ A with f(a) = b}.

See Figure 13.

Figure 13 The domain, target, and range of a function

Try to write f instead of f(x) to denote a function. The function is the device

which when confronted with input x produces output f(x). The function is the

device, not the output.

Think also of a function dynamically. At time zero all the elements of A are

sitting peacefully in A. Then the function applies itself to them and throws them

into B. At time one all the elements that were formerly in A are now transferred into

B. Each a ∈ A gets sent to some element f(a) ∈ B.

A mapping f : A → B is an injection (or is one-to-one) if for each pair of

distinct elements a, a′ ∈ A, the elements f(a), f(a′) are distinct in B. That is,

a 
= a′ ⇒ f(a) 
= f(a′).

The mapping f is a surjection (or is onto) if for each b ∈ B there is at least one

a ∈ A such that f(a) = b. That is, the range of f is B.
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A mapping is a bijection if it is both injective and surjective. It is one-to-one

and onto. If f : A → B is a bijection then the inverse map f−1 : B → A is a bijection

where f−1(b) is by definition the unique element a ∈ A such that f(a) = b.

The identity map of any set to itself is the bijection that takes each a ∈ A and

sends it to itself, id(a) = a.

If f : A → B and g : B → C then the composite g ◦ f : A → C is the function

that sends a ∈ A to g(f(a)) ∈ C. If f and g are injective then so is g ◦ f , while if f

and g are surjective then so is g ◦ f ,

In particular the composite of bijections is a bijection. If there is a bijection from

A onto B then A and B are said to have equal cardinality,† and we write A ∼ B.

The relation ∼ is an equivalence relation. That is,

(a) A ∼ A.

(b) A ∼ B implies B ∼ A.

(c) A ∼ B ∼ C implies A ∼ C.

(a) follows from the fact that the identity map bijects A to itself. (b) follows from

the fact that the inverse of a bijection A → B is a bijection B → A. (c) follows from

the fact that the composite of bijections f and g is a bijection g ◦ f .
A set S is

finite if it is empty or for some n ∈ N we have S ∼ {1, . . . , n}.
infinite if it is not finite.

denumerable if S ∼ N.

countable if it is finite or denumerable.

uncountable if it is not countable.

†The word “cardinal” indicates the number of elements in the set. The cardinal numbers are

0, 1, 2, . . . The first infinite cardinal number is aleph null, ℵ0. One says the N has ℵ0 elements. A

mystery of math is the Continuum Hypothesis which states that R has cardinality ℵ1, the second

infinite cardinal. Equivalently, if N ⊂ S ⊂ R, the Continuum Hypothesis asserts that S ∼ N or

S ∼ R. No intermediate cardinalities exist. You can pursue this issue in Paul Cohen’s book, Set

Theory and the Continuum Hypothesis.
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We also write cardA = cardB and #A = #B when A,B have equal cardinality.

If S is denumerable then there is a bijection f : N → S, and this gives a way to

list the elements of S as s1 = f(1), s2 = f(2), s3 = f(3), etc. Conversely, if a set

S is presented as an infinite list (without repetition) S = {s1, s2, s3, . . .}, then it is

denumerable: Define f(k) = sk for all k ∈ N. In brief, denumerable = listable.

Let’s begin with a truly remarkable cardinality result, that although N and R are

both infinite, R is more infinite than N. Namely,

10 Theorem R is uncountable.

Proof There are other proofs of the uncountability of R, but none so beautiful as

this one. It is due to Cantor. I assume that you accept the fact that each real number

x has a decimal expansion, x = N.x1x2x3 . . . , and it is uniquely determined by x if

one agrees never to terminate the expansion with an infinite string of 9s. (See also

Exercise 18.) We want to prove that R is uncountable. Suppose it is not uncountable.

Then it is countable and, being infinite, it must be denumerable. Accordingly let

f : N → R be a bijection. Using f , we list the elements of R along with their decimal

expansions as an array, and consider the digits xii that occur along the diagonal in

this array. See Figure 14.

f(1) = N1 x11 x12 x13 x14 x15 x16 x17

f(2) = N2 x21 x22 x23 x24 x25 x26 x27

f(3) = N3 x31 x32 x33 x34 x35 x36 x37

f(4) = N4 x41 x42 x43 x44 x45 x46 x47

f(5) = N5 x51 x52 x53 x54 x55 x56 x57

f(6) = N6 x61 x62 x63 x64 x65 x66 x67

f(7) = N7 x71 x72 x73 x74 x75 x76 x77
. . . . . .

...

Figure 14 Cantor’s diagonal method

For each i, choose a digit yi such that yi 
= xii and yi 
= 9. Where is the number

y = 0.y1y2y3 . . .? Is it f (1)? No, because the first digit in the decimal expansion of
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f(1) is x11 and y1 
= x11. Is it f(2)? No, because the second digit in the decimal

expansion of f(2) is x22 and y2 
= x22. Is it f(k)? No, because the kth digit in the

decimal expansion of f(k) is xkk and yk 
= xkk. Nowhere in the list do we find y.

Nowhere! Therefore the list could not account for every real number, and R must

have been uncountable.

11 Corollary [a, b] and (a, b) are uncountable.

Proof There are bijections from (a, b) onto (−1, 1) onto the unit semicircle onto R

shown in Figure 15. The composite f bijects (a, b) onto R, so (a, b) is uncountable.

Figure 15 Equicardinality of (a, b), (−1, 1), and R

Since [a, b] contains (a, b), it too is uncountable.

The remaining results in this section are of a more positive flavor.

12 Theorem Each infinite set S contains a denumerable subset.
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Proof Since S is infinite it is nonempty and contains an element s1. Since S is

infinite the set S�{s1} = {s ∈ S : s 
= s1} is nonempty and there exists s2 ∈ S�{s1}.
Since S is an infinite set, S� {s1, s2} = {s ∈ S : s 
= s1, s2} is nonempty and there

exists s3 ∈ S� {s1, s2}. Continuing this way gives a list (sn) of distinct elements of

S. The set of these elements forms a denumerable subset of S.

13 Theorem An infinite subset A of a denumerable set B is denumerable.

Proof There exists a bijection f : N → B. Each element of A appears exactly once

in the list f(1), f(2), f(3), . . . of B. Define g(k) to be the kth element of A appearing

in the list. Since A is infinite, g(k) is defined for all k ∈ N. Thus g : N → A is a

bijection and A is denumerable.

14 Corollary The sets of even integers and of prime integers are denumerable.

Proof They are infinite subsets of N which is denumerable.

15 Theorem N× N is denumerable.

Proof Think of N× N as an ∞×∞ matrix and walk along the successive counter-

diagonals. See Figure 16. This gives a list

(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), (4, 1), (3, 2), (2, 3), (1, 4), (5, 1), . . .

of N× N and proves that N× N is denumerable.

Figure 16 Counter-diagonals in an ∞×∞ matrix
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16 Corollary The Cartesian product of denumerable sets A and B is denumerable.

Proof N ∼ N × N ∼ A × B.

17 Theorem If f : N → B is a surjection and B is infinite then B is denumerable.

Proof For each b ∈ B, the set {k ∈ N : f(k) = b} is nonempty and hence contains a

smallest element; say h(b) = k is the smallest integer that is sent to b by f . Clearly, if

b, b′ ∈ B and b 
= b′ then h(b) 
= h(b′). That is, h : B → N is an injection which bijects

B to hB ⊂ N. Since B is infinite, so is hB. By Theorem 13, hB is denumerable and

therefore so is B.

18 Corollary The denumerable union of denumerable sets is denumerable.

Proof Suppose that A1, A2, . . . is a sequence of denumerable sets. List the elements

of Ai as ai1, ai2, . . . and define

f : N × N → A = > Ai

(i, j) �→ aij

Clearly f is a surjection. According to Theorem 15, there is a bijection g : N →
N × N. The composite f ◦ g is a surjection N → A. Since A is infinite, Theorem 17

implies it is denumerable.

19 Corollary Q is denumerable.

Proof Q is the denumerable union of the denumerable sets Aq = {p/q : p ∈ Z} as

q ranges over N.

20 Corollary For each m ∈ N the set Qm is denumerable.

Proof Apply the induction principle. If m = 1 then the previous corollary states

that Q1 is denumerable. Knowing inductively that Qm−1 is denumerable and Qm =

Qm−1 ×Q, the result follows from Corollary 16.

Combination laws for countable sets are similar to those for denumerable sets. As

is easily checked,

Every subset of a countable set is countable.

A countable set that contains a denumerable subset is denumerable.

The Cartesian product of finitely many countable sets is countable.

The countable union of countable sets is countable.
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5* Comparing Cardinalities
The following result gives a way to conclude that two sets have the same cardinality.

Roughly speaking the condition is that cardA ≤ cardB and cardB ≤ cardA.

21 Schroeder-Bernstein Theorem If A,B are sets and f : A → B, g : B → A

are injections then there exists a bijection h : A → B.

Proof-sketch Consider the dynamic Venn diagram, Figure 17. The disc labeled gfA

Figure 17 Pictorial proof of the Schroeder-Bernstein Theorem

is the image of A under the map g ◦ f . It is a subset of A. The ring between A and

gfA divides into two subrings. A0 is the set of points in A that do not lie in the image

of g, while A1 is the set points in the image of g that do not lie in gfA. Similarly,

B0 is the set of points in B that do not lie in fA, while B1 is the set of points in

fA that do not lie in fgB. There is a natural bijection h from the pair of rings

A0 ∪ A1 = A� gfA to the pair of rings B0 ∪B1 = B� fgB. It equals f on the outer

ring A0 = A� gB and it is g−1 on the inner ring A1 = gB� gfA. (The map g−1 is

not defined on all of A, but it is defined on the set gB.) In this notation, h sends A0

onto B1 and sends A1 onto B0. It switches the indices. Repeat this on the next pair

of rings for A and B. That is, look at gfA instead of A and fgB instead of B. The

next two rings in A,B are

A2 = gfA� gfgB A3 = gfgB � gfgfA

B2 = fgB� fgfA B3 = fgfA� fgfgB.

Send A2 to B3 by f and A3 to B2 by g−1. The rings Ai are disjoint, and so are
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the rings Bi, so repetition gives a bijection

φ : |Ai → |Bi,

(| indicates disjoint union) defined by

φ(x) =

{
f(x) if x ∈ Ai and i is even

g−1(x) if x ∈ Ai and i is odd.

Let A∗= A� (>Ai) and B∗= B� (>Bi) be the rest of A and B. Then f bijects

A∗ to B∗ and φ extends to a bijection h : A → B defined by

h(x) =

{
φ(x) if x ∈ |Ai

f(x) if x ∈ A∗.

A supplementary aid in understanding the Schroeder Bernstein proof is the fol-

lowing crossed ladder diagram, Figure 18.

Figure 18 Diagramatic proof of the Schroeder-Bernstein Theorem

Exercise 36 asks you to show directly that (a, b) ∼ [a, b]. This makes sense since

(a, b) ⊂ [a, b] ⊂ R and (a, b) ∼ R should certainly imply (a, b) ∼ [a, b] ∼ R. The

Schroeder-Bernstein theorem gives a quick indirect solution to the exercise. The in-

clusion map i : (a, b) ↪→ [a, b] sending x to x injects (a, b) into [a, b], while the function

j(x) = x/2 + (a + b)/4 injects [a, b] into (a, b). The existence of the two injections

implies by the Schroeder-Bernstein Theorem that there is a bijection (a, b) ∼ [a, b].
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6* The Skeleton of Calculus
The behavior of a continuous function defined on an interval [a, b] is at the root of all

calculus theory. Using solely the Least Upper Bound Property of the real numbers we

rigorously derive the basic properties of such functions. The function f : [a, b] → R

is continuous if for each ε > 0 and each x ∈ [a, b] there is a δ > 0 such that

t ∈ [a, b] and |t− x| < δ ⇒ |f(t)− f(x)| < ε.

See Figure 19.

Figure 19 The graph of a continuous function of a real variable

Continuous functions are found everywhere in analysis and topology. Theo-

rems 22, 23, and 24 present their simplest properties. Later we generalize these

results to functions that are neither real valued nor dependent on a real variable.

Although it is possible to give a combined proof of Theorems 22 and 23 I prefer to

highlight the Least Upper Bound Property and keep them separate.

22 Theorem The values of a continuous function defined on an interval [a, b] form

a bounded subset of R. That is, there exist m,M ∈ R such that for all x ∈ [a, b] we

have m ≤ f(x) ≤ M .

Proof For x ∈ [a, b], let Vx be the value set of f(t) as t varies from a to x,

Vx = {y ∈ R : for some t ∈ [a, x] we have y = f(t)}.

Set

X = {x ∈ [a, b] : Vx is a bounded subset of R}.
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We must prove that b ∈ X. Clearly a ∈ X and b is an upper bound for X. Since

X is nonempty and bounded above, there exists in R a least upper bound c ≤ b for

X. Take ε = 1 in the definition of continuity at c. There exists a δ > 0 such that

|x − c| < δ implies |f(x) − f(c)| < 1. Since c is the least upper bound for X, there

exists x ∈ X in the interval [c− δ, c]. (Otherwise c− δ is a smaller upper bound for

X.) Now as t varies from a to c, the value f(t) varies first in the bounded set Vx and

then in the bounded set J = (f(c)− 1, f(c) + 1). See Figure 20.

Figure 20 The value set Vx and the interval J

The union of two bounded sets is a bounded set and it follows that Vc is bounded,

so c ∈ X. Besides, if c < b then f(t) continues to vary in the bounded set J for t > c,

contrary to the fact that c is an upper bound for X. Thus, c = b, b ∈ X, and the

values of f form a bounded subset of R.

23 Theorem A continuous function f defined on an interval [a, b] takes on absolute

minimum and absolute maximum values: For some x0, x1 ∈ [a, b] and for all x ∈ [a, b]

we have

f(x0) ≤ f(x) ≤ f(x1).

Proof Let M = l. u. b. f(t) as t varies in [a, b]. By Theorem22 M exists. Consider

the set X = {x ∈ [a, b] : l.u.b.Vx < M} where, as above, Vx is the set of values of f(t)

as t varies on [a, x].
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Case 1. f(a) = M . Then f takes on a maximum at a and the theorem is proved.

Case 2. f(a) < M . Then X 
= ∅ and we can consider the least upper bound of X, say

c. If f(c) < M , we choose ε > 0 with ε < M − f(c). By continuity at c, there exists

a δ > 0 such that |t − c| < δ implies |f(t) − f(c)| < ε. Thus, l.u.b.Vc < M . If c < b

this implies there exist points t to the right of c at which l.u.b.Vt < M , contrary to

the fact that c is an upper bound of such points. Therefore, c = b, which implies that

M < M , a contradiction. Having arrived at a contradiction from the supposition

that f(c) < M , we duly conclude that f(c) = M , so f assumes a maximum at c. The

situation with minima is similar.

24 Intermediate Value Theorem A continuous function defined on an interval

[a, b] takes on (or “achieves,” “assumes,” or “attains”) all intermediate values: That

is, if f(a) = α, f(b) = β, and γ is given, α ≤ γ ≤ β, then there is some c ∈ [a, b]

such that f(c) = γ. The same conclusion holds if β ≤ γ ≤ α.

The theorem is pictorially obvious. A continuous function has a graph that is a

curve without break points. Such a graph can not jump from one height to another.

It must pass through all intermediate heights.

Proof Set X = {x ∈ [a, b] : l.u.b.Vx ≤ γ} and c = l.u.b.X. Now c exists because X

is nonempty (it contains a) and it is bounded above (by b). We claim that f(c) = γ,

as shown in Figure 21.

To prove it we just eliminate the other two possibilities which are f(c) < γ and

f(c) > γ, by showing that each leads to a contradiction. Suppose that f(c) < γ

and take ε = γ − f(c). Continuity at c gives δ > 0 such that |t − c| < δ implies

|f(t)− f(c)| < ε. That is,

t ∈ (c− δ, c+ δ) ⇒ f(t) < γ,

so c+ δ/2 ∈ X, contrary to c being an upper bound of X.

Suppose that f(c) > γ and take ε = f(c) − γ. Continuity at c gives δ > 0 such

that |t− c| < δ implies |f(t)− f(c)| < ε. That is,

t ∈ (c− δ, c+ δ) ⇒ f(t) > γ,

so c − δ/2 is an upper bound for X, contrary to c being the least upper bound for

X. Since f(c) is neither < γ nor > γ we get f(c) = γ.

A combination of Theorems 22, 23, 24, and Exercise 43 could well be called the
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Figure 21 x ∈ X implies that f(x) ≤ γ.

25 Fundamental Theorem of Continuous Functions Every continuous real val-

ued function of a real variable x ∈ [a, b] is bounded, achieves minimum, intermediate,

and maximum values, and is uniformly continuous.

7* Visualizing the Fourth Dimension

A lot of real analysis takes place in Rm but the full m-dimensionality is rarely im-

portant. Rather, most analysis facts which are true when m = 1, 2, 3 remain true for

m ≥ 4. Still, I suspect you would be happier if you could visualize R4, R5, etc. Here

is how to do it.

It is often said that time is the fourth dimension and that R4 should be thought

of as xyzt-space where a point has position (x, y, z) in 3-space at time t. This is

only one possible way to think of a fourth dimension. Instead, you can think of color

as a fourth dimension. Imagine our usual 3-space with its xyz-coordinates in which

points are colorless. Then imagine that you can give color to points (“paint” them)

with shades of red indicating positive fourth coordinate and blue indicating negative

fourth coordinate. This gives xyzc-coordinates. Points with equal xyz-coordinates
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but different colors are different points.

How is this useful? We have not used time as a coordinate, reserving it to describe

motion in 4-space. Figure 22 shows two circles – the unit circle C in the horizontal

xy-plane and the circle V with radius 1 and center (1, 0, 0) in the vertical xz-plane.

They are linked. No continuous motion can unlink them in 3-space without one

VC
x− axis

z − axis y − axis

Figure 22 C and V are linked circles.

crossing the other. However, in Figure 23 you can watch them unlink in 4-space as

follows.

Just gradually give redness to C while dragging it leftward parallel to the x-axis,

until it is to the left of V . (Leave V always fixed.) Then diminish the redness of

C until it becomes colorless. It ends up to the left of V and no longer links it. In

formulas we can let

C(t) = {(x, y, z, c) ∈ R4 : (x+ 2t)2 + y2 = 1, z = 0, and c(t) = t(t− 1)}

for 0 ≤ t ≤ 1. See Figure 23.

The moving circle C(t) never touches the stationary circle V . In particular, at

time t = 1/2 we have C(t) ∩ V = ∅. For (−1, 0, 0, 1/4) 
= (−1, 0, 0, 0).

Other parameters can be used for higher dimensions. For example we could use

pressure, temperature, chemical concentration, monetary value, etc. In theoretical

mechanics one uses six parameters for a moving particle – three coordinates of position

and three more for momentum.

Moral Choosing a new parameter as the fourth dimension (color instead of time)

lets one visualize 4-space and observe motion there.
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colorless C(0) colorless V

reddish C(1/4) colorless V

reddest C(1/2) colorless V

reddish C(3/4) colorless V

colorless C(1) colorless V

Figure 23 How to unlink linked circles using the fourth dimension
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Exercises
0. Prove that for all sets A,B,C the formula

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

is true. Here is the solution written out in gory detail. Imitate this style in
writing out proofs in this course. See also the guidelines for writing a rigorous
proof on page 5. Follow them!
Hypothesis. A,B,C are sets.
Conclusion. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
Proof. To prove two sets are equal we must show that every element of the first
set is an element of the second set and vice versa. Referring to Figure 24, let x
denote an element of the set A ∩ (B ∪ C). It belongs to A and it belongs to B
or to C. Therefore x belongs to A ∩B or it belongs to A ∩ C. Thus x belongs
to the set (A∩B)∪ (A∩C) and we have shown that every element of the first
set A ∩ (B ∪ C) belongs to the second set (A ∩B) ∪ (A ∩ C).

Figure 24 A is ruled vertically, B and C are ruled horizontally, A ∩B is
ruled diagonally, and A ∩ C is ruled counter-diagonally.

On the other hand let y denote an element of the set (A ∩ B) ∪ (A ∩ C). It
belongs to A∩B or it belongs to A∩C. Therefore it belongs to A and it belongs
to B or to C. Thus y belongs to A ∩ (B ∪ C) and we have shown that every
element of the second set (A∩B)∪ (A∩C) belongs to the first set A∩ (B ∪C).
Since each element of the first set belongs to the second set and each element
of the second belongs to the first, the two sets are equal, A ∩ (B ∪ C) =
(A ∩B) ∪ (A ∩ C). QED

1. Prove that for all sets A,B,C the formula

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
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is true.

2. If several sets A,B,C, . . . all are subsets of the same set X then the differences
X� A, X� B, X� C, . . . are the complements of A,B,C, . . . in X and are
denoted Ac, Bc, Cc, . . .. The symbol Ac is read “A complement.”

(a) Prove that (Ac)c = A.

(b) Prove DeMorgan’s Law: (A∩B)c = Ac ∪Bc and derive from it the law
(A ∪B)c = Ac ∩Bc.

(c) Draw Venn diagrams to illustrate the two laws.

(d) Generalize these laws to more than two sets.

3. Recast the following English sentences in mathematics, using correct mathe-
matical grammar. Preserve their meaning.

(a) 2 is the smallest prime number.

(b) The area of any bounded plane region is bisected by some line parallel to
the x-axis.

*(c) “All that glitters is not gold.”

*4. What makes the following sentence ambiguous? “A death row prisoner can’t
have too much hope.”

5. Negate the following sentences in English using correct mathematical grammar.

(a) If roses are red, violets are blue.

*(b) He will sink unless he swims.

6. Why is the square of an odd integer odd and the square of an even integer even?
What is the situation for higher powers? [Hint: Prime factorization.]

7. (a) Why does 4 divide every even integer square?

(b) Why does 8 divide every even integer cube?

(c) Why can 8 never divide twice an odd cube?

(d) Prove that the cube root of 2 is irrational.

8. Suppose that the natural number k is not a perfect nth power.

a Prove that its nth root is irrational.

b Infer that the nth root of a natural number is either a natural number or
it is irrational. It is never a fraction.

9. Let x = A|B, x′ = A′|B′ be cuts in Q. We defined

x+ x′ = (A+A′) | rest of Q.

(a) Show that although B + B′ is disjoint from A + A′, it may happen in
degenerate cases that Q is not the union of A+A′ and B +B′.

(b) Infer that the definition of x+x′ as (A+A′) | (B+B′) would be incorrect.

(c) Why did we not define x · x′ = (A ·A′) | rest of Q?

10. Prove that for each cut x we have x+ (−x) = 0∗. [This is not entirely trivial.]

11. A multiplicative inverse of a nonzero cut x = A|B is a cut y = C|D such that
x · y = 1∗.
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(a) If x > 0∗, what are C and D?

(b) If x < 0∗, what are they?

(c) Prove that x uniquely determines y.

12. Prove that there exists no smallest positive real number. Does there exist a
smallest positive rational number? Given a real number x, does there exist a
smallest real number y > x?

13. Let b = l.u.b. S, where S is a bounded nonempty subset of R.

(a) Given ε > 0 show that there exists an s ∈ S with

b− ε ≤ s ≤ b.

(b) Can s ∈ S always be found so that b− ε < s < b?

(c) If x = A|B is a cut in Q, show that x = l.u.b.A.

14. Prove that
√
2 ∈ R by showing that x·x = 2 where x = A|B is the cut in Q with

A = {r = Q : r ≤ 0 or r2 < 2}. [Hint: Use Exercise 13. See also Exercise 16,
below.]

15. Given y ∈ R, n ∈ N, and ε > 0, show that for some δ > 0, if u ∈ R and
|u− y| < δ then |un − yn| < ε. [Hint: Prove the inequality when n = 1, n = 2,
and then do induction on n using the identity

un − yn = (u− y)(un−1 + un−2y + . . .+ yn−1).]

16. Given x > 0 and n ∈ N, prove that there is a unique y > 0 such that yn = x.
That is, the nth root of x exists and is unique. [Hint: Consider

y = l. u. b.{s ∈ R : sn ≤ x}.

Then use Exercise 15 to show that yn can be neither < x nor > x.]

17. Let x, y ∈ R with x, y > 0, and n ∈ N be given.

(a) Prove that x < y if and only if xn < yn.

(b) Infer from Exercise 16 that x < y if and only if the nth root of x is less
than the nth root of y.

18. Prove that real numbers correspond bijectively to decimal expansions not ter-
minating in an infinite strings of nines, as follows. The decimal expansion of
x ∈ R is N.x1x2 . . ., where N is the largest integer ≤ x, x1 is the largest integer
≤ 10(x−N), x2 is the largest integer ≤ 100(x− (N + x1/10)), and so on.

(a) Show that each xk is a digit between 0 and 9.

(b) Show that for each k there is an � ≥ k such that x� �= 9.

(c) Conversely, show that for each such expansion N.x1x2 . . . not terminating
in an infinite string of nines, the set

{N, N +
x1
10

, N +
x1
10

+
x2
100

, . . .}

with x, y > 0,
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is bounded and its least upper bound is a real number x with decimal
expansion N.x1x2 . . ..

(d) Repeat the exercise with a general base in place of 10.

19. Formulate the definition of the greatest lower bound (g.l.b.) of a set of real
numbers. State a g.l.b. property of R and show it is equivalent to the l.u.b.
property of R.

20. Prove that limits are unique, i.e., if (an) is a sequence of real numbers that
converges to a real number b and also converges to a real number b′, then
b = b′.

21. Let f : A → B be a function. That is, f is some rule or device which, when
presented with any element a ∈ A, produces an element b = f(a) of B. The
graph of f is the set S of all pairs (a, b) ∈ A×B such that b = f(a).

(a) If you are given a subset S ⊂ A×B, how can you tell if it is the graph of
some function? (That is, what are the set theoretic properties of a graph?)

(b) Let g : B → C be a second function and consider the composed function
g ◦ f : A → C. Assume that A = B = C = [0, 1], draw A× B × C as the
unit cube in 3-space, and try to relate the graphs of f , g, and g ◦ f in the
cube.

22. A fixed-point of a function f : A → A is a point a ∈ A such that f(a) = a.
The diagonal of A×A is the set of all pairs (a, a) in A×A.

(a) Show that f : A → A has a fixed-point if and only if the graph of f
intersects the diagonal.

(b) Prove that every continuous function f : [0, 1] → [0, 1] has at least one
fixed-point.

(c) Is the same true for continuous functions f : (0, 1) → (0, 1)?†

(d) Is the same true for discontinuous functions?

23. A rational number p/q is dyadic if q is a power of 2, q = 2k for some nonnegative
integer k. For example, 0, 3/8, 3/1, −3/256, are dyadic rationals, but 1/3, 5/12
are not. A dyadic interval is [a, b] where a = p/2k and b = (p + 1)/2k. For
example, [.75, 1] is a dyadic interval but [1, π], [0, 2], and [.25, .75] are not. A
dyadic cube is the product of dyadic intervals having equal length. The set of
dyadic rationals may be denoted as Q2 and the dyadic lattice as Qm

2 .

(a) Prove that any two dyadic squares (i.e., planar dyadic cubes) of the same
size are either identical, intersect along a common edge, intersect at a
common vertex, or do not intersect at all.

(b) Show that the corresponding intersection property is true for dyadic cubes
in Rm.

†A question posed in this manner means that, as well as answering the question with a “yes” or
a “no,” you should give a proof if your answer is “yes” or a specific counterexample if your answer
is “no.” Also, to do this exercise you should read Theorems 22, 23, 24.
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24. Given a cube in Rm, what is the largest ball it contains? Given a ball in
Rm, what is the largest cube it contains? What are the largest ball and cube
contained in a given box in Rm?

25. (a) Given ε > 0, show that the unit disc contains finitely many dyadic squares
whose total area exceeds π − ε, and which intersect each other only along
their boundaries.

**(b) Show that the assertion remains true if we demand that the dyadic squares
are disjoint.

(c) Formulate (a) in dimension m = 3 and m ≥ 4.

**(d) Do the analysis with squares and discs interchanged. That is, given ε > 0
prove that finitely many disjoint closed discs can be drawn inside the unit
square so that the total area of the discs exceeds 1 − ε. [Hint: The Pile
of Sand Principle. On the first day of work, take away 1/16 of a pile of
sand. On the second day take away 1/16 of the remaining pile of sand.
Continue. What happens to the pile of sand after n days when n → ∞?
Instead of sand, think of your obligation to place finitely many disjoint
dyadic squares (or discs) that occupy at least 1/16 of the area of the unit
disc (or unit square).]

*26. Let b(R) and s(R) be the number of integer unit cubes in Rm that intersect the
ball and sphere of radius R, centered at the origin.

(a) Let m = 2 and calculate the limits

lim
R→∞

s(R)

b(R)
and lim

R→∞
s(R)2

b(R)
.

(b) Take m ≥ 3. What exponent k makes the limit

lim
R→∞

s(R)k

b(R)

interesting?

(c) Let c(R) be the number of integer unit cubes that are contained in the
ball of radius R, centered at the origin. Calculate

lim
R→∞

c(R)

b(R)

(d) Shift the ball to a new, arbitrary center (not on the integer lattice) and
re-calculate the limits.

27. Prove that the interval [a, b] in R is the same as the segment [a, b] in R1. That
is,

{x ∈ R : a ≤ x ≤ b}
= {y ∈ R : ∃ s, t ∈ [0, 1] with s + t = 1 and y = sa + tb}.

[Hint: How do you prove that two sets are equal?]
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28. A convex combination of w1, . . . , wk ∈ Rm is a vector sum

w = s1w1 + · · · + skwk

such that s1 + · · · + sk = 1 and 0 ≤ s1, . . . , sk ≤ 1.

(a) Prove that if a set E is convex then E contains the convex combination of
any finite number of points in E.

(b) Why is the converse obvious?

29. (a) Prove that the ellipsoid

E = {(x, y, z) ∈ R3 :
x2

a2
+

y2

b2
+

z2

c2
≤ 1}

is convex. [Hint: E is the unit ball for a different dot product. What is
it? Does the Cauchy-Schwarz inequality not apply to all dot products?]

(b) Prove that all boxes in Rm are convex.

30. A function f : (a, b) → R is a convex function if for all x, y ∈ (a, b) and all
s, t ∈ [0, 1] with s + t = 1 we have

f(sx+ ty) ≤ sf(x) + tf(y).

(a) Prove that f is convex if and only if the set S of points above its graph is
convex in R2. The set S is {(x, y) : f(x) ≤ y}.

*(b) Prove that every convex function is continuous.

(c) Suppose that f is convex and a < x < u < b. The slope σ of the line
through (x, f(x)) and (u, f(u)) depends on x and u, say σ = σ(x, u). Prove
that σ increases when x increases, and σ increases when u increases.

(d) Suppose that f is second-order differentiable. That is, f is differentiable
and its derivative f ′ is also differentiable. As is standard, we write (f ′)′ =
f ′′. Prove that f is convex if and only if f ′′(x) ≥ 0 for all x ∈ (a, b).

(e) Formulate a definition of convexity for a function f : M → R where
M ⊂ Rm is a convex set. [Hint: Start with m = 2.]

*31. Suppose that a function f : [a, b] → R is monotone nondecreasing. That is,
x1 ≤ x2 implies f(x1) ≤ f(x2).

(a) Prove that f is continuous except at a countable set of points. [Hint: Show
that at each x ∈ (a, b), f has right limit f(x+) and a left limit f(x−),
which are limits of f(x+ h) as h tends to 0 through positive and negative
values respectively. The jump of f at x is f(x+)− f(x−). Show that f is
continuous at x if and only if it has zero jump at x. At how many points
can f have jump ≥ 1? At how many points can the jump be between 1/2
and 1? Between 1/3 and 1/2?]

(b) Is the same assertion true for a monotone function defined on all of R?

*32. Suppose that E is a convex region in the plane bounded by a curve C.
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(a) Show that C has a tangent line except at a countable number of points.
[For example, the circle has a tangent line at all its points. The triangle
has a tangent line except at three points, and so on.]

(b) Similarly, show that a convex function has a derivative except at a count-
able set of points.

*33. Let f(k,m) be the number of k-dimensional faces of the m-cube. See Table 1.

m = 1 m = 2 m = 3 m = 4 m = 5 · · · m m+ 1

k = 0 2 4 8 f(0, 4) f(0, 5) · · · f(0,m) f(0,m+ 1)

k = 1 1 4 12 f(1, 4) f(1, 5) · · · f(1,m) f(1,m+ 1)

k = 2 0 1 6 f(2, 4) f(2, 5) · · · f(2,m) f(2,m+ 1)

k = 3 0 0 1 f(3, 4) f(3, 5) · · · f(3,m) f(3,m+ 1)

k = 4 0 0 0 f(4, 4) f(4, 5) · · · f(4,m) f(4,m+ 1)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Table 1 f(k,m) is the number of k-dimensional faces of the m-cube.

(a) Verify the numbers in the first three columns.

(b) Calculate the columns m = 4, m = 5, and give the formula for passing
from the mth column to the (m+ 1)st.

(c) What would an m = 0 column mean?

(d) Prove that the alternating sum of the entries in any column is 1. That is,
2−1 = 1, 4−4+1 = 1, 8−12+6−1 = 1, and in general

∑
(−1)kf(k,m) =

1. This alternating sum is called the Euler characteristic.

34. Find an exact formula for a bijection f : N × N → N. Is one

f(i, j) = j + (1 + 2 + · · · + (i + j − 2)) =
i2 + j2 + i(2j − 3) − j + 2

2
?

35. Prove that the union of denumerably many sets Bk, each of which is countable,
is countable. How could it happen that the union is finite?

*36. Without using the Schroeder-Bernstein Theorem,

(a) Prove that [a, b] ∼ (a, b] ∼ (a, b).

(b) More generally, prove that if C is countable then

R�C ∼ R ∼ R ∪ C.

(c) Infer that the set of irrational numbers has the same cardinality as R, i.e.,
R�Q ∼ R. [Hint: Imagine that you are the owner of denumerably many
hotels, H1, H2, . . . , all fully occupied, and that a traveler arrives and asks
you for accommodation. How could you re-arrange your current guests to
make room for the traveler?]
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*37. Prove that R2 ∼ R. [Hint: Think of shuffling two digit strings

(a1a2a3 . . .)&(b1b2b3 . . .) → (a1b1a2b2a3b3 . . .).

In this way you could transform a pair of reals into a single real. Be sure to
face the nines-termination issue.]

38. Let S be a set and let P = P(S) be the collection of all subsets of S. [P(S) is
called the power set of S.] Let F be the set of functions f : S → {0, 1}.
(a) Prove that there is a natural bijection from F onto P defined by

f �→ {s ∈ S : f(s) = 1}.

*(b) Prove that the cardinality of P is greater than the cardinality of S, even
when S is empty or finite.

[Hints: The notation Y X is sometimes used for the set of all functions X → Y .
In this notation F = {0, 1}S and assertion (b) becomes #(S) < #({0, 1}S).
The empty set has one subset, itself, whereas it has no elements, so #(∅) = 0,
while #({0, 1}∅) = 1, which proves (b) for the empty set. Assume there is a
bijection from S onto P. Then there is a bijection β : S → F, and for each
s ∈ S, β(s) is a function, say fs : S → {0, 1}. Think like Cantor and try to find
a function which corresponds to no s. Infer that β could not have been onto.]

39. A real number is algebraic if it is a root of a nonconstant polynomial with
integer coefficients.

(a) Prove that the set A of algebraic numbers is denumerable. [Hint: Each
polynomial has how many roots? How many linear polynomials are there?
How many quadratics? . . . ]

(b) Repeat the exercise for roots of polynomials whose coefficients belong to
some fixed, arbitrary denumerable set S ⊂ R.

*(c) Repeat the exercise for roots of trigonometric polynomials with integer
coefficients.

(d) Real numbers that are not algebraic are said to be transcendental. Try-
ing to find transcendental numbers is said to be like looking for hay in a
haystack. Why?

40. A finite word is a finite string of letters, say from the roman alphabet.

(a) What is the cardinality of the set of all finite words, and thus of the set of
all possible poems and mathematical proofs?

(b) What if the alphabet had only two letters?

(c) What if it had countably many letters?

(d) Prove that the cardinality of the set Σn of all infinite words formed using
a finite alphabet of n letters, n ≥ 2, is equal to the cardinality of R.
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(e) Give a solution to Exercise 37 by justifying the equivalence chain

R2 = R × R ∼ Σ2 × Σ2 ∼ Σ4 × Σ4 ∼ R.

(f) How many decimal expansions terminate in an infinite string of 9’s? How
many don’t?

41. If v is a value of a continuous function f : [a, b] → R use the Least Upper
Bound Property to prove that there are smallest and largest x ∈ [a, b] such that
f(x) = v.

42. A function defined on an interval [a, b] or (a, b) is uniformly continuous
if for each ε > 0 there exists a δ > 0 such that |x − t| < δ implies that
|f(x) − f(t)| < ε. (Note that this δ cannot depend on x, it can only depend
on ε. With ordinary continuity, the δ can depend on both x and ε.)

(a) Show that a uniformly continuous function is continuous but continuity
does not imply uniform continuity. (For example, prove that sin(1/x) is
continuous on the interval (0, 1) but is not uniformly continuous there.
Graph it.)

(c) What about x2?

*43. Prove that a continuous function defined on an interval [a, b] is uniformly con-
tinuous. [Hint: Let ε > 0 be given. Think of ε as fixed and consider the
sets

A(δ) = {u ∈ [a, b] : if x, t ∈ [a, u] and |x− t| < δ

then |f(x)− f(t)| < ε}
A = >

δ>0
A(δ).

Using the Least Upper Bound Property, prove that b ∈ A. Infer that f is uni-
formly continuous. The fact that continuity on [a, b] implies uniform continuity
is one of the important, fundamental principles of continuous functions.]

*44. Define injections f : N → N and g : N → N by f(n) = 2n and g(n) = 2n. From
f and g, the Schroeder-Bernstein Theorem produces a bijection N → N. What
is it?

*45. Let (an) be a sequence of real numbers. It is bounded if the setA = {a1, a2, . . .}
is bounded. The limit supremum, or lim sup, of a bounded sequence (an) as
n → ∞ is

lim sup
n→∞

an = lim
n→∞

(
sup
k≥n

ak

)
(a) Why does the lim sup exist?

(b) If sup{an} = ∞, how should we define lim sup
n→∞

an?

(c) If lim
n→∞ an = −∞, how should we define lim sup an?

(b) Is the function 2x uniformly continuous on the unbounded interval (−∞,∞)?
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(d) When is it true that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn

lim sup
n→∞

can = c lim sup
n→∞

an?

When is it true they are unequal? Draw pictures that illustrate these
relations.

(e) Define the limit infimum, or lim inf, of a sequence of real numbers, and
find a formula relating it to the limit supremum.

(f) Prove that lim
n→∞ an exists if and only if the sequence (an) is bounded and

lim inf
n→∞ an = lim sup

n→∞
an.

**46. The unit ball with respect to a norm ‖ ‖ on R2 is

{v ∈ R2 : ‖v‖ ≤ 1}.

(a) Find necessary and sufficient geometric conditions on a subset of R2 that
it is the unit ball for some norm.

(b) Give necessary and sufficient geometric conditions that a subset be the
unit ball for a norm arising from an inner product.

(c) Generalize to Rm. [You may find it useful to read about closed sets in the
next chapter, and to consult Exercise 41 there.]

47. Assume that V is an inner product space whose inner product induces a norm
as |x| =√〈x, x〉.
(a) Show that | | obeys the parallelogram law

|x + y|2 + |x− y|2 = 2|x|2 + 2|y|2

for all x, y ∈ V .

*(b) Show that any norm obeying the parallelogram law arises from a unique
inner product. [Hints: Define the prospective inner product as

〈x, y〉 =
∣∣∣∣x + y

2

∣∣∣∣2 − ∣∣∣∣ x− y

2

∣∣∣∣2
Checking that 〈 , 〉 satisfies the inner product properties of symmetry and
positive definiteness is easy. Also, it is immediate that |x|2 = 〈x, x〉, so
〈 , 〉 induces the given norm. Checking bilinearity is another story.

(i) Let x, y, z ∈ V be arbitrary. Show that the parallelogram law implies

〈x+ y, z〉 + 〈x− y, z〉 = 2〈x, y〉,
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and infer that 〈2x, z〉 = 2〈x, z〉. For arbitrary u, v ∈ V set x = 1
2(u+v)

and y = 1
2(u− v), plug in to the previous equation, and deduce

〈u, z〉 + 〈v, z〉 = 〈u+ v, z〉,
which is additive bilinearity in the first variable. Why does it now fol-
low at once that 〈 , 〉 is also additively bilinear in the second variable?

(ii) To check multiplicative bilinearity, prove by induction that if m ∈ Z

then m〈x, y〉 = 〈mx, y〉, and if n ∈ N then 1
n〈x, y〉 = 〈 1nx, y〉. Infer

that r〈x, y〉 = 〈rx, y〉 when r is rational. Is λ �→ 〈λx, y〉 − λ〈x, y〉
a continuous function of λ ∈ R, and does this give multiplicative
bilinearity?]

48. Consider a knot in 3-space as shown in Figure 25. In 3-space it cannot be

Figure 25 An overhand knot in 3-space

unknotted. How can you unknot it in 4-space?

*49. Prove that there exists no continuous three dimensional motion de-linking the
two circles shown in Figure 22 which keeps both circles flat at all times.

50. The Klein bottle is a surface that has an oval of self intersection when it is
shown in 3-space. See Figure 26. It can live in 4-space with no self-intersection.

oval of self-intersection

Figure 26 The Klein Bottle in 3-space has an oval of self-intersection.

How?
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51. Read Flatland by Edwin Abbott. Try to imagine a Flatlander using color to
visualize 3-space.

52. Can you visualize a 4-dimensional cube – its vertices, edges, and faces? [Hint: It
may be easier (and equivalent) to picture a 4-dimensional parallelepiped whose
eight red vertices have xyz-coordinates that differ from the xyz-coordinates
of its eight colorless vertices. It is a 4-dimensional version of a rectangle or
parallelogram whose edges are not parallel to the coordinate axes.]



2
A Taste of Topology

1 Metric Spaces

It may seem paradoxical at first, but a specific math problem can be harder to solve

than some abstract generalization of it. For instance if you want to know how many

roots the equation

t5 − 4t4 + t3 − t+ 1 = 0

can have then you could use calculus and figure it out. It would take a while. But

thinking more abstractly, and with less work, you could show that every nth-degree

polynomial has at most n roots. In the same way many general results about functions

of a real variable are more easily grasped at an abstract level – the level of metric

spaces.

Metric space theory can be seen as a special case of general topology, and many

books present it that way, explaining compactness primarily in terms of open cov-

erings. In my opinion, however, the sequence/subsequence approach provides the

easiest and simplest route to mastering the subject. Accordingly it gets top billing

throughout this chapter.

A metric space is a set M , the elements of which are referred to as points of M ,

together with a metric d having the three properties that distance has in Euclidean

space. The metric d = d(x, y) is a real number defined for all points x, y ∈ M and

d(x, y) is called the distance from the point x to the point y. The three distance

properties are as follows: For all x, y, z ∈ M we have
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(a) positive definiteness: d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.

(b) symmetry: d(x, y) = d(y, x).

(c) triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

The function d is also called the distance function. Strictly speaking, it is

the pair (M,d) which is a metric space, but we will follow the common practice of

referring to “the metric space M ,” and leave to you the job of inferring the correct

metric.

The main examples of metric spaces are R, Rm, and their subsets. The metric

on R is d(x, y) = |x − y| where x, y ∈ R and |x − y| is the magnitude of x − y. The

metric on Rm is the Euclidean length of x− y where x, y are vectors in Rm. Namely,

d(x, y) =
√
(x1 − y1)2 + . . .+ (xm − ym)2

for x = (x1, . . . , xm) and y = (y1, . . . , ym).

Since Euclidean length satisfies the three distance properties, d is a bona fide

metric and it makes Rm into a metric space. A subset M ⊂ Rm becomes a metric

space when we declare the distance between points ofM to be their Euclidean distance

apart as points in Rm. We say that M inherits its metric from Rm and is a metric

subspace of Rm. Figure 27 shows a few subsets of R2 to suggest some interesting

metric spaces.

There is also one metric that is hard to picture but valuable as a source for

counterexamples, the discrete metric. Given any setM , define the distance between

distinct points of M to be 1 and the distance between every point and itself to be

0. This is a metric. See Exercise 4. If M consists of three points, say M = {a, b, c},
you can think of the vertices of the unit equilateral triangle as a model for M . See

Figure 28. They have mutual distance 1 from each other. If M consists of one, two, or

four points can you think of a model for the discrete metric on M? More challenging

is to imagine the discrete metric on R. All points, by definition of the discrete metric,

lie at unit distance from each other.

Convergent Sequences and Subsequences

A sequence of points in a metric space M is a list p1, p2, . . . where the points

pn belong to M . Repetition is allowed, and not all the points of M need to appear

in the list. Good notation for a sequence is (pn), or (pn)n∈N. The notation {pn}
is also used but it is too easily confused with the set of points making up the se-

quence. The difference between (pn)n∈N and {pn : n ∈ N} is that in the former case
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Figure 27 Five metric spaces – a closed outward spiral, a Hawaiian earring,

a topologist’s sine circle, an infinite television antenna, and Zeno’s maze

1 1

1

Figure 28 The vertices of the unit equilateral triangle form a discrete

metric space.



60 A Taste of Topology Chapter 2

the sequence prescribes an ordering of the points, while in the latter the points get

jumbled together. For example, the sequences 1, 2, 3, . . . and 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, . . .

are different sequences but give the same set of points, namely N.

Formally, a sequence in M is a function f : N → M . The nth term in the sequence

is f(n) = pn. Clearly, every sequence defines a function f : N → M and conversely,

every function f : N → M defines a sequence in M . The sequence (pn) converges

to the limit p in M if

∀ε > 0 ∃N ∈ N such that

n ∈ N and n ≥ N ⇒ d(pn, p) < ε.

Limits are unique in the sense that if (pn) converges to p and if (pn) also converges

to p′ then p = p′. The reason is this. Given any ε > 0, there are integers N and N ′

such that if n ≥ N then d(pn, p) < ε, while if n ≥ N ′ then d(pn, p
′) < ε. Then for all

n ≥ max{N,N ′} we have

d(p, p′) ≤ d(p, pn) + d(pn, p
′) < ε+ ε = 2ε.

But ε is arbitrary and so d(p, p′) = 0 and p = p′. (This is the ε-principle again.)

We write pn → p, or pn → p as n → ∞, or

lim
n→∞ pn = p

to indicate convergence. For example, in R the sequence pn = 1/n converges to 0 as

n → ∞. In R2 the sequence (1/n, sinn) does not converge as n → ∞. In the metric

space Q (with the metric it inherits from R) the sequence 1, 1.4, 1.414, 1.4142, . . .

does not converge.

Just as a set can have a subset, a sequence can have a subsequence. For ex-

ample, the sequence 2, 4, 6, 8, . . . is a subsequence of 1, 2, 3, 4, . . .. The sequence

3, 5, 7, 11, 13, 17, . . . is a subsequence of 1, 3, 5, 7, 9, . . ., which in turn is a subsequence

of 1, 2, 3, 4, . . .. In general, if (pn)n∈N and (qk)k∈N are sequences and if there is a

sequence n1 < n2 < n3 < . . . of positive integers such that for each k ∈ N we have

qk = pnk
then (qk) is a subsequence of (pn). Note that the terms in the subsequence

occur in the same order as in the mother sequence.

1 Theorem Every subsequence of a convergent sequence in M converges and it con-

verges to the same limit as does the mother sequence.
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Proof Let (qk) be a subsequence of (pn), qk = pnk
, where n1 < n2 < . . .. Assume

that (pn) converges to p in M . Given ε > 0, there is an N such that for all n ≥ N

we have d(pn, p) < ε. Since n1, n2, . . . are positive integers we have k ≤ nk for all k.

Thus, if k ≥ N then nk ≥ N and d(qk, p) < ε. Hence (qk) converges to p.

A common way to state Theorem1 is that limits are unaffected when we pass to

a subsequence.

2 Continuity
In linear algebra the objects of interest are linear transformations. In real analysis

the objects of interest are functions, especially continuous functions. A function f

from the metric space M to the metric space N is just that; f : M → N and f sends

points p ∈ M to points fp ∈ N . The function maps M to N . The way you should

think of functions – as devices, not formulas – is discussed in Section 4 of Chapter 1.

The most common type of function maps M to R. It is a real-valued function of the

variable p ∈ M .

Definition A function f : M → N is continuous if it preserves sequential

convergence: f sends convergent sequences in M to convergent sequences in N ,

limits being sent to limits. That is, for each sequence (pn) in M which converges to

a limit p in M , the image sequence (f(pn)) converges to fp in N .

Here and in what follows, the notation fp is often used as convenient shorthand

for f(p). The metrics on M and N are dM and dN . We will often refer to either

metric as just d.

2 Theorem The composite of continuous functions is continuous.

Proof Let f : M → N and g : N → P be continuous and assume that

lim
n→∞ pn = p

in M . Since f is continuous, lim
n→∞ f(pn) = fp. Since g is continuous, lim

n→∞ g(f(pn)) =

g(fp) and therefore g ◦ f : M → P is continuous. See Figure 29 on the next page.

Moral The sequence condition is the easy way to tell at a glance whether a function

is continuous.
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Figure 29 The composite function g ◦ f

There are two “obviously” continuous functions.

3 Proposition For every metric space M the identity map id : M → M is continu-

ous, and so is every constant function f : M → N .

Proof Let pn → p in M . Then id(pn) = pn → p = id(p) as n → ∞ which gives

continuity of the identity map. Likewise, if f(x) = q ∈ N for all x ∈ M and if pn → p

in M then fp = q and f(pn) = q for all n. Thus f(pn) → fp as n → ∞ which gives

continuity of the constant function f .

Homeomorphism

Vector spaces are isomorphic if there is a linear bijection from one to the other.

When are metric spaces isomorphic? They should “look the same.” The letters Y

and T look the same; and they look different from the letter O. If f : M → N

is a bijection and f is continuous and the inverse bijection f−1 : N → M is also

continuous then f is a homeomorphism†(or a “homeo” for short) and M,N are

homeomorphic. We write M ∼= N to indicate that M and N are homeomorphic.
∼= is an equivalence relation: M ∼= M since the identity map is a homeomorphism

M → M ; M ∼= N clearly implies that N ∼= M ; and the previous theorem shows that

the composite of homeomorphisms is a homeomorphism.

Geometrically speaking, a homeomorphism is a bijection that can bend, twist,

stretch, and wrinkle the space M to make it coincide with N , but it cannot rip,

†This is a rare case in mathematics in which spelling is important. Homeomorphism �= homomor-

phism.
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puncture, shred, or pulverize M in the process. The basic questions to ask about

metric spaces are:

(a) Given M and N , are they homeomorphic?

(b) What are the continuous functions from M to N?

A major goal of this chapter is to show you how to answer these questions in

many cases. For example, is the circle homeomorphic to the interval? To the sphere?

etc. Figure 30 indicates that the circle and the (perimeter of the) triangle are homeo-

morphic, while Figure 15 shows that (a, b), the semicircle, and R are homeomorphic.

Figure 30 The circle and triangle are homeomorphic.

A natural question that should occur to you is whether continuity of f−1 is actu-

ally implied by continuity of a bijection f . It is not. Here is an instructive example.

Consider the interval [0, 2π) = {x ∈ R : 0 ≤ x < 2π} and define f : [0, 2π) → S1

to be the mapping f(x) = (cosx, sinx) where S1 is the unit circle in the plane.

The mapping f is a continuous bijection, but the inverse bijection is not continuous.

For there is a sequence of points (zn) on S1 in the fourth quadrant that converges

to p = (1, 0) from below, and f−1(zn) does not converge to f−1(p) = 0. Rather it

converges to 2π. Thus, f is a continuous bijection whose inverse bijection fails to

be continuous. See Figure 31. In Exercises 49 and 50 you are asked to find worse

examples of continuous bijections that are not homeomorphisms.

To build your intuition about continuous mappings and homeomorphisms, con-

sider the following examples shown in Figure 32 – the unit circle in the plane, a trefoil

knot in R3, the perimeter of a square, the surface of a donut (the 2-torus), the surface
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Figure 31 f wraps [0, 2π) bijectively onto the circle.

of a ceramic coffee cup, the unit interval [0, 1], the unit disc including its boundary.

Equip all with the inherited metric. Which should be homeomorphic to which?

Figure 32 Seven metric spaces
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The (ε, δ)-Condition

The following theorem presents the more familiar (but equivalent!) definition

of continuity using ε and δ. It corresponds to the definition given in Chapter 1 for

real-valued functions of a real variable.

4 Theorem f : M → N is continuous if and only if it satisfies the (ε, δ)-condition:

For each ε > 0 and each p ∈ M there exists δ > 0 such that if x ∈ M and dM (x, p) < δ

then dN (fx, fp) < ε.

Proof Suppose that f is continuous. It preserves sequential convergence. From the

supposition that f fails to satisfy the (ε, δ)-condition at some p ∈ M we will derive

a contradiction. If the (ε, δ)-condition fails at p then there exists ε > 0 such that for

each δ > 0 there is a point x with d(x, p) < δ and d(fx, fp) ≥ ε. Taking δ = 1/n

we get a sequence (xn) with d(xn, p) < 1/n and d(f(xn), fp) ≥ ε, which contradicts

preservation of sequential convergence. For xn → p but f(xn) does not converge

to fp, which contradicts the fact that f preserves sequential convergence. Since

the supposition that f fails to satisfy the (ε, δ)-condition leads to a contradiction, f

actually does satisfy the (ε, δ)-condition.

To check the converse, suppose that f satisfies the (ε, δ)-condition at p. For each

sequence (xn) in M that converges to p we must show f(xn) → fp in N as n → ∞.

Let ε > 0 be given. There is δ > 0 such that dM (x, p) < δ ⇒ dN (fx, fp) < ε.

Convergence of xn to p implies there is an integer K such that for all n ≥ K we have

dM (xn, p) < δ, and therefore dN (f(xn), fp) < ε. That is, f(xn) → fp as n → ∞. See

also Exercise 13.

3 The Topology of a Metric Space
Now we come to two basic concepts in a metric space theory – closedness and open-

ness. Let M be a metric space and let S be a subset of M . A point p ∈ M is a limit

of S if there exists a sequence (pn) in S that converges to it.†

†A limit of S is also sometimes called a limit point of S. Take care though: Some mathematicians

require that a limit point of S be the limit of a sequence of distinct points of S. They would say that

a finite set has no limit points. We will not adopt their point of view. Another word used in this

context, especially by the French, is “adherence.” A point p adheres to the set S if and only if p

is a limit of S. In more general circumstances, limits are defined using “nets” instead of sequences.

They are like “uncountable sequences.” You can read more about nets in graduate-level topology

books such as Topology by James Munkres.



66 A Taste of Topology Chapter 2

Definition S is a closed set if it contains all its limits.†

Definition S is an open set if for each p ∈ S there exists an r > 0 such that

d(p, q) < r ⇒ q ∈ S.

5 Theorem Openness is dual to closedness: The complement of an open set is a

closed set and the complement of a closed set is an open set.

Proof Suppose that S ⊂ M is an open set. We claim that Sc is a closed set. If

pn → p and pn ∈ Sc we must show that p ∈ Sc. Well, if p 
∈ Sc then p ∈ S and, since

S is open, there is an r > 0 such that

d(p, q) < r ⇒ q ∈ S.

Since pn → p, we have d(p, pn) < r for all large n, which implies that pn ∈ S,

contrary to the sequence being in Sc. Since the supposition that p lies in S leads to

a contradiction, p actually does lie in Sc, proving that Sc is a closed set.

Suppose that S is a closed set. We claim that Sc is open. Take any p ∈ Sc. If

there fails to exist an r > 0 such that

d(p, q) < r ⇒ q ∈ Sc

then for each r = 1/n with n = 1, 2, . . . there exists a point pn ∈ S such that

d(p, pn) < 1/n. This sequence in S converges to p ∈ Sc, contrary to closedness of S.

Therefore there actually does exist an r > 0 such that

d(p, q) < r ⇒ q ∈ Sc

which proves that Sc is an open set.

Most sets, like doors, are neither open nor closed, but ajar. Keep this in mind.

For example neither (a, b] nor its complement is closed in R; (a, b] is neither closed

nor open. Unlike doors, however, sets can be both open and closed at the same

time. For example, the empty set ∅ is a subset of every metric space and it is always

closed. There are no sequences and no limits to even worry about. Similarly the

full metric space M is a closed subset of itself: For it certainly contains the limit of

†Note how similarly algebraists use the word “closed.” A field (or group or ring, etc.) is closed

under its arithmetic operations: Sums, differences, products, and quotients of elements in the field

still lie in the field. In our case it is limits. Limits of sequences in S must lie in S.
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every sequence that converges in M . Thus, ∅ and M are closed subsets of M . Their

complements, M and ∅, are therefore open: ∅ and M are both closed and open.

Subsets of M that are both closed and open are clopen. See also Exercise 125. It

turns out that in R the only clopen sets are ∅ and R. In Q, however, things are quite

different, sets such as {r ∈ Q : −√
2 < r <

√
2} being clopen in Q. To summarize,

A subset of a metric space can be

closed, open, both, or neither.

You should expect the “typical” subset of a metric space to be neither closed nor

open.

The topology of M is the collection T of all open subsets of M .

6 Theorem T has three properties:† as a system it is closed under union, finite

intersection, and it contains ∅, M . That is,

(a) Every union of open sets is an open set.

(b) The intersection of finitely many open sets is an open set.

(c) ∅ and M are open sets.

Proof (a) If {Uα} is any collection‡ of open subsets of M and V = >Uα then V is

open. For if p ∈ V then p belongs to at least one Uα and there is an r > 0 such that

d(p, q) < r ⇒ q ∈ Uα.

Since Uα ⊂ V , this implies that all such q lie in V , proving that V is open.

(b) If U1, . . . , Un are open sets and W = <Uk then W is open. For if p ∈ W then

for each k, 1 ≤ k ≤ n, then there is an rk > 0 such that

d(p, q) < rk ⇒ q ∈ Uk.

Take r = min{r1, . . . , rn}. Then r > 0 and

d(p, q) < r ⇒ q ∈ Uk,

†Any collection T of subsets of a set X that satisfies these three properties is called a topology on

X, and X is called a topological space. Topological spaces are more general than metric spaces:

There exist topologies that do not arise from a metric. Think of them as pathological. The question

of which topologies can be generated by a metric and which cannot is discussed in Topology by

Munkres. See also Exercise 30.
‡The α in the notation Uα “indexes” the sets. If α = 1, 2, . . . then the collection is countable, but

we are just as happy to let α range through uncountable index sets.
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for each k; i.e., q ∈ W = <Uk, proving that W is open.

(c) It is clear that ∅ and M are open sets.

7 Corollary The intersection of any number of closed sets is a closed set; the finite

union of closed sets is a closed set; ∅ and M are closed sets.

Proof Take complements and use De Morgan’s laws. If {Kα} is a collection of closed

sets then Uα = (Kα)
c is open and

K = <Kα = (>Uα)
c .

Since >Uα is open, its complement K is closed. Similarly, a finite union of closed

sets is the complement of the finite intersection of their complements, and is a closed

set.

What about an infinite union of closed sets? Generally, it is not closed. For

example, the interval [1/n, 1] is closed in R, but the union of these intervals as n

ranges over N is the interval (0, 1] which is not closed in R. Neither is the infinite

intersection of open sets open in general.

Two sets whose closedness/openness properties are basic are:

limS = {p ∈ M : p is a limit of S}
Mrp = {q ∈ M : d(p, q) < r}.

The former is the limit set of S; the latter is the r-neighborhood of p.

8 Theorem limS is a closed set and Mrp is an open set.

Proof Simple but not immediate! See Figure 33.

Suppose that pn → p and each pn lies in limS. We claim that p ∈ limS. Since

pn is a limit of S there is a sequence (pn,k)k∈N in S that converges to pn as k → ∞.

Thus there exists qn = pn,k(n) ∈ S such that

d(pn, qn) <
1

n
.

Then, as n → ∞ we have

d(p, qn) ≤ d(p, pn) + d(pn, qn) → 0

which implies that qn → p, so p ∈ limS, which completes the proof that limS is a

closed set.
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S

pn

pn,k

qn

p

Figure 33 S = (0, 1)× (0, 1) and pn = (1/n, 0) converges to p = (0, 0) as

n → ∞. Each pn is the limit of the sequence pn,k = (1/n, 1/k) as k → ∞.

The sequence qn = (1/n, 1/n) lies in S and converges to (0, 0). Hence: The

limits of limits are limits.

Figure 34 Why the r-neighborhood of p is an open set
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To check that Mrp is an open set, take any q ∈ Mrp and observe that

s = r − d(p, q) > 0.

By the triangle inequality, if d(q, x) < s then

d(p, x) ≤ d(p, q) + d(q, x) < r,

and hence Msq ⊂ Mrp. See Figure 34. Since each q ∈ Mrp has some Msq that is

contained in Mrp, Mrp is an open set.

Proof (a, b) is the r-neighborhood of its midpoint m = (a+b)/2 where r = (b−a)/2.

Therefore (a, b) is open in R. Since the union of open sets is open we see that

>
n∈N

(b− n, b− 1/n) = (−∞, b)

is open. The same applies to (a,∞). The whole metric space R = (−∞,∞) is always

open in itself.

Since the complement of [a, b] is the open set (−∞, a) ∪ (b,∞), the interval [a, b]

is closed.

10 Corollary limS is the “smallest” closed set that contains S in the sense that if

K ⊃ S and K is closed then K ⊃ limS.

Proof Obvious. K must contain the limit of each sequence in K that converges in

M and therefore it must contain the limit of each sequence in S ⊂ K that converges

in M . These limits are exactly limS.

We refer to limS as the closure of S and denote it also as S. You start with S

and make it closed by adding all its limits. You don’t need to add any more points

because limits of limits are limits. That is, lim(limS) = limS. An operation like

this is called idempotent. Doing the operation twice produces the same outcome as

doing it once.

A neighborhood of a point p in M is any open set V that contains p. Theorem8

implies that V = Mrp is a neighborhood of p. Eventually, you will run across the

phrase “closed neighborhood” of p, which refers to a closed set that contains an open

set that contains p. However, until further notice all neighborhoods are open.

9 Corollary The interval (a, b) is open in R and so are (−∞, b), (a,∞), and (−∞,∞).

The interval [a, b] is closed in R.
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Usually, sets defined by strict inequalities are open while those defined by equal-

ities or nonstrict inequalities are closed. Examples of closed sets in R are finite sets,

[a, b], N, and the set {0} ∪ {1/n : n ∈ N}. Each contains all its limits. Examples of

open sets in R are open intervals, bounded or not.

Topological Description of Continuity

A property of a metric space or of a mapping between metric spaces that can

be described solely in terms of open sets (or equivalently, in terms of closed sets) is

called a topological property. The next result describes continuity topologically.

Figure 35 The function f : (x, y) �→ x2 + y2 + 2 and its graph over the

preimage of [3, 6]

Let f : M → N be given. The preimage† of a set V ⊂ N is

fpre(V ) = {p ∈ M : f(p) ∈ V }.
For example, if f : R2 → R is the function defined by the formula

f(x, y) = x2 + y2 + 2

then the preimage of the interval [3, 6] in R is the annulus in the plane with inner

radius 1 and outer radius 2. Figure 35 shows the domain of f as R2 and the target

†The preimage of V is also called the inverse image of V and is denoted by f−1(V ). Unless f

is a bijection, this notation leads to confusion. There may be no map f−1 and yet expressions like

V ⊃ f(f−1(V )) are written that mix maps and nonmaps. By the way, if f sends no point of M into

V then fpre(V ) is the empty set.
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as R. The range is the set of real numbers ≥ 2. The graph of f is a paraboloid

with lowest point (0, 0, 2). The second part of the figure shows the portion of the

graph lying above the annulus. You will find it useful to keep in mind the distinctions

among the concepts: function, range, and graph.

11 Theorem The following are equivalent for continuity of f : M → N .

(i) The (ε, δ)-condition.

(ii) The sequential convergence preservation condition.

(iii) The closed set condition: The preimage of each closed set in N is closed in

M .

(iv) The open set condition: The preimage of each open set in N is open in M .

Proof Totally natural! By Theorem4, (i) implies (ii).

(ii) implies (iii). If K ⊂ N is closed in N and pn ∈ fpre(K) converges to p ∈ M

then we claim that p ∈ fpre(K). By (ii), f preserves sequential convergence so

lim
n→∞ f(pn) = fp.

Since K is closed in N , fp ∈ K, so p ∈ fpre(K), and we see that fpre(K) is closed in

M . Thus (ii) implies (iii).

(iii) implies (iv). This follows by taking complements: (fpre(U))c = fpre(U c).

(iv) implies (i). Let ε > 0 and p ∈ M be given. Nε(fp) is open in N , so its

preimage U = fpre(Nε(fp)) is open in M . The point p belongs to the preimage so

openness of U implies there is a δ > 0 such that Mδ(p) ⊂ U . Then

f(Mδ(p)) ⊂ fU ⊂ Nε(fp)

gives the ε, δ condition, dM (p, x) < δ ⇒ dN (fp, fx) < ε. See Figure 36.

I hope you find the closed and open set characterizations of continuity elegant.

Note that no explicit mention is made of the metric. The open set condition is purely

topological. It would be perfectly valid to take as a definition of continuity that the

preimage of each open set is open. In fact this is exactly what’s done in general

topology.

12 Corollary A homeomorphism f : M → N bijects the collection of open sets in

M to the collection of open sets in N . It bijects the topologies.
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Figure 36 The ε, δ - condition for a continuous function f : M → N

Proof Let V be an open set inN . By Theorem11, since f is continuous, the preimage

of V is open in M . Since f is a bijection, this preimage U = {p ∈ M : fp ∈ V } is

exactly the image of V by the inverse bijection, U = f−1(V ). The same thing can be

said about f−1 since f−1 is also a homeomorphism. That is, V = fU . Thus, sending

U to fU bijects the topology of M to the topology of N .

Because of this corollary, a homeomorphism is also called a topological equiv-

alence.

In general, continuous maps do not need to send open sets to open sets. For

example, the squaring map x �→ x2 from R to R is continuous but it sends the open

interval (−1, 1) to the nonopen interval [0, 1). See also Exercise 28.

Inheritance

If a set S is contained in a metric subspace N ⊂ M you need to be careful when

you say that S is open or closed. For example,

S = {x ∈ Q : −π < x < π}

is a subset of the metric subspace Q ⊂ R. It is both open and closed with respect to

Q but is neither open nor closed with respect to R. To avoid this kind of ambiguity

it is best to say that S is clopen “with respect to Q but not with respect to R,” or

more briefly that S is clopen “in Q but not in R.” Nevertheless there is a simple

relation between the topologies of M and N when N is a metric subspace of M .
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13 Inheritance Principle Every metric subspace N of M inherits its topology

from M in the sense that each subset V ⊂ N which is open in N is actually the

intersection V = N ∩ U for some U ⊂ M that is open in M , and vice versa.

Proof It all boils down to the fact that for each p ∈ N we have

Nrp = N ∩Mrp.

After all, Nrp is the set of x ∈ N such that dN (x, p) < r and this is exactly the

same as the set of those x ∈ Mrp that belong to N . Therefore N inherits its r-

neighborhoods from M . Since its open sets are unions of its r-neighborhoods, N also

inherits its open sets from M .

In more detail, if V is open in N then it is the union of those Nrp with Nrp ⊂ V .

Each such Nrp is N ∩ Mrp and the union of these Mrp is U , an open subset of

M . The intersection N ∩ U equals V . Conversely, if U is any open subset of M

and p ∈ V = N ∩ U then openness of U implies there is an Mrp ⊂ U . Thus

Nrp = N ∩Mrp ⊂ V , which shows that V is open in N .

14 Corollary Every metric subspace of M inherits its closed sets from M .

Proof By “inheriting its closed sets” we mean that each closed subset L ⊂ N is the

intersection N ∩K for some closed subset K ⊂ M and vice versa. The proof consists

of two words: “Take complements.” See also Exercise 34.

Let’s return to the example with Q ⊂ R and S = {x ∈ Q : −π < x < π}. The

set S is clopen in Q, so we should have S = Q ∩ U for some open set U ⊂ R and

S = Q ∩K for some closed set K ⊂ R. In fact U and K are

U = (−π, π) and K = [−π, π].

15 Corollary Assume that N is a metric subspace of M and also is a closed subset

of M . A set L ⊂ N is closed in N if and only if it is closed in M . Similarly, if N is

a metric subspace of M and also is an open subset of M then U ⊂ N is open in N if

and only if it is open in M .

Proof The proof is left to the reader as Exercise 34.
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Product Metrics

We next define a metric on the Cartesian product M = X × Y of two metric

spaces. There are three natural ways to do so:

dE(p, p
′) =

√
dX(x, x′)2 + dY (y, y′)2

dmax(p, p
′) = max{dX(x, x′), dY (y, y′)}

dsum(p, p
′) = dX(x, x′) + dY (y, y

′)

where p = (x, y) and p′ = (x′, y′) belong to M . (dE is the Euclidean product

metric.) The proof that these expressions actually define metrics on M is left as

Exercise 38.

16 Proposition dmax ≤ dE ≤ dsum ≤ 2dmax.

Proof Dropping the smaller term inside the square root shows that dmax ≤ dE ;

comparing the square of dE and the square of dsum shows that the latter has the

terms of the former and the cross term besides, so dE ≤ dsum; and clearly dsum is no

larger than twice its greater term, so dsum ≤ 2dmax.

17 Convergence in a Product Space The following are equivalent for a sequence

pn = (p1n, p2n) in M = M1 ×M2:

(a) (pn) converges with respect to the metric dmax .

(b) (pn) converges with respect to the metric dE.

(c) (pn) converges with respect to the metric dsum .

(d) (p1n) and (p2n) converge in M1 and M2 respectively.

Proof This is immediate from Proposition 16.

18 Corollary If f : M → N and g : X → Y are continuous then so is their

Cartesian product f × g which sends (p, x) ∈ M ×X to (fp, gx) ∈ N × Y .

Proof If (pn, xn) → (p, x) in M × X then Theorem17 implies pn → p in M and

xn → x in X. By continuity, f(pn) → fp and g(xn) → gx. By Theorem17,

(f(pn), g(xn)) → (fp, gx) which gives continuity of f × g.

The three metrics make sense in the obvious way for a Cartesian product of m ≥ 3

metric spaces. The inequality

dmax ≤ dE ≤ dsum ≤ mdmax.

is proved in the same way, and we see that Theorem17 holds also for the product of

m metric spaces. This gives
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19 Corollary (Convergence in Rm) A sequence of vectors (vn) in Rm converges

in Rm if and only if each of its component sequences (vin) converges, 1 ≤ i ≤ m. The

limit of the vector sequence is the vector

v = lim
n→∞ vn =

(
lim
n→∞ v1n, lim

n→∞ v2n, . . . , lim
n→∞ vmn

)
.

The distance function d : M×M → R is a function from the metric space M×M

to the metric space R, so the following assertion makes sense.

20 Theorem d is continuous.

Proof We check (ε, δ)-continuity with respect to the metric dsum on M ×M . Given

ε > 0 we take δ = ε. If dsum((p, q), (p
′, q′)) < δ then the triangle inequality gives

d(p, q) ≤ d(p, p′) + d(p′, q′) + d(q′, q) < d(p′, q′) + ε

d(p′, q′) ≤ d(p′, p) + d(p, q) + d(q, q′) < d(p, q) + ε

which gives

d(p, q)− ε < d(p′, q′) < d(p, q) + ε.

Thus |d(p′, q′)− d(p, q)| < ε and we get continuity with respect to the metric dsum.

By Theorem17 it does not matter which metric we use on M ×M .

As you can see, the use of dsum simplifies the proof by avoiding square root

manipulations. The sum metric is also called theManhattan metric or the taxicab

metric. Figure 37 shows the “unit discs” with respect to these metrics in R2. See

also Exercise 2.

21 Corollary The metrics dmax, dE, and dsum are continuous.

Proof Theorem20 asserts that all metrics are continuous.

22 Corollary The absolute value is a continuous mapping R → R. In fact the norm

is a continuous mapping from any normed space to R.

Proof ‖v‖ = d(v, 0).

on M ×M

nequality giv

M ×M
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Figure 37 The unit disc in the max metric is a square, and in the sum

metric it is a rhombus.

Completeness

In Chapter 1 we discussed the Cauchy criterion for convergence of a sequence of

real numbers. There is a natural way to carry these ideas over to a metric space M .

The sequence (pn) in M satisfies a Cauchy condition provided that for each ε > 0

there is an integer N such that for all k, n ≥ N we have d(pk, pn) < ε, and (pn) is

said to be a Cauchy sequence. In symbols,

∀ε > 0 ∃N such that k, n ≥ N ⇒ d(pk, pn) < ε.

The terms of a Cauchy sequence “bunch together” as n → ∞. Each convergent

sequence (pn) is Cauchy. For if (pn) converges to p as n → ∞ then, given ε > 0, there

is an N such that for all n ≥ N we have

d(pn, p) <
ε

2
.

By the triangle inequality, if k, n ≥ N then

d(pk, pn) ≤ d(pk, p) + d(p, pn) < ε,

so convergence ⇒ Cauchy.

Theorem1.5 states that the converse is true in the metric space R. Every Cauchy

sequence in R converges to a limit in R. In the general metric space, however, this
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need not be true. For example, consider the metric space Q of rational numbers,

equipped with the inherited metric d(x, y) = |x− y|, and consider the sequence

(rn) = (1.4, 1.41, 1.414, 1.4142, . . .).

It is Cauchy. Given ε > 0, choose N > − log10 ε. If k, n ≥ N then |rk − rn| ≤
10−N < ε. Nevertheless, (rn) refuses to converge in Q. After all, as a sequence in

R it converges to
√
2, and if it also converges to some r ∈ Q, then by uniqueness of

limits in R we have r =
√
2, something we know is false. In brief, convergence ⇒

Cauchy but not conversely.

A metric space M is complete if each Cauchy sequence in M converges to a limit

in M . Theorem1.5 states that R is complete.

23 Theorem Rm is complete.

Proof Let (pn) be a Cauchy sequence in Rm. Express pn in components as

pn = (p1n, . . . , pmn).

Because (pn) is Cauchy, each component sequence (pin)n∈N is Cauchy. Complete-

ness of R implies that the component sequences converge, and therefore the vector

sequence converges.

24 Theorem Every closed subset of a complete metric space is a complete metric

subspace.

Proof Let A be a closed subset of the complete metric space M and let (pn) be a

Cauchy sequence in A with respect to the inherited metric. It is of course also a

Cauchy sequence in M and therefore it converges to a limit p in M . Since A is closed

we have p ∈ A.

25 Corollary Every closed subset of Euclidean space is a complete metric space.

Proof Obvious from the previous theorem and completeness of Rm.

Remark Completeness is not a topological property. For example, consider R with

its usual metric and (−1, 1) with the metric it inherits from R. Although they are

homeomorphic metric spaces, R is complete but (−1, 1) is not.

In Section 10 we explain how every metric space can be completed.
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4 Compactness
Compactness is the single most important concept in real analysis. It is what reduces

the infinite to the finite.

Definition A subset A of a metric space M is (sequentially) compact if every

sequence (an) in A has a subsequence (ank
) that converges to a limit in A.

The empty set and finite sets are trivial examples of compact sets. For a sequence

(an) contained in a finite set repeats a term infinitely often, and the corresponding

constant subsequence converges.

Compactness is a good feature of a set. We will develop criteria to decide whether

a set is compact. The first is the most often used, but beware! – its converse is

generally false.

26 Theorem Every compact set is closed and bounded.

Proof Suppose that A is a compact subset of the metric space M and that p is

a limit of A. Does p belong to A? There is a sequence (an) in A converging to

p. By compactness, some subsequence (ank
) converges to some q ∈ A, but every

subsequence of a convergent sequence converges to the same limit as does the mother

sequence, so q = p and p ∈ A. Thus A is closed.

To see that A is bounded, choose and fix any point p ∈ M . Either A is bounded

or else for each n ∈ N there is a point an ∈ A such that d(p, an) ≥ n. Compactness

implies that some subsequence (ank
) converges. Convergent sequences are bounded,

which contradicts the fact that d(p, ank
) → ∞ as k → ∞. Therefore (an) cannot exist

and for some large r we have A ⊂ Mrp, which is what it means that A is bounded.

27 Theorem The closed interval [a, b] ⊂ R is compact.

Proof Let (xn) be a sequence in [a, b] and set

C = {x ∈ [a, b] : xn < x only finitely often}.

Equivalently, for all but finitely many n, xn ≥ x. Since a ∈ C we know that C 
= ∅.
Clearly b is an upper bound for C. By the least upper bound property of R there

exists c = l. u. b. C with c ∈ [a, b]. We claim that a subsequence of (xn) converges to

c. Suppose not, i.e., no subsequence of (xn) converges to c. Then for some r > 0, xn
lies in (c − r, c + r) only finitely often, which implies that c + r ∈ C, contrary to

c being an upper bound for C. Hence some subsequence of (xn) does converge to c

and [a, b] is compact.
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To pass from R to Rm we think about compactness for Cartesian products.

28 Theorem The Cartesian product of two compact sets is compact.

Proof Let (an, bn) ∈ A×B be given where A ⊂ M and B ⊂ N are compact. There

exists a subsequence (ank
) that converges to some point a ∈ A as k → ∞. The

subsequence (bnk
) has a sub-subsequence (bnk(�)

) that converges to some b ∈ B as

� → ∞. The sub-subsequence (ank(�)
) continues to converge to the point a. Thus

(ank(�)
, bnk(�)

) → (a, b)

as � → ∞. This implies that A×B is compact.

29 Corollary The Cartesian product of m compact sets is compact.

Proof Write A1 ×A2 × · · · ×Am = A1 × (A2 × · · · ×Am) and perform induction on

m. (Theorem28 handles the bottom case m = 2.)

30 Corollary Every box [a1, b1]× · · · × [am, bm] in Rm is compact.

Proof Obvious from Theorem27 and the previous corollary.

An equivalent formulation of these results is the

31 Bolzano-Weierstrass Theorem Every bounded sequence in Rm has a conver-

gent subsequence.

Proof A bounded sequence is contained in a box, which is compact, and therefore

the sequence has a subsequence that converges to a limit in the box. See also Exer-

cise 11.

Here is a simple fact about compacts.

32 Theorem Every closed subset of a compact is compact.

Proof If A is a closed subset of the compact set K and if (an) is a sequence of points

in A then clearly (an) is also a sequence of points in K, so by compactness of K there

is a subsequence (ank
) converging to a limit p ∈ K. Since A is closed, p lies in A

which proves that A is compact.

Now we come to the first partial converse to Theorem26.



Section 4 Compactness 81

33 Heine-Borel Theorem Every closed and bounded subset of Rm is compact.

Proof Let A ⊂ Rm be closed and bounded. Boundedness implies that A is contained

in some box, which is compact. Since A is closed, Theorem32 implies that A is

compact. See also Exercise 11.

The Heine-Borel Theorem states that closed and bounded subsets of Euclidean

space are compact, but it is vital † to remember that a closed and bounded subset

of a general metric space may fail to be compact. For example, the set N of natural

numbers equipped with the discrete metric is a complete metric space, it is closed in

itself (as is every metric space), and it is bounded. But it is not compact. After all,

what subsequence of 1, 2, 3, . . . converges?

A more striking example occurs in the metric space C([0, 1],R) whose metric is

d(f, g) = max{|f(x)− g(x)|}. The space is complete but its closed unit ball is not

compact. For example, the sequence of functions fn = xn has no subsequence that

converges with respect to the metric d. In fact every closed ball is noncompact.

Ten Examples of Compact Sets

1. Any finite subset of a metric space, for instance the empty set.

2. Any closed subset of a compact set.

3. The union of finitely many compact sets.

4. The Cartesian product of finitely many compact sets.

5. The intersection of arbitrarily many compact sets.

6. The closed unit ball in R3.

7. The boundary of a compact set, for instance the unit 2-sphere in R3.

8. The set {x ∈ R : ∃n ∈ N and x = 1/n} ∪ {0}.
9. The Hawaiian earring. See page 58.

10. The Cantor set. See Section 8.

Nests of Compacts

If A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ An+1 ⊃ . . . then (An) is a nested sequence of sets.

Its intersection is
∞
<
n=1

An = {p : for each n we have p ∈ An}.
†I have asked variants of the following True or False question on every analysis exam I’ve given:

“Every closed and bounded subset of a complete metric space is compact.” You would be surprised

at how many students answer “True.”
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See Figure 38.

Figure 38 A nested sequence of sets

For example, we could take An to be the disc {z ∈ R2 : |z| ≤ 1/n}. The intersec-

tion of all the sets An is then the singleton {0}. On the other hand, if An is the ball

{z ∈ R3 : |z| ≤ 1 + 1/n} then <An is the closed unit ball B3.

34 Theorem The intersection of a nested sequence of compact nonempty sets is

compact and nonempty.

Proof Let (An) be such a sequence. By Theorem26, An is closed. The intersection

of closed sets is always closed. Thus, <An is a closed subset of the compact set A1

and is therefore compact. It remains to show that the intersection is nonempty.

An is nonempty, so for each n ∈ N we can choose an ∈ An. The sequence (an)

lies in A1 since the sets are nested. Compactness of A1 implies that (an) has a

subsequence (ank
) converging to some point p ∈ A1. The limit p also lies in the set

A2 since except possibly for the first term, the subsequence (ank
) lies in A2 and A2

is a closed set. The same is true for A3 and for all the sets in the nested sequence.

Thus, p ∈ <An and <An is shown to be nonempty.

The diameter of a nonempty set S ⊂ M is the supremum of the distances d(x, y)

between points of S.
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35 Corollary If in addition to being nested, nonempty, and compact, the sets An

have diameter that tends to 0 as n → ∞ then A = <An is a single point.

Proof For each n ∈ N, A is a subset of An, which implies that A has diameter zero.

Since distinct points lie at positive distance from each other, A consists of at most one

point, while by Theorem34 it consists of at least one point. See also Exercise 52.

Figure 39 This nested sequence has empty intersection.

Figure 39 shows a nested sequence of nonempty noncompact sets with empty in-

tersection. They are the open discs with center (1/n, 0) on the x-axis and radius 1/n.

They contain no common point. (Their closures do intersect at a common point, the

origin.)

Continuity and Compactness

Next we discuss how compact sets behave under continuous transformations.

36 Theorem If f : M → N is continuous and A is a compact subset of M then fA

is a compact subset of N . That is, the continuous image of a compact is compact.

Proof Suppose that (bn) is a sequence in fA. For each n ∈ N choose a point an ∈ A

such that f(an) = bn. By compactness of A there exists a subsequence (ank
) that

converges to some point p ∈ A. By continuity of f it follows that

bnk
= f(ank

) → fp ∈ fA
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as k → ∞. Thus, every sequence (bn) in fA has a subsequence converging to a limit

in fA, which shows that fA is compact.

From Theorem36 follows the natural generalization of the min/max theorem in

Chapter 1 which concerns continuous real-valued functions defined on an interval

[a, b]. See Theorem1.23.

37 Corollary A continuous real-valued function defined on a compact set is bounded;

it assumes maximum and minimum values.

Proof Let f : M → R be continuous and let A be a compact subset of M . Theo-

rem36 implies that fA is a compact subset of R, so by Theorem26 it is closed and

bounded. Thus, the greatest lower bound, v, and least upper bound, V , of fA exist

and belong to fA; i.e., there exist points p, P ∈ A such that for all a ∈ A we have

v = fp ≤ fa ≤ fP = V .

Homeomorphisms and Compactness

A homeomorphism is a bicontinuous bijection. Originally, compactness was called

bicompactness. This is reflected in the next theorem.

38 Theorem If M is compact and M is homeomorphic to N then N is compact.

Compactness is a topological property.

Proof N is the continuous image of M , so by Theorem36 it is compact.

39 Corollary [0, 1] and R are not homeomorphic.

Proof One is compact and the other isn’t.

40 Theorem If M is compact then a continuous bijection f : M → N is a homeo-

morphism – its inverse bijection f−1 : N → M is automatically continuous.

Proof Suppose that qn → q inN . Since f is a bijection, pn = f−1(qn) and p = f−1(q)

are well defined points in M . To check continuity of f−1 we must show that pn → p.

If (pn) refuses to converge to p then there is a subsequence (pnk
) and a δ > 0 such

that for all k we have d(pnk
, p) ≥ δ. Compactness of M gives a sub-subsequence

(pnk(�)
) that converges to a point p∗∈ M as � → ∞.

Necessarily, d(p, p∗) ≥ δ, which implies that p 
= p∗. Since f is continuous we

have

f(pnk(�)
) → f(p∗)
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as � → ∞. The limit of a convergent sequence is unchanged by passing to a subse-

quence, and so f(pnk(�)
) = qnk(�)

→ q as � → ∞. Thus, f(p∗) = q = f(p), contrary to

f being a bijection. It follows that pn → p and therefore that f−1 is continuous.

If M is not compact then Theorem40 becomes false. For example, the function

f : [0, 2π) → R2 defined by f(x) = (cosx, sinx) is a continuous bijection onto the

unit circle in the plane, but it is not a homeomorphism. This useful example was

discussed on page 65. Not only does this f fail to be a homeomorphism, but there

is no homeomorphism at all from [0, 2π) to S1. The circle is compact while [0, 2π) is

not. Therefore they are not homeomorphic. See also Exercises 49 and 50.

Embedding a Compact

Not only is a compact space M closed in itself, as is every metric space, but it

is also a closed subset of each metric space in which it is embedded. More precisely

we say that h : M → N embeds M into N if h is a homeomorphism from M onto

hM . (The metric on hM is the one it inherits from N.) Topologically M and hM

are equivalent. A property of M that holds also for every embedded copy of M is an

absolute or intrinsic property of M .

41 Theorem A compact is absolutely closed and absolutely bounded.

Proof Obvious from Theorems 26 and 36.

For example, no matter how the circle is embedded in R3, its image is always

closed and bounded. See also Exercises 48 and 120.

Uniform Continuity and Compactness

In Chapter 1 we defined the concept of uniform continuity for real-valued functions

of a real variable. The definition in metric spaces is analogous. A function f : M → N

is uniformly continuous if for each ε > 0 there exists a δ > 0 such that

p, q ∈ M and dM (p, q) < δ ⇒ dN (fp, fq) < ε.

42 Theorem Every continuous function defined on a compact is uniformly contin-

uous.

Proof Suppose not, and f : M → N is continuous, M is compact, but f fails to

be uniformly continuous. Then there is some ε > 0 such that no matter how small
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δ is, there exist points p, q ∈ M with d(p, q) < δ but d(fp, fq) ≥ ε. Take δ = 1/n

and let (pn) and (qn) be sequences of points in M such that d(pn, qn) < 1/n while

d(f(pn), f(qn)) ≥ ε. Compactness of M implies that there is a subsequence pnk
which

converges to some p ∈ M as k → ∞. Since d(pn, qn) < 1/n → 0 as n → ∞, (qnk
)

converges to the same limit as does (pnk
) as k → ∞; namely qnk

→ p. Continuity at

p implies that f(pnk
) → fp and f(qnk

) → fp. If k is large then

d(f(pnk
), f(qnk

)) ≤ d(f(pnk
), fp) + d(fp, f(qnk

)) < ε,

contrary to the supposition that d(f(pn), f(qn)) ≥ ε for all n.

Theorem42 gives a second proof that continuity implies uniform continuity on an

interval [a, b]. For [a, b] is compact.

5 Connectedness
As another application of these ideas, we consider the general notion of connectedness.

Let A be a subset of a metric space M . If A is neither the empty set nor M then A

is a proper subset of M . Recall that if A is both closed and open in M it is said to

be clopen. The complement of a clopen set is clopen. The complement of a proper

subset is proper.

If M has a proper clopen subset A then M is disconnected. For there is a

separation of M into proper, disjoint clopen subsets,

M = A � Ac.

(The notation � indicates disjoint union.) M is connected if it is not disconnected,

i.e., it contains no proper clopen subset. Connectedness of M does not mean that M

is connected to something, but rather that M is one unbroken thing. See Figure 40.

Figure 40 M and N illustrate the difference between being connected and

being disconnected.
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43 Theorem If M is connected, f : M → N is continuous, and f is onto then N is

connected. The continuous image of a connected is connected.

Proof Simple! If A is a clopen proper subset of N then, according to the open and

closed set conditions for continuity, fpre(A) is a clopen subset of M . Since f is onto

and A 
= ∅, we have fpre(A) 
= ∅. Similarly, fpre(Ac) 
= ∅. Therefore fpre(A) is a

proper clopen subset of M , contrary to M being connected. It follows that A cannot

exist and that N is connected.

44 Corollary If M is connected and M is homeomorphic to N then N is connected.

Connectedness is a topological property.

Proof N is the continuous image of M , so Theorem43 implies it is connected.

45 Corollary (Generalized Intermediate Value Theorem) Every continuous

real-valued function defined on a connected domain has the intermediate value prop-

erty.

Proof Assume that f : M → R is continuous and M is connected. If f assumes

values α < β in R and if it fails to assume some value γ with α < γ < β, then

M = {x ∈ M : f(x) < γ} � {x ∈ M : f(x) > γ}

is a separation of M , contrary to connectedness.

46 Theorem R is connected.

Proof If U ⊂ R is nonempty and clopen we claim that U = R. Choose some p ∈ U

and consider the set

X = {x ∈ U : the open interval (p, x) is contained in U}.

X is nonempty since U is open. Let s be the supremum of X. If s is finite (i.e., X is

bounded above) then s = l. u. b. X and s is a limit of X. Since X ⊂ U and U is closed

we have s ∈ U . Since U is open there is an interval (s − r, s + r) ⊂ U , which gives

an interval (p, s+ r) ⊂ U , contrary to s being an upper bound for X. Hence s = ∞
and U ⊃ (p,∞). The same reasoning gives U ⊃ (−∞, p), so U = R as claimed. Thus

there are no proper clopen subsets of R and R is connected.

47 Corollary (Intermediate Value Theorem for R) Every continuous function

f : R → R has the intermediate value property.



88 A Taste of Topology Chapter 2

Proof Immediate from the Generalized Intermediate Value Theorem and connect-

edness of R.

48 Corollary The following metric spaces are connected: The intervals (a, b), [a, b],

the circle, and all capital letters of the Roman alphabet.

Proof The interval (a, b) is homeomorphic to R, while [a, b] is the continuous image

of R under the map whose graph is shown in Figure 41. The circle is the continuous

image of R under the map t �→ (cos t, sin t). Connectedness of the letters A, . . . ,Z is

equally clear.

Figure 41 The function f surjects R continuously to [a, b].

Connectedness properties give a good way to distinguish nonhomeomorphic sets.

Example The union of two disjoint closed intervals is not homeomorphic to a single

interval. One set is disconnected and the other is connected.

Example The closed interval [a, b] is not homeomorphic to the circle S1. For removal

of a point x ∈ (a, b) disconnects [a, b] while the circle remains connected upon removal

of any point. More precisely, suppose that h : [a, b] → S1 is a homeomorphism.

Choose a point x ∈ (a, b), and consider X = [a, b]� {x}. The restriction of h to X is

a homeomorphism from X onto Y , where Y is the circle with the point hx removed.

But X is disconnected while Y is connected. Hence h cannot exist and the segment

is not homeomorphic to the circle.

Example The circle is not homeomorphic to the figure eight. Removing any two

points of the circle disconnects it, but this is not true of the figure eight. Or, removing
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the crossing point disconnects the figure eight but removing any point of the circle

leaves it connected.

Example The circle is not homeomorphic to the disc. For removing two points

disconnects the circle but does not disconnect the disc.

As you can see, it is useful to be able to recognize disconnected subsets S of a

metric space M . By definition, S is a disconnected subset of M if it is disconnected

when considered in its own right as a metric space with the metric it inherits from

M ; i.e., it has a separation S = A �B such that A and B are proper clopen subsets

of S. The sets A,B are separated in S but they need not be separated in M . Their

closures in M may intersect.

Example The punctured interval X = [a, b]� {c} is disconnected if a < c < b. For

X = [a, c) � (c, b] is a separation of X. The closures of the two sets with respect to

the metric space X do not intersect, even though their closures with respect to R

do intersect. Pay attention to this phenomenon which is related to the Inheritance

Principle.

Example Any subset Y of the punctured interval is disconnected if it meets both

[a, c) and (c, b]. For Y = ([a, c) ∩ Y ) � ((c, b] ∩ Y ) is a separation of Y .

49 Theorem The closure of a connected set is connected. More generally, if S ⊂ M

is connected and S ⊂ T ⊂ S then T is connected.

Proof It is equivalent to show that if T is disconnected then S is disconnected.

Disconnectedness of T implies that

T = A �B

where A,B are clopen and proper in T . It is natural to expect that

S = K � L

is a separation of S where K = A∩S and L = B ∩S. The sets K and L are disjoint,

their union is S, and by the Inheritance Principle they are clopen. But are they

proper?

If K = ∅ then A ⊂ Sc. Since A is proper there exists p ∈ A. Since A is open in

T , there exists a neighborhood Mrp such that

T ∩ Mrp ⊂ A ⊂ Sc.
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The neighborhood Mrp contains no points of S, which is contrary to p belonging to

S. Thus, K 
= ∅. Similarly, L = B ∩ S 
= ∅, so S = K � L is a separation of S,

proving that S is disconnected.

Example The outward spiral expressed in polar coordinates as

S = {(r, θ) : (1− r)θ = 1 and θ ≥ π/2}

has S = S ∪ S1, where S1 is the unit circle. Since S is connected, so is S. (Recall

that S is the closure of S.) See Figure 27.

50 Theorem The union of connected sets sharing a common point p is connected.

Proof Let S = >Sα, where each Sα is connected and p ∈ <Sα. If S is disconnected

then it has a separation S = A � Ac where A,Ac are proper and clopen. One of

them contains p; say it is A. Then A ∩ Sα is a nonempty clopen subset of Sα. Since

Sα is connected, A ∩ Sα = Sα for each α, and A = S. This implies that Ac = ∅, a
contradiction. Therefore S is connected.

Example The 2-sphere S2 is connected. For S2 is the union of great circles, each

passing through the poles.

Example Every convex set C in Rm (or in any metric space with a compatible linear

structure) is connected. If we choose a point p ∈ C then each q ∈ C lies on a line

segment [p, q] ⊂ C. Thus, C is the union of connected sets sharing the common point

p. It is connected.

Definition A path joining p to q in a metric space M is a continuous function

f : [a, b] → M such that fa = p and fb = q. If each pair of points in M can be joined

by a path in M then M is path-connected. See Figure 42.

51 Theorem Path-connected implies connected.

Proof Assume that M is path-connected but not connected. Then M = A �Ac for

some proper clopen A ⊂ M . Choose p ∈ A and q ∈ Ac. There is a path f : [a, b] → M

from p to q. The separation fpre(A) � fpre(Ac) contradicts connectedness of [a, b].

Therefore M is connected.

Example All connected subsets of R are path-connected. See Exercise 67.
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Figure 42 A path f in M that joins p to q

Example Every open connected subset of Rm is path-connected. See Exercises 61

and 66.

Example The topologist’s sine curve is a compact connected set that is not

path-connected. It is M = G ∪ Y where

G = {(x, y) ∈ R2 : y = sin 1/x and 0 < x ≤ 1/π}
Y = {(0, y) ∈ R2 : −1 ≤ y ≤ 1}.

See Figure 43. The metric on M is just Euclidean distance. Is M connected? Yes!

Figure 43 The topologist’s sine curve M is a connected set. It includes the

vertical segment Y at x = 0.

The graph G is connected and M = G. By Theorem49 M is connected.
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6 Other Metric Space Concepts

Here are a few standard metric space topics related to what appears above. If S ⊂ M

then its closure is the smallest closed subset of M that contains S, its interior is the

largest open subset of M contained in S, and its boundary is the difference between

its closure and its interior. Their notations are

S = clS = closure of S intS = interior of S ∂S = boundary of S.

To avoid inheritance ambiguity it would be better (but too cumbersome) to write

clM S, intM S, and ∂MS to indicate the ambient space M . In Exercise 95 you are

asked to check various simple facts about them, such as S = limS = the intersection

of all closed sets that contain S.

Clustering and Condensing

Two concepts similar to limits are clustering and condensing. The set S “clusters”

at p (and p is a cluster point† of S) if each Mrp contains infinitely many points

of S. The set S condenses at p (and p is a condensation point of S) if each

Mrp contains uncountably many points of S. Thus, S limits at p, clusters at p, or

condenses at p according to whether each Mrp contains some, infinitely many, or

uncountably many points of S. See Figure 44.

Figure 44 Limiting, clustering, and condensing behavior

†Cluster points are also called accumulation points. As mentioned above, they are also some-

times called limit points, a usage that conflicts with the limit idea. A finite set S has no cluster

points, but of course, each of its points p is a limit of S since the constant sequence (p, p, p, . . .)

converges to p.
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52 Theorem The following are equivalent conditions to S clustering at p.

(i) There is a sequence of distinct points in S that converges to p.

(ii) Each neighborhood of p contains infinitely many points of S.

(iii) Each neighborhood of p contains at least two points of S.

(iv) Each neighborhood of p contains at least one point of S other than p.

Proof Clearly (i) ⇒ (ii) ⇒ (iii) ⇒ (iv), and (ii) is the definition of clustering. It

remains to check (iv) ⇒ (i).

Assume (iv) is true: Each neighborhood of p contains a point of S other than

p. In M1p choose a point p1 ∈ (S� {p}). Set r2 = min(1/2, d(p1, p)), and in

the smaller neighborhood Mr2p, choose p2 ∈ (S� {p}). Proceed inductively: Set

rn = min(1/n, d(pn−1, p)) and in Mrnp, choose pn ∈ (S� {p}). Since rn → 0 the

sequence (pn) converges to p. The points pn are distinct since they have different

distances to p,

d(p1, p) ≥ r2 > d(p2, p) ≥ r3 > d(p3, p) ≥ . . . .

Thus (iv) ⇒ (i) and the four conditions are equivalent.

Condition (iv) is the form of the definition of clustering most frequently used,

although it is the hardest to grasp. It is customary to denote by S′ the set of cluster

points of S.

53 Proposition S ∪ S′ = S.

Proof A cluster point is a type of limit of S, so S′ ⊂ limS = S and

S ∪ S′ ⊂ S

On the other hand, if p ∈ S then either p ∈ S or else p /∈ S and each neighborhood

of p contains points of S other than p. This implies that p ∈ S ∪ S′, so S ⊂ S ∪ S′,
and the two sets are equal.

54 Corollary S is closed if and only if S′ ⊂ S.

Proof S is closed if and only if S = S. Since S = S ∪ S′, equivalent to S′ ⊂ S is

S = S.

55 Corollary The least upper bound and greatest lower bound of a nonempty bounded

set S ⊂ R belong to the closure of S. Thus, if S is closed then they belong to S.

Proof If b = l. u. b. S then each interval (b− r, b] contains points of S. The same is

true for intervals [a, a+ r) where a = g. l. b. S
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Perfect Metric Spaces

A metric space M is perfect if M ′ = M , i.e., each p ∈ M is a cluster point of

M . Recall that M clusters at p if each Mrp is an infinite set. For example [a, b] is

perfect and Q is perfect. N is not perfect since none of its points are cluster points.

56 Theorem Every nonempty, perfect, complete metric space is uncountable.

Proof Suppose not: AssumeM is nonempty, perfect, complete, and countable. Since

M consists of cluster points it must be denumerable and not finite. Say

M = {x1, x2, . . .}

is a list of all the elements of M . We will derive a contradiction by finding a point of

M not in the list. Define

M̂rp = {q ∈ M : d(p, q) ≤ r}.

It is the closed neighborhood of radius r at p. Choose any y1 ∈ M with y1 
= x1
and choose r1 > 0 so that Y1 = M̂r1(y1) “excludes” x1 in the sense that x1 /∈ Y1. We

can take r1 as small as we want, say r1 < 1.

Since M clusters at y1 we can choose y2 ∈ Mr1(y1) with y2 
= x2 and choose

r2 > 0 so that Y2 = M̂r2(y2) excludes x2. Taking r2 small ensures Y2 ⊂ Y1. (Here we

are using openness of Mr1(y1).) Also we take r2 < 1/2. Since Y2 ⊂ Y1, it excludes x1
as well as x2. See Figure 45.

Nothing stops us from continuing inductively, and we get a nested sequence of

closed neighborhoods Y1 ⊃ Y2 ⊃ Y3 . . . such that Yn excludes x1, . . . , xn, and has

radius rn ≤ 1/n. Thus the center points yn form a Cauchy sequence. Completeness

of M implies that

lim
n→∞ yn = y ∈ M

exists. Since the sets Yn are closed and nested, y ∈ Yn for each n. Does y equal x1?

No, for Y1 excludes x1. Does it equal x2? No, for Y2 excludes x2. In fact, for each n

we have y 
= xn. The point y is nowhere in the supposedly complete list of elements

of M , a contradiction. Hence M is uncountable.

57 Corollary R and [a, b] are uncountable.

Proof R is complete and perfect, while [a, b] is compact, therefore complete, and

perfect. Neither is empty.
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Figure 45 The exclusion of successively more points of the sequence (xn)

that supposedly lists all the elements of M

58 Corollary Every nonempty perfect complete metric space is everywhere uncount-

able in the sense that each r-neighborhood is uncountable.

Proof The r/2-neighborhood Mr/2(p) is perfect: It clusters at each of its points.

The closure of a perfect set is perfect. Thus, Mr/2(p) is perfect. Being a closed

subset of a complete metric space, it is complete. According to Theorem56, Mr/2(p)

is uncountable. Since Mr/2(p) ⊂ Mrp, Mrp is uncountable.

Continuity of Arithmetic in R

Addition is a mapping Sum : R × R → R that assigns to (x, y) the real number

x+ y. Subtraction and multiplication are also such mappings. Division is a mapping

R× (R� {0}) → R that assigns to (x, y) the number x/y.

59 Theorem The arithmetic operations of R are continuous.

60 Lemma For each real number c the function Multc : R → R that sends x to cx

is continuous.
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Proof If c = 0 the function is constantly equal to 0 and is therefore continuous. If

c 
= 0 and ε > 0 is given, choose δ = ε/ |c|. If |x− y| < δ then

|Multc(x)−Multc(y)| = |c| |x− y| < |c| δ = ε

which shows that Multc is continuous.

Proof of Theorem59 We use the preservation of sequential convergence criterion

for continuity. It’s simplest. Let (xn, yn) → (x, y) as n → ∞.

By the triangle inequality we have

|Sum(xn, yn)− Sum(x, y)| ≤ |xn − x|+ |yn − y| = dsum((xn, yn), (x, y)).

By Corollary 21 dsum is continuous, so dsum((xn, yn), (x, y)) → 0 as n → ∞, which

completes the proof that Sum is continuous. (By Theorem17 it does not matter

which metric we use on R× R.)

Subtraction is the composition of continuous functions

Sub(x, y) = Sum ◦ (id×Mult−1)(x, y)

and is therefore continuous. (Proposition 3 implies id is continuous, Lemma60 implies

Mult−1 is continuous, and Corollary 18 implies id×Mult−1 is continuous.)

Multiplication is continuous since

|Mult(xn, yn)−Mult(x, y)| = |xnyn − xy|
≤ |xn − x| |yn|+ |x| |yn − y|
≤ B(|x− xn|+ |y − yn|)
= MultB(dsum((xn, yn), (x, y))) → 0

as n → ∞, where we use the fact that convergent sequences are bounded to write

|yn|+ |x| ≤ B for all n.

Reciprocation is the function Rec : R� {0} → R� {0} that sends x to 1/x. If

xn → x 
= 0 then there is a constant b > 0 such that for all large n we have |1/xn| ≤ b

and |1/x| ≤ b. Since

|Rec(xn)− Rec(x)| =

∣∣∣∣ 1xn − 1

x

∣∣∣∣ =
|xn − x|
|xxn| ≤ Multb2(|xn − x|) → 0

as n → ∞ we see that Rec is continuous.

Division is continuous on R × (R� {0}) since it is the composite of continuous

mappings Mult ◦ (id×Rec) : (x, y) �→ (x, 1/y) �→ x · 1/y.
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The absolute value is a mapping Abs : R → R that sends x to |x|. It is contin-

uous since it is d(x, 0) and the distance function is continuous. The maximum and

minimum are functions R× R → R given by the formulas

max(x, y) =
x+ y

2
+

|x− y|
2

min(x, y) =
x+ y

2
− |x− y|

2
,

so they are also continuous.

61 Corollary The sums, differences, products, and quotients, absolute values, max-

ima, and minima of real-valued continuous functions are continuous. (The denomi-

nator functions should not equal zero.)

Proof Take, for example, the sum f + g where f, g : M → R are continuous. It is

the composite of continuous functions

M
f×g−−−−→ R× R

Sum−−−→ R

x �→ (fx, gx) �→ Sum(fx, gx),

and is therefore continuous. The same applies to the other operations.

62 Corollary Polynomials are continuous functions.

Proof Proposition 3 states that constant functions and the identity function are con-

tinuous. Thus Corollary 61 and induction imply that the polynomial a0+ a1x+ · · ·+
anx

n is continuous.

The same reasoning shows that polynomials of m variables are continuous func-

tions Rm → R.

Boundedness

A subset S of a metric space M is bounded if for some p ∈ M and some r > 0,

S ⊂ Mrp.

A set which is not bounded is unbounded. For example, the elliptical region 4x2 +

y2 < 4 is a bounded subset of R2, while the hyperbola xy = 1 is unbounded. It is

easy to see that if S is bounded then for each q ∈ M there is an s such that Msq

contains S.

Distinguish the word “bounded” from the word “finite.” The first refers to phys-

ical size, the second to the number of elements. The concepts are totally different.
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Also, boundedness has little connection to the existence of a boundary – a clopen

subset of a metric space has empty boundary, but some clopen sets are bounded,

others not.

Exercise 39 asks you to show that every convergent sequence is bounded, and to

decide whether it is also true that every Cauchy sequence is bounded, even when the

metric space is not complete.

Boundedness is not a topological property. For example, (−1, 1) and R are home-

omorphic although (−1, 1) is bounded and R is unbounded. The same example shows

that completeness is not a topological property.

A function from M to another metric space N is a bounded function if its

range is a bounded subset of N . That is, there exist q ∈ N and r > 0 such that

fM ⊂ Nrq.

Note that a function can be bounded even though its graph is not. For example,

x �→ sinx is a bounded function R → R although its graph, {(x, y) ∈ R2 : y = sinx},
is an unbounded subset of R2.

7 Coverings
For the sake of simplicity we have postponed discussing compactness in terms of open

coverings until this point. Typically, students find coverings a challenging concept.

It is central, however, to much of analysis – for example, measure theory.

Definition A collection U of subsets of M covers A ⊂ M if A is contained in the

union of the sets belonging to U. The collection U is a covering of A. If U and V
both cover A and if V ⊂ U in the sense that each set V ∈ V belongs also to U then

we say that U reduces to V, and that V is a subcovering of A.

Definition If all the sets in a covering U of A are open then U is an open covering

of A. If every open covering of A reduces to a finite subcovering of A then we say

that A is covering compact†.

The idea is that if A is covering compact and U is an open covering of A then

just a finite number of the open sets are actually doing the work of covering A. The

rest are redundant.
†You will frequently find it said that an open covering of A has a finite subcovering. “Has” means

“reduces to.”
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A covering U of A is also called a cover of A. The members of U are not called

covers. Instead, you could call them scraps or patches. Imagine the covering as a

patchwork quilt that covers a bed, the quilt being sewn together from overlapping

scraps of cloth. See Figure 46.

Figure 46 A covering of A by eight scraps. The set A is cross-hatched.

The scraps are two discs, two rectangles, two ellipses, a pentagon, and a

triangle. Each point of A belongs to at least one scrap.

The mere existence of a finite open covering of A is trivial and utterly worthless.

Every set A has such a covering, namely the single open set M . Rather, for A to

be covering compact, each and every open covering of A must reduce to a finite

subcovering of A. Deciding directly whether this is so is daunting. How could you

hope to verify the finite reducibility of all open coverings of A? There are so many of

them. For this reason we concentrated on sequential compactness; it is relatively easy

to check by inspection whether every sequence in a set has a convergent subsequence.

To check that a set is not covering compact it suffices to find an open covering

which fails to reduce to a finite subcovering. Occasionally this is simple. For example,
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the set (0, 1] is not covering compact in R because its covering

U = {(1/n, 2) : n ∈ N}

fails to reduce to a finite subcovering.

63 Theorem For a subset A of a metric space M the following are equivalent:

(a) A is covering compact.

(b) A is sequentially compact.

Proof that (a) implies (b) We assume A is covering compact and prove it is se-

quentially compact. Suppose not. Then there is a sequence (pn) in A, no subsequence

of which converges in A. Each point a ∈ A therefore has some neighborhood Mra

such that pn ∈ Mra only finitely often. (The radius r may depend on the point a.)

The collection {Mra : a ∈ A} is an open covering of A and by covering compactness

it reduces to a finite subcovering

{Mr1(a1), Mr2(a2), . . . , Mrk(ak)}

of A. Since pn appears in each of these finitely many neighborhoods Mri(ai) only

finitely often, it follows from the pigeonhole principle that (pn) has only finitely many

terms, a contradiction. Thus (pn) cannot exist, and A is sequentially compact.

The following presentation of the proof that (b) implies (a) appears in Royden’s

book, Real Analysis. A Lebesgue number for a covering U of A is a positive real

number λ such that for each a ∈ A there is some U ∈ U with Mλa ⊂ U . Of course,

the choice of this U depends on a. It is crucial, however, that the Lebesgue number

λ is independent of a ∈ A.

The idea of a Lebesgue number is that we know each point a ∈ A is contained in

some U ∈ U, and if λ is extremely small then Mλa is just a slightly swollen point –

so the same should be true for it too. No matter where in A the neighborhood Mλa

is placed, it should lie wholly in some member of the covering. See Figure 47.

If A is noncompact then it may have open coverings with no positive Lebesgue

number. For example, let A = (0, 1) ⊂ R = M . The singleton collection {A} is

an open covering of A, but there is no λ > 0 such that for every a ∈ A we have

(a− λ, a+ λ) ⊂ A. See Exercise 86.

64 Lebesgue Number Lemma Every open covering of a sequentially compact set

has a Lebesgue number λ > 0.
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Figure 47 Small neighborhoods are like swollen points. U has a positive

Lebesgue number λ. The λ-neighborhood of each point in the cross-hatched

set A is wholly contained in at least one member of the covering.

Proof Suppose not: U is an open covering of a sequentially compact set A, and yet

for each λ > 0 there exists an a ∈ A such that no U ∈ U contains Mλa. Take λ = 1/n

and let an ∈ A be a point such that no U ∈ U contains M1/n(an). By sequential

compactness, there is a subsequence (ank
) converging to some point p ∈ A. Since U

is an open covering of A, there exist r > 0 and U ∈ U with Mrp ⊂ U . If k is large

then d(ank
, p) < r/2 and 1/nk < r/2, which implies by the triangle inequality that

M1/nk
(ank

) ⊂ Mrp ⊂ U,

contrary to the supposition that no U ∈ U contains M1/n(an). We conclude that,

after all, U does have a Lebesgue number λ > 0. See Figure 48.

Proof that (b) implies (a) in Theorem 63 Let U be an open covering of the

sequentially compact set A. We want to reduce U to a finite subcovering. By the

Lebesgue Number Lemma, U has a Lebesgue number λ > 0. Choose any a1 ∈ A and

some U1 ∈ U such that

Mλ(a1) ⊂ U1.
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Figure 48 The neighborhood Mrp engulfs the smaller neighborhood

M1/nk
(ank

).

If U1 ⊃ A then U reduces to the finite subcovering {U1} consisting of a single set,

and the implication (b) ⇒ (a) is proved. On the other hand, as is more likely, if U1

does not contain A then we choose a point a2 ∈ A�U1 and U2 ∈ U such that

Mλ(a2) ⊂ U2.

Either U reduces to the finite subcovering {U1, U2} (and the proof is finished) or

else we can continue, eventually producing a sequence (an) in A and a sequence (Un)

in U such that

Mλ(an) ⊂ Un and an+1 ∈ (A� (U1 ∪ · · · ∪ Un)).

We will show that such sequences (an), (Un) lead to a contradiction. By sequential

compactness, there is a subsequence (ank
) that converges to some p ∈ A. For a large

k we have d(ank
, p) < λ and

p ∈ Mλ(ank
) ⊂ Unk

.

See Figure 49.

All an�
with � > k lie outside Unk

, which contradicts their convergence to p. Thus,

at some finite stage the process of choosing points an and sets Un terminates, and U
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Figure 49 The point ank
is so near p that the neighborhood Mλ(ank

)

engulfs p.

reduces to a finite subcovering {U1, . . . , Un} of A, which implies that A is covering

compact. See also the remark on page 421.

Upshot In light of Theorem63, the term “compact” may now be applied equally to

any set obeying (a) or (b).

Total Boundedness

The Heine-Borel Theorem states that a subset of Rm is compact if and only if

it is closed and bounded. In more general metric spaces, such as Q, the assertion is

false. But what if the metric space is complete? As remarked on page 81 it is still

false.

But mathematicians do not quit easily. The Heine-Borel Theorem ought to gen-

eralize beyond Rm somehow. Here is the concept we need: A set A ⊂ M is totally

bounded if for each ε > 0 there exists a finite covering of A by ε-neighborhoods. No

mention is made of a covering reducing to a subcovering. How close total boundedness

is to the worthless fact that every metric space has a finite open covering!

65 Generalized Heine-Borel Theorem A subset of a complete metric space is

compact if and only if it is closed and totally bounded.
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Proof Let A be a compact subset of M . Therefore it is closed. To see that it is

totally bounded, let ε > 0 be given and consider the covering of A by ε-neighborhoods,

{Mε x : x ∈ A}.
Compactness of A implies that this covering reduces to a finite subcovering and

therefore A is totally bounded.

Conversely, assume that A is a closed and totally bounded subset of the complete

metric space M . We claim that A is sequentially compact. That is, every sequence

(an) in A has a subsequence that converges in A. Set εk = 1/k, k = 1, 2, . . . . Since

A is totally bounded we can cover it by finitely many ε1-neighborhoods

Mε1(q1), . . . , Mε1(qm).

By the pigeonhole principle, terms of the sequence an lie in at least one of these

neighborhoods infinitely often, say it is Mε1(p1). Choose

an1 ∈ A1 = A ∩Mε1(p1).

Every subset of a totally bounded set is totally bounded, so we can cover A1 by finitely

many ε2-neighborhoods. For one of them, say Mε2(p2), an lies in A2 = A1 ∩Mε2(p2)

infinitely often. Choose an2 ∈ A2 with n2 > n1.

Proceeding inductively, cover Ak−1 by finitely many εk-neighborhoods, one of

which, say Mεk(pk), contains terms of the sequence (an) infinitely often. Then choose

ank
∈ Ak = Ak−1 ∩Mεk(pk) with nk > nk−1. Then (ank

) is a subsequence of (an). It

is Cauchy. For if ε > 0 is given we choose N such that 2/N < ε. If k, � ≥ N then

ank
, an�

∈ AN and diamAN ≤ 2εN =
2

N
< ε,

which shows that (ank
) is Cauchy. Completeness of M implies that (ank

) converges

to some p ∈ M and since A is closed we have p ∈ A. Hence A is compact.

66 Corollary A metric space is compact if and only if it is complete and totally

bounded.

Proof Every compact metric space M is complete. This is because, given a Cauchy

sequence (pn) in M , compactness implies that some subsequence converges in M ,

and if a Cauchy sequence has a convergent subsequence then the mother sequence

converges too. As observed above, compactness immediately gives total boundedness.

Conversely, assume that M is complete and totally bounded. Every metric space

is closed in itself. By Theorem65, M is compact.
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8 Cantor Sets
Cantor sets are fascinating examples of compact sets that are maximally disconnected.

(To emphasize the disconnectedness, one sometimes refers to a Cantor set as “Cantor

dust.”) Here is how to construct the standard Cantor set. Start with the unit

interval [0, 1] and remove its open middle third, (1/3, 2/3). Then remove the open

middle third from the remaining two intervals, and so on. This gives a nested sequence

C0 ⊃ C1 ⊃ C2 ⊃ . . . where C0 = [0, 1], C1 is the union of the two intervals [0, 1/3]

and [2/3, 1], C2 is the union of four intervals [0, 1/9], [2/9, 1/3], [2/3, 7/9], and [8/9, 1],

C3 is the union of eight intervals, and so on. See Figure 50.

Figure 50 The construction of the standard middle-thirds Cantor set C

In general Cn is the union of 2n closed intervals, each of length 1/3n. Each Cn is

compact. The standard middle thirds Cantor set is the nested intersection

C =
∞
<
n=0

Cn.

We refer to C as “the” Cantor set. Clearly it contains the endpoints of each of

the intervals comprising Cn. Actually, it contains uncountably many more points

than these endpoints! There are other Cantor sets defined by removing, say, middle

fourths, pairs of middle tenths, etc. All Cantor sets turn out to be homeomorphic to

the standard Cantor set. See Section 9.

A metric space M is totally disconnected if each point p ∈ M has arbitrarily

small clopen neighborhoods. That is, given ε > 0 and p ∈ M , there exists a clopen

set U such that

p ∈ U ⊂ Mε p.
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For example, every discrete space is totally disconnected. So is Q.

67 Theorem The Cantor set is a compact, nonempty, perfect, and totally discon-

nected metric space.

Proof The metric on C is the one it inherits from R, the usual distance |x− y|. Let
E be the set of endpoints of all the Cn-intervals,

E = {0, 1, 1/3, 2/3, 1/9, 2/9, 7/9, 8/9, . . .}.
Clearly E is denumerable and contained in C, so C is nonempty and infinite. It is

compact because it is the intersection of compacts.

To show C is perfect and totally disconnected, take any x ∈ C and any ε > 0.

Fix n so large that 1/3n < ε. The point x lies in one of the 2n intervals I of length

1/3n that comprise Cn. Fix this I. The set E ∩ I is infinite and contained in the

interval (x− ε, x + ε). Thus C clusters at x and C is perfect. See Figure 51.

Figure 51 The endpoints of C cluster at x.

The interval I is closed in R and therefore in Cn. The complement J = Cn� I

consists of finitely many closed intervals and is therefore closed too. Thus, I and J are

clopen in Cn. By the Inheritance Principle their intersections with C are clopen in C,

so C ∩ I is a clopen neighborhood of x in C which is contained in the ε-neighborhood

of x, completing the proof that C is totally disconnected.

68 Corollary The Cantor set is uncountable.

Proof Being compact, C is complete, and by Theorem56, every complete, perfect,

nonempty metric space is uncountable.

A more direct way to see that the Cantor set is uncountable involves a geometric

coding scheme. Take the code 0 = left and 2 = right. Then

C0 = left interval = [0, 1/3] C2 = right interval = [2/3, 1],

and C1 = C0 ∪ C2. Similarly, the left and right subintervals of C0 are coded C00

and C02, while the left and right subintervals of C2 are C20 and C22. This gives

C2 = C00 � C02 � C20 � C22.
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The intervals that comprise C3 are specified by strings of length 3. For instance, C220

is the left subinterval of C22. In general an interval of Cn is coded by an address

string of n symbols, each a 0 or a 2. Read it like a zip code. The first symbol gives

the interval’s gross location (left or right), the second symbol refines the location, the

third refines it more, and so on.

Imagine now an infinite address string ω = ω1ω2ω3 . . . of zeros and twos.

Corresponding to ω, we form a nested sequence of intervals

Cω1 ⊃ Cω1ω2 ⊃ Cω1ω2ω3 ⊃ · · · ⊃ Cω1...ωn ⊃ . . . ,

the intersection of which is a point p = p(ω) ∈ C. Specifically,

p(ω) = <
n∈N

Cω|n

where ω|n = ω1 . . . ωn truncates ω to an address of length n. See Theorem34.

As we have observed, each infinite address string defines a point in the Cantor set.

Conversely, each point p ∈ C has an address ω = ω(p): its first n symbols α = ω|n
are specified by the interval Cα of Cn in which p lies. A second point q has a different

address, since there is some n for which p and q lie in distinct intervals Cα and Cβ

of Cn.

In sum, the Cantor set is in one-to-one correspondence with the set Ω of addresses.

Each address ω ∈ Ω defines a point p(ω) ∈ C and each point p ∈ C has a unique

address ω(p). The set Ω is uncountable. In fact it corresponds bijectively to R. See

Exercise 112.

If S ⊂ M and S = M then S is dense in M . For example, Q is dense in R. The

set S is somewhere dense if there exists an open nonempty set U ⊂ M such that

S ∩ U ⊃ U . If S is not somewhere dense then it is nowhere dense.

69 Theorem The Cantor set contains no interval and is nowhere dense in R.

Proof Suppose not and C contains (a, b). Then (a, b) ⊂ Cn for all n ∈ N. Take n

with 1/3n < b− a. Since (a, b) is connected it lies wholly in a single Cn-interval, say

I. But I has smaller length than (a, b), which is absurd, so C contains no interval.

Next, suppose C is dense in some nonempty open set U ⊂ R, i.e., the closure of

C ∩ U contains U . Thus

C = C ⊃ C ∩ U ⊃ U ⊃ (a, b),

contrary to the fact that C contains no interval.
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The existence of an uncountable nowhere dense set is astonishing. Even more is

true: The Cantor set is a zero set – it has “outer measure zero.” By this we mean

that, given any ε > 0, there is a countable covering of C by open intervals (ak, bk),

and the total length of the covering is

∞∑
k=1

bk − ak < ε.

(Outer measure is one of the central concepts of Lebesgue Theory. See Chapter 6.)

After all, C is a subset of Cn, which consists of 2n closed intervals, each of length

1/3n. If n is large enough then 2n/3n < ε. Enlarging each of these closed intervals to

an open interval keeps the sum of the lengths < ε, and it follows that C is a zero set.

If we discard subintervals of [0, 1] in a different way, we can make a fat Cantor

set – one that has positive outer measure. Instead of discarding the middle-thirds of

intervals at the nth stage in the construction, we discard only the middle 1/n! portion.

The discards are grossly smaller than the remaining intervals. See Figure 52. The

total amount discarded from [0, 1] is < 1, and the total amount remaining, the outer

measure of the fat Cantor set, is positive. See Exercise 3.31.

Figure 52 In forming a fat Cantor set, the gap intervals occupy a

progressively smaller proportion of the Cantor set intervals.

9* Cantor Set Lore
In this section, we explore some arcane features of Cantor sets.

Although the continuous image of a connected set is connected, the continuous

image of a disconnected set may well be connected. Just crush the disconnected set

to a single point. Nevertheless, I hope you find the following result striking, for it

means that the Cantor set C is the universal compact metric space, of which all

others are merely shadows.

See Figure 53. Exercise 114 suggests a direct construction of a continuous sur-

jection C → [0, 1], which is already an interesting fact. The proof of Theorem70

70 Cantor Surjection Theorem Given a compact nonempty metric spaceM , there

is a continuous surjection of C onto M .
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Figure 53 σ surjects C onto M .

involves a careful use of the address notation from Section 8 and the following simple

lemma about dividing a compact metric space M into small pieces. A piece of M is

any compact nonempty subset of M .

71 Lemma If M is a nonempty compact metric space and ε > 0 is given then M

can be expressed as the finite union of pieces, each of diameter ≤ ε.

Proof Reduce the covering {Mε/2(x) : x ∈ M} of M to a finite subcovering and take

the closure of each member of the subcovering.

We say that M divides into these small pieces. The metaphor is imperfect

because the pieces may overlap. The strategy of the proof of Theorem70 is to divide

M into large pieces, divide the large pieces into small pieces, divide the small pieces

into smaller pieces and continue indefinitely. Labeling the pieces coherently with

words in two letters leads to the Cantor surjection.

Let W (n) be the set of words in two letters, say a and b, having length n. Then

#W (n) = 2n. For example W (2) consists of the four words aa, bb, ab, and ba.

Using Lemma71 we divide M into a finite number of pieces of diameter ≤ 1 and

we denote by M1 the collection of these pieces. We choose n1 with 2n1 ≥ #M1 and

choose any surjection w1 : W (n1) →M1. Since there are enough words in W (n1), w1

exists. We say w1 labels M1 and if w1(α) = L then α is a label of L.
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Then we divide each L ∈M1 into finitely many smaller pieces. Let M2(L) be the

collection of these smaller pieces and let

M2 = >
L∈M1

M2(L).

Choose n2 such that 2n2 ≥ max{#M2(L) : L ∈ M1} and label M2 with words

αβ ∈ W (n1 + n2) such that

If L = w1(α) then αβ labels the pieces S ∈M2(L)

as β varies in W (n2).

This labeling amounts to a surjection w2 : W (n1 + n2) →M2 that is coherent with

w1 in the sense that β �→ w2(αβ) labels the pieces S ∈ w1(α). Since there are enough

words in W (n2), w2 exists. If there are other labels α′ of L ∈ M1 then we get other

labels α′β′ for the pieces S ∈M2(L). We make no effort to correlate them.

Proceeding by induction we get finer and finer divisions of M coherently labeled

with longer and longer words. More precisely there is a sequence of divisions (Mk)

and surjections wk : Wk = W (n1 + · · ·+ nk) →Mk such that

(a) The maximum diameter of the pieces L ∈Mk tends to zero as k → ∞.

(b) Mk+1 refinesMk in the sense that each S ∈Mk+1 is contained in some L ∈Mk.

(“The small pieces S are contained in the large pieces L.”)

(c) If L ∈Mk and Mk+1(L) denotes {S ∈Mk+1 : S ⊂ L} then

L = >
S∈Mk+1(L)

S.

(d) The labelings wk are coherent in the sense that if wk(α) = L ∈ Mk then

β �→ wk+1(αβ) labels Mk+1(L) as β varies in W (nk+1).

See Figure 54.

Proof of the Cantor Surjection Theorem We are given a nonempty compact

metric space M and we seek a continuous surjection σ : C → M where C is the

standard Cantor set.

C = <Cn where Cn is the disjoint union of 2n closed intervals of length 1/3n.

In Section 8 we labeled these Cn-intervals with words in the letters 0 and 2 having

length n. (For instance C220 is the left C3-interval of C22 = [8/9, 1], namely C220 =

[8/9, 25/27].) We showed there is a natural bijection between C and the set of all

infinite words in the letters 0 and 2 defined by

p = <
n∈N

Cω|n.
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aa

ab ba

bb

bbb

bba

bab

aab

aba

abb

aaa

baa

M1

M2M3

M

Figure 54 Coherently labeled successive divisions of M . They have

n1 = 2, n2 = 1, and n3 = 6. Note that overlabeling is necessary.

We referred to ω = ω(p) as the address of p. (ω|n is the truncation of ω to its first n

letters.) See page 107.

For k = 1, 2, . . . let Mk be the fine divisions of M constructed above, coherently

labeled by wk. They obey (a)-(d). Given p ∈ C we look at the nested sequence of

pieces Lk(p) ∈ Mk such that Lk(p) = wk(ω|(n1 + · · · + nk)) where ω = ω(p). That

is, we truncate ω(p) to its first n1 + · · ·+ nk letters and look at the piece in Mk with

this label. (We replace the letters 0 and 2 with a and b.) Then (Lk(p)) is a nested

decreasing sequence of nonempty compact sets whose diameters tend to 0 as k → ∞.

Thus <Lk(p) is a well defined point in M and we set

σ(p) = <
k∈N

Lk(p).

We must show that σ is a continuous surjection C → M . Continuity is simple. If

p, p′ ∈ C are close together then for large n the first n entries of their addresses are

equal. This implies that σ(p) and σ(p′) belong to a common Lk and k is large. Since

the diameter of Lk tends to 0 as k → ∞ we get continuity.

Surjectivity is also simple. Each q ∈ M is the intersection of at least one nested

sequence of pieces Lk ∈Mk. For q belongs to some piece L1 ∈M1, and it also belongs
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to some subpiece L2 ∈M2(L1), etc. Coherence of the labeling of the Mk implies that

for each nested sequence (Lk) there is an infinite word α = α1α2α3 . . . such that

αi ∈ W (ni) and Lk = wk(α1 . . . αm) with m = n1 + · · · + nk. The point p ∈ C with

address α is sent by σ to q.

Peano Curves

72 Theorem There exists a Peano curve, a continuous path in the plane which is

space-filling in the sense that its image has nonempty interior. In fact there is a

Peano curve whose image is the closed unit disc B2.

Proof Let σ : C → B2 be a continuous surjection supplied by Theorem 70. Extend

σ to a map τ : [0, 1] → B2 by setting

τ(x) =

⎧⎪⎨⎪⎩
σ(x) if x ∈ C

(1− t)σ(a) + tσ(b) if x = (1− t)a + tb ∈ (a, b)

and (a, b) is a gap interval.

A gap interval is an interval (a, b) ⊂ Cc such that a, b ∈ C. Because σ is continuous,

|σ(a)− σ(b)| → 0 as |a− b| → 0. Hence τ is continuous. Its image includes the disc

B2 and thus has nonempty interior. In fact the image of τ is exactly B2, since the

disc is convex and τ just extends σ via linear interpolation. See Figure 55.

This Peano curve cannot be one-to-one since C is not homeomorphic to B2. (C

is disconnected while B2 is connected.) In fact no Peano curve τ can be one-to-one.

See Exercise 102.

Cantor Spaces

We say thatM is aCantor space if, like the standard Cantor set C, it is compact,

nonempty, perfect, and totally disconnected.

73 Moore-Kline Theorem Every Cantor space M is homeomorphic to the stan-

dard middle-thirds Cantor set C.

A Cantor piece is a nonempty clopen subset S of a Cantor space M . It is easy

to see that S is also a Cantor space. See Exercise 100. Since a Cantor space is totally

disconnected, each point has a small clopen neighborhood N . Thus, a Cantor space

can always be divided into two disjoint Cantor pieces, M = U � U c.
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Figure 55 Filling in the Cantor surjection σ to make a Peano space-filling

curve τ

74 Cantor Partition Lemma Given a Cantor space M and ε > 0, there is a num-

ber N such that for each d ≥ N there is a partition of M into d Cantor pieces of

diameter ≤ ε. (We care most about dyadic d.)

Proof A partition of a set is a division of it into disjoint subsets. In this case

the small Cantor pieces form a partition of the Cantor space M . Since M is totally

disconnected and compact, we can cover it with finitely many clopen neighborhoods

U1, . . . , Um having diameter ≤ ε. To make the sets Ui disjoint, define

V1 = U1

V2 = U1
�U2

. . .

Vm = Um
� (U1 ∪ · · · ∪ Um−1).

If any Vi is empty, discard it. This gives a partition M = X1 � · · · �XN into N ≤ m

Cantor pieces of diameter ≤ ε.
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If d = N this finishes the proof. If d > N then we inductively divide XN into

two, and then three, and eventually d−N + 1 disjoint Cantor pieces; say

XN = Y1 � · · · � Yd−N+1.

The partition M = X1 � · · · �XN−1 � Y1 � · · · � Yd−N+1 finishes the proof.

Proof of the Moore-Kline Theorem We are given a Cantor space M and we

seek a homeomorphism from the standard Cantor set C onto M .

By Lemma74 there is a partitionM1 of M into d1 nonempty Cantor pieces where

d1 = 2n1 is dyadic and the pieces have diameter ≤ 1. Thus there is a bijection

w1 : W1 →M1 where W1 = W (n1).

According to the same lemma, each L ∈M1 can be partitioned into N(L) Cantor

pieces of diameter ≤ 1/2. Choose a dyadic number

d2 = 2n2 ≥ max{N(L) : L ∈M1}

and use the lemma again to partition each L into d2 smaller Cantor pieces. These

pieces constitute M2(L), and we set M2 = >LM2(L). It is a partition of M having

cardinality d1d2 and in the natural way described in the proof of Theorem70 it is

coherently labeled by W2 = W (n1 + n2). Specifically, for each L ∈ M1 there is a

bijection wL : W (n2) →M2(L) and we define w2 : W2 →M2 by w2(αβ) = S ∈M2 if

and only if w1(α) = L and wL(β) = S. This w2 is a bijection.

Proceeding in exactly the same way, we pass from 2 to 3, from 3 to 4, and

eventually from k to k + 1, successively refining the partitions and extending the

bijective labelings.

The Cantor surjection constructed in the proof of Theorem70 is

σ(p) = <
k
Lk(p)

where Lk(p) ∈Mk has label ω(p)|m with m = n1+ · · ·+nk. Distinct points p, p′ ∈ C

have distinct addresses ω, ω′. Because the labelings wk are bijections and the divisions

Mk are partitions, ω 
= ω′ implies that for some k, Lk(p) 
= Lk(p
′), and thus σ(p) 
=

σ(p′). That is, σ is a continuous bijection C → M . A continuous bijection from one

compact to another is a homeomorphism.

75 Corollary Every two Cantor spaces are homeomorphic.

Proof Immediate from the Moore-Kline Theorem: Each is homeomorphic to C.
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76 Corollary The fat Cantor set is homeomorphic to the standard Cantor set.

Proof Immediate from the Moore-Kline Theorem.

77 Corollary A Cantor set is homeomorphic to its own Cartesian square; that is,

C ∼= C × C.

Proof It is enough to check that C × C is a Cantor space. It is. See Exercise 99.

The fact that a nontrivial space is homeomorphic to its own Cartesian square is

disturbing, is it not?

Ambient Topological Equivalence

Although all Cantor spaces are homeomorphic to each other when considered as

abstract metric spaces, they can present themselves in very different ways as subsets

of Euclidean space. Two sets A,B in Rm are ambiently homeomorphic if there is

a homeomorphism of Rm to itself that sends A onto B. For example, the sets

A = {0} ∪ [1, 2] ∪ {3} and B = {0} ∪ {1} ∪ [2, 3]

are homeomorphic when considered as metric spaces, but there is no ambient homeo-

morphism of R that carries A to B. Similarly, the trefoil knot in R3 is homeomorphic

but not ambiently homeomorphic in R3 to a planar circle. See also Exercise 105.

78 Theorem Every two Cantor spaces in R are ambiently homeomorphic.

Let M be a Cantor space contained in R. According to Theorem73, M is home-

omorphic to the standard Cantor set C. We want to find a homeomorphism of R to

itself that carries C to M .

The convex hull of S ⊂ Rm is the smallest convex set H that contains S. When

m = 1, H is the smallest interval that contains S.

79 Lemma A Cantor space M ⊂ R splits into two Cantor pieces with disjoint convex

hulls, each having diameter < 2 diam(M)/3.

Proof Obvious from one-dimensionality of R: Let [a, b] be the convex hull of M . Its

diameter is d = b − a and its midpoint is m = (a + b)/2. Total disconnectedness of

M implies there exists c ∈ (a, b)�M with m ≤ c and c− a < 2d/3. Then

M = M ∩ [a, c] � [c, b] ∩M

divides M into disjoint Cantor pieces as required.

each having diameter < 2 diam(M)/3.

: Let [a, b] be the convex hull of M . Its

diameter is d = b − a and its midpoint is m = (a + b)/2. Total disconnectedness of

M implies there exists c ∈ (a, b)�M with m ≤ c and c− a < 2d/3. ThenM implies there exists c ∈ (a b)�M with m ≤ c and c− a < 2d/3 Then

M = M ∩ [a, c] � [c, b] ∩M

divides M into disjoint Cantor pieces as required.
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Proof of Theorem78 Let M ⊂ R be a Cantor space. We will find a homeomor-

phism τ : R → R sending C to M . Lemma79 leads to Cantor divisions Mk whose

pieces have disjoint convex hulls with diameters tending to zero as k → ∞. With

respect to the left/right order of R, label these pieces in the same way that the Cantor

middle third intervals are labeled: L0 and L2 inM1 are the left and right pieces of M ,

L00 and L02 are the left and right pieces of L0, and so on. Then the homeomorphism

σ : C → M constructed in Theorems 70 and 73 is automatically monotone increasing.

Extend σ across the gap intervals affinely as was done in the proof of Theorem72,

and extend it to R� [0, 1] in any affine increasing fashion such that τ(0) = σ(0) and

τ(1) = σ(1). Then τ : R → R extends σ to R. The monotonicity of σ implies that τ

is one-to-one, while the continuity of σ implies that τ is continuous. τ : R → R is a

homeomorphism that carries C onto M .

If M ′ ⊂ R is a second Cantor space and τ ′ : R → R is a homeomorphism that

sends C onto M ′ then τ ′ ◦ τ−1 is a homeomorphism of R that sends M onto M ′.

As an example, one may construct a Cantor set in R by removing from [0, 1] its

middle third, then removing from each of the remaining intervals nine symmetrically

placed subintervals; then removing from each of the remaining twenty intervals, four

asymmetrically placed subintervals; and so forth. In the limit (if the lengths of the

remaining intervals tend to zero) we get a nonstandard Cantor set M . According to

Theorem78, there is a homeomorphism of R to itself sending the standard Cantor

set C onto M .

Another example is the fat Cantor set mentioned on page 108. It too is ambiently

homeomorphic to C.

Theorem Every two Cantor spaces in R2 are ambiently homeomorphic.

We do not prove this theorem here. The key step is to show M has a dyadic disc

partition. That is, M can be divided into a dyadic number of Cantor pieces, each

piece contained in the interior of a small topological disc Di, the Di being mutually

disjoint. (A topological disc is any homeomorph of the closed unit disc B2. Smallness

refers to diam Di.) The proofs I know of the existence of such dyadic partitions are

tricky cut-and-paste arguments and are beyond the scope of this book. See Moise’s

book, Geometric Topology in Dimensions 2 and 3 and also Exercise 138.

Antoine’s Necklace

A Cantor space M ⊂ Rm is tame if there is an ambient homeomorphism h :

Rm → Rm that carries the standard Cantor set C (imagined to lie on the x1-axis

k whose

pieces have disjoint convex hulls with diameters tending to zero as k → ∞.

respect to the left/right order of R label these pieces in the same way that the
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in Rm) onto M . If M is not tame it is wild. Cantor spaces contained in the line

or plane are tame. In 3-space, however, there are wild ones, Cantor sets A so badly

embedded in R3 that they act like curves. It is the lack of a “ball dyadic partition

lemma” that causes the problem.

The first wild Cantor set was discovered by Louis Antoine, and is known as

Antoine’s Necklace. The construction involves the solid torus or anchor ring,

which is homeomorphic to the Cartesian product B2 × S1. It is easy to imagine a

necklace of solid tori: Take an ordinary steel chain and modify it so its first and last

links are also linked. See Figure 56.

Nick Pugh

Figure 56 A necklace of twenty solid tori

Antoine’s construction then goes like this. Draw a solid torus A0. Interior to A0,

draw a necklace A1 of several small solid tori, and make the necklace encircle the

hole of A0. Repeat the construction on each solid torus T comprising A1. That is,

interior to each T , draw a necklace of very small solid tori so that it encircles the hole

of T . The result is a set A2 ⊂ A1 which is a necklace of necklaces. In Figure 56, A2

would consist of 400 solid tori. Continue indefinitely, producing a nested decreasing

sequence A0 ⊃ A1 ⊃ A2 ⊃ . . .. The set An is compact and consists of a large

number (20n) of extremely small solid tori arranged in a hierarchy of necklaces. It

is an nth order necklace. The intersection A = < An is a Cantor space, since it is
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compact, perfect, nonempty, and totally disconnected. It is homeomorphic to C. See

Exercise 139.

Certainly A is bizarre, but is it wild? Is there no ambient homeomorphism h of

R3 that sends the standard Cantor set C onto A? The reason that h cannot exist is

explained next.

T

A0

κ

Figure 57 κ loops through A0, which contains the necklace of solid tori.

Referring to Figure 57, the loop κ passing through the hole of A0 cannot be

continuously shrunk to a point in R3 without hitting A. For if such a motion of κ

avoids A then, by compactness, it also avoids one of the high-order necklaces An. In

R3 it is impossible to continuously de-link two linked loops, and it is also impossible

to continuously de-link a loop from a necklace of loops. (These facts are intuitively

believable but hard to prove. See Dale Rolfsen’s book, Knots and Links.)

On the other hand, each loop λ in R3�C can be continuously shrunk to a point

without hitting C. For there is no obstruction to pushing λ through the gap intervals

of C.

Now suppose that there is an ambient homeomorphism h of R3 that sends C to

A. Then λ = h−1(κ) is a loop in R3�C, and it can be shrunk to a point in R3�C,

avoiding C. Applying h to this motion of λ continuously shrinks κ to a point, avoiding

A, which we have indicated is impossible. Hence h cannot exist, and A is wild.
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10* Completion
Many metric spaces are complete (for example, every closed subset of Euclidean space

is complete), and completeness is a reasonable property to require of a metric space,

especially in light of the following theorem.

80 Completion Theorem Every metric space can be completed.

This means that just as R completes Q, we can take any metric space M and find

a complete metric space M̂ containing M whose metric extends the metric of M . To

put it another way, M is always a metric subspace of a complete metric space. In a

natural sense the completion is uniquely determined by M .

81 Lemma Given four points p, q, x, y ∈ M , we have

|d(p, q)− d(x, y)| ≤ d(p, x) + d(q, y).

Proof The triangle inequality implies that

d(x, y) ≤ d(x, p) + d(p, q) + d(q, y)

d(p, q) ≤ d(p, x) + d(x, y) + d(y, q),

and hence

−(d(p, x) + d(q, y)) ≤ d(p, q) − d(x, y) ≤ (d(p, x) + d(q, y)).

A number sandwiched between −k and k has magnitude ≤ k, which completes the

proof.

Proof of the Completion Theorem80 We consider the collection C of all Cauchy
sequences inM , convergent or not, and convert it into the completion ofM . (This is a

bold idea, is it not?) Cauchy sequences (pn) and (qn), are co-Cauchy if d(pn, qn) → 0

as n → ∞. Co-Cauchyness is an equivalence relation on C. (This is easy to check.)

Define M̂ to be C modulo the equivalence relation of being co-Cauchy. Points of

M̂ are equivalence classes P = [(pn)] such that (pn) is a Cauchy sequence in M . The

metric on M̂ is

D(P,Q) = lim
n→∞ d(pn, qn),

where P = [(pn)] and Q = [(qn)]. It only remains to verify three things:

(a) D is a well defined metric on M̂ .

(b) M ⊂ M̂ .

(c) M̂ is complete.
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None of these assertions is really hard to prove, although the details are somewhat

messy because of possible equivalence class/representative ambiguity.

(a) By Lemma81

|d(pm, qm)− d(pn, qn)| ≤ d(pm, pn) + d(qm, qn).

Thus (d(pn, qn)) is a Cauchy sequence in R, and because R is complete,

L = lim
n→∞ d(pn, qn)

exists. Let (p′n) and (q′n) be sequences that are co-Cauchy with (pn) and (qn), and let

L′ = lim
n→∞ d(p′n, q

′
n).

Then

|L− L′| ≤ |L− d(pn, qn)|+ |d(pn, qn)− d(p′n, q
′
n)|+ |d(p′n, q′n)− L′|.

As n → ∞, the first and third terms tend to 0. By Lemma81, the middle term is

|d(pn, qn)− d(p′n, q
′
n)| ≤ d(pn, p

′
n) + d(qn, q

′
n),

which also tends to 0 as n → ∞. Hence L = L′ and D is well defined on M̂ . The

d-distance on M is symmetric and satisfies the triangle inequality. Taking limits,

these properties carry over to D on M̂ , while positive definiteness follows directly

from the co-Cauchy definition.

(b) Think of each p ∈ M as a constant sequence, p = (p, p, p, p, . . .). Clearly it

is Cauchy and clearly the D-distance between two constant sequences p and q is the

same as the d-distance between the points p and q. In this way M is naturally a

metric subspace of M̂ .

(c) Let (Pk)k∈N be a Cauchy sequence in M̂ . We must find Q ∈ M̂ to which

Pk converges as k → ∞. (Note that (Pk) is a sequence of equivalence classes, not

a sequence of points in M , and convergence refers to D not d.) Because D is well

defined we can use a trick to shorten the proof. Observe that every subsequence of

a Cauchy sequence is Cauchy, and it and the mother sequence are co-Cauchy. For

all the terms far along in the subsequence are also far along in the mother sequence.

This lets us take a representative of Pk all of whose terms are at distance < 1/k from

each other. Call this sequence (pk,n)n∈N. We have [(pk,n)] = Pk.

Set qn = pn,n. We claim that (qn) is Cauchy and D(Pk, Q) → 0 as k → ∞, where

Q = [(qn)]. That is, M̂ is complete.



Section 10* Completion 121

Let ε > 0 be given. There exists N ≥ 3/ε such that if k, � ≥ N then

D(Pk, P�) ≤ ε

3

and

d(qk, q�) = d(pk,k, p�,�)

≤ d(pk,k, pk,n) + d(pk,n, p�,n) + d(p�,n, p�,�)

≤ 1

k
+ d(pk,n, p�,n) +

1

�

≤ 2ε

3
+ d(pk,n, p�,n).

The inequality is valid for all n and the left-hand side, d(qk, q�), does not depend on

n. The limit of d(pk,n, p�,n) as n → ∞ is D(Pk, P�), which we know to be < ε/3.

Thus, if k, � ≥ N then d(qk, q�) < ε and (qn) is Cauchy. Similarly we see that Pk → Q

as k → ∞. For, given ε > 0, we choose N ≥ 2/ε such that if k, n ≥ N then

d(qk, qn) < ε/2, from which it follows that

d(pk,n, qn) ≤ d(pk,n, pk,k) + d(pk,k, qn)

= d(pk,n, pk,k) + d(qk, qn)

≤ 1

k
+

ε

2
< ε.

The limit of the left-hand side of this inequality, as n → ∞, is D(Pk, Q). Thus

lim
k→∞

Pk = Q

and M̂ is complete.

Uniqueness of the completion is not surprising, and is left as Exercise 106. A

different proof of the Completion Theorem is sketched in Exercise 4.39.

A Second Construction of R from Q

In the particular case that the metric spaceM isQ, the Completion Theorem leads

to a construction of R from Q via Cauchy sequences. Note, however, that applying

the theorem as it stands involves circular reasoning, for its proof uses completeness

of R to define the metric D. Instead, we use only the Cauchy sequence strategy.

Convergence and Cauchyness for sequences of rational numbers are concepts that

make perfect sense without a priori knowledge of R. Just take all epsilons and deltas
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This completes the verification that the Cauchy completion of Q is a complete

ordered field. Uniqueness implies that it is isomorphic to the complete ordered field R

constructed by means of Dedekind cuts in Section 2 of Chapter 1. Decide for yourself

which of the two constructions of the real number system you like better – cuts

or Cauchy sequences. Cuts make least upper bounds straightforward and algebra

awkward, while with Cauchy sequences it is the reverse.
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Exercises
1. An ant walks on the floor, ceiling, and walls of a cubical room. What metric

is natural for the ant’s view of its world? What metric would a spider consider
natural? If the ant wants to walk from a point p to a point q, how could it
determine the shortest path?

2. Why is the sum metric on R2 called the Manhattan metric and the taxicab
metric?

3. What is the set of points in R3 at distance exactly 1/2 from the unit circle S1

in the plane,

T = {p ∈ R3 : ∃ q ∈ S1 and d(p, q) = 1/2

and for all q′ ∈ S1 we have d(p, q) ≤ d(p, q′)}?

4. Write out a proof that the discrete metric on a set M is actually a metric.

5. For p, q ∈ S1, the unit circle in the plane, let

da(p, q) = min{|�(p)− �(q)| , 2π − |�(p)− �(q)|}

where �(z) ∈ [0, 2π) refers to the angle that z makes with the positive x-axis.
Use your geometric talent to prove that da is a metric on S1.

6. For p, q ∈ [0, π/2) let

ds(p, q) = sin |p− q| .
Use your calculus talent to decide whether ds is a metric.

7. Prove that every convergent sequence (pn) in a metric space M is bounded, i.e.,
that for some r > 0, some q ∈ M , and all n ∈ N, we have pn ∈ Mrq.

8. Consider a sequence (xn) in the metric space R.

(a) If (xn) converges in R prove that the sequence of absolute values (|xn|)
converges in R.

(b) State the converse.

(c) Prove or disprove it.

9. A sequence (xn) in R increases if n < m implies xn ≤ xm. It strictly in-
creases if n < m implies xn < xm. It decreases or strictly decreases if
n < m always implies xn ≥ xm or always implies xn > xm. A sequence is
monotone if it increases or it decreases. Prove that every sequence in R which
is monotone and bounded converges in R.†

10. Prove that the least upper bound property is equivalent to the “monotone
sequence property” that every bounded monotone sequence converges.

†This is nicely is expressed by Pierre Teilhard de Chardin, “Tout ce qui monte converge,” in a
different context.
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11. Let (xn) be a sequence in R.

*(a) Prove that (xn) has a monotone subsequence.

(b) How can you deduce that every bounded sequence in R has a convergent
subsequence?

(c) Infer that you have a second proof of the Bolzano-Weierstrass Theorem in
R.

(d) What about the Heine-Borel Theorem?

12. Let (pn) be a sequence and f : N → N be a bijection. The sequence (qk)k∈N
with qk = pf(k) is a rearrangement of (pn).

(a) Are limits of a sequence unaffected by rearrangement?

(b) What if f is an injection?

(c) A surjection?

13. Assume that f : M → N is a function from one metric space to another which
satisfies the following condition: If a sequence (pn) in M converges then the
sequence (f(pn)) in N converges. Prove that f is continuous. [This result
improves Theorem4.]

14. The simplest type of mapping from one metric space to another is an isometry.
It is a bijection f : M → N that preserves distance in the sense that for all
p, q ∈ M we have

dN (fp, fq) = dM (p, q).

If there exists an isometry fromM toN thenM andN are said to be isometric,
M ≡ N . You might have two copies of a unit equilateral triangle, one centered
at the origin and one centered elsewhere. They are isometric. Isometric metric
spaces are indistinguishable as metric spaces.

(a) Prove that every isometry is continuous.

(b) Prove that every isometry is a homeomorphism.

(c) Prove that [0, 1] is not isometric to [0, 2].

15. Prove that isometry is an equivalence relation: If M is isometric to N , show
that N is isometric to M ; show that each M is isometric to itself (what mapping
of M to M is an isometry?); if M is isometric to N and N is isometric to P ,
show that M is isometric to P .

16. Is the perimeter of a square isometric to the circle? Homeomorphic? Explain.

17. Which capital letters of the Roman alphabet are homeomorphic? Are any
isometric? Explain.

18. Is R homeomorphic to Q? Explain.

19. Is Q homeomorphic to N? Explain.

20. What function (given by a formula) is a homeomorphism from (−1, 1) to R? Is
every open interval homeomorphic to (0, 1)? Why or why not?

21. Is the plane minus four points on the x-axis homeomorphic to the plane minus
four points in an arbitrary configuration?
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22. If every closed and bounded subset of a metric space M is compact, does it
follow that M is complete? (Proof or counterexample.)

23. (0, 1) is an open subset of R but not of R2, when we think of R as the x-axis in
R2. Prove this.

24. For which intervals [a, b] in R is the intersection [a, b]∩Q a clopen subset of the
metric space Q?

25. Prove directly from the definition of closed set that every singleton subset of a
metric space M is a closed subset of M . Why does this imply that every finite
set of points is also a closed set?

26. Prove that a set U ⊂ M is open if and only if none of its points are limits of
its complement.

27. If S, T ⊂ M , a metric space, and S ⊂ T , prove that

(a) S ⊂ T .

(b) int(S) ⊂ int(T ).

28. A map f : M → N is open if for each open set U ⊂ M , the image set f(U) is
open in N .

(a) If f is open, is it continuous?

(b) If f is a homeomorphism, is it open?

(c) If f is an open, continuous bijection, is it a homeomorphism?

(d) If f : R → R is a continuous surjection, must it be open?

(e) If f : R → R is a continuous, open surjection, must it be a homeomor-
phism?

(f) What happens in (e) if R is replaced by the unit circle S1?

29. Let T be the collection of open subsets of a metric spaceM , andK the collection
of closed subsets. Show that there is a bijection from T onto K.

30. Consider a two-point set M = {a, b} whose topology consists of the two sets,
M and the empty set. Why does this topology not arise from a metric on M?

31. Prove the following.

(a) If U is an open subset of R then it consists of countably many disjoint
intervals U = |Ui. (Unbounded intervals (−∞, b), (a,∞), and (−∞,∞)
are permitted.)

(b) Prove that these intervals Ui are uniquely determined by U . In other
words, there is only one way to express U as a disjoint union of open
intervals.

(c) If U, V ⊂ R are both open, so U = |Ui and V = |Vj where Ui and Vj

are open intervals, show that U and V are homeomorphic if and only if
there are equally many Ui and Vj .

32. Show that every subset of N is clopen. What does this tell you about every
function f : N → M , where M is a metric space?
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33. (a) Find a metric space in which the boundary of Mrp is not equal to the
sphere of radius r at p, ∂(Mrp) 
= {x ∈ M : d(x, p) = r}.

(b) Need the boundary be contained in the sphere?

34. Use the Inheritance Principle to prove Corollary 15.

35. Prove that S clusters at p if and only if for each r > 0 there is a point q ∈
Mrp ∩ S, such that q 
= p.

36. Construct a set with exactly three cluster points.

37. Construct a function f : R → R that is continuous only at points of Z.

38. Let X,Y be metric spaces with metrics dX , dY , and let M = X × Y be their
Cartesian product. Prove that the three natural metrics dE , dmax, and dsum on
M are actually metrics. [Hint: Cauchy-Schwarz.]

39. (a) Prove that every convergent sequence is bounded. That is, if (pn) con-
verges in the metric space M , prove that there is some neighborhood Mrq
containing the set {pn : n ∈ N}.

(b) Is the same true for a Cauchy sequence in an incomplete metric space?

40. Let M be a metric space with metric d. Prove that the following are equivalent.

(a) M is homeomorphic to M equipped with the discrete metric.

(b) Every function f : M → M is continuous.

(c) Every bijection g : M → M is a homeomorphism.

(d) M has no cluster points.

(e) Every subset of M is clopen.

(f) Every compact subset of M is finite.

41. Let ‖ ‖ be any norm on Rm and let B = {x ∈ Rm : ‖x‖ ≤ 1}. Prove that B is
compact. [Hint: It suffices to show that B is closed and bounded with respect
to the Euclidean metric.]

42. What is wrong with the following “proof” of Theorem28? “Let ((an, bn)) be
any sequence in A×B where A and B are compact. Compactness implies the
existence of subsequences (ank

) and (bnk
) converging to a ∈ A and b ∈ B as

k → ∞. Therefore ((ank
, bnk

)) is a subsequence of ((an, bn)) that converges to
a limit in A×B, proving that A×B is compact.”

43. Assume that the Cartesian product of two nonempty sets A ⊂ M and B ⊂ N
is compact in M ×N . Prove that A and B are compact.

44. Consider a function f : M → R. Its graph is the set

{(p, y) ∈ M × R : y = fp}.
(a) Prove that if f is continuous then its graph is closed (as a subset of M×R).

(b) Prove that if f is continuous and M is compact then its graph is compact.

(c) Prove that if the graph of f is compact then f is continuous.

(d) What if the graph is merely closed? Give an example of a discontinuous
function f : R → R whose graph is closed.
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45. Draw a Cantor set C on the circle and consider the set A of all chords between
points of C.

(a) Prove that A is compact.

*(b) Is A convex?

46. Assume that A,B are compact, disjoint, nonempty subsets of M . Prove that
there are a0 ∈ A and b0 ∈ B such that for all a ∈ A and b ∈ B we have

d(a0, b0) ≤ d(a, b).

[The points a0, b0 are closest together.]

47. Suppose that A,B ⊂ R2.

(a) If A and B are homeomorphic, are their complements homeomorphic?

*(b) What if, in addition, A and B are compact?

***(c) What if A and B are compact and connected?

48. Prove that there is an embedding of the line as a closed subset of the plane,
and there is an embedding of the line as a bounded subset of the plane, but
there is no embedding of the line as a closed and bounded subset of the plane.

*49. Construct a subset A ⊂ R and a continuous bijection f : A → A that is not a
homeomorphism. [Hint: By Theorem36 A must be noncompact.]

**50. Construct nonhomeomorphic connected, closed subsets A,B ⊂ R2 for which
there exist continuous bijections f : A → B and g : B → A. [Hint: By
Theorem36 A and B must be noncompact.]

***51. Do there exist nonhomeomorphic closed sets A,B ⊂ R for which there exist
continuous bijections f : A → B and g : B → A?

52. Let (An) be a nested decreasing sequence of nonempty closed sets in the metric
space M .

(a) If M is complete and diamAn → 0 as n → ∞, show that <An is exactly
one point.

(b) To what assertions do the sets [n,∞) provide counterexamples?

53. Suppose that (Kn) is a nested sequence of compact nonempty sets, K1 ⊃ K2 ⊃
. . ., and K = <Kn. If for some μ > 0, diamKn ≥ μ for all n, is it true that
diamK ≥ μ?

54. If f : A → B and g : C → B such that A ⊂ C and for each a ∈ A we have
f(a) = g(a) then g extends f . We also say that f extends to g. Assume that
f : S → R is a uniformly continuous function defined on a subset S of a metric
space M .

(a) Prove that f extends to a uniformly continuous function f : S → R.

(b) Prove that f is the unique continuous extension of f to a function defined
on S.

(c) Prove the same things when R is replaced with a complete metric space
N .

in addition,
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55. The distance from a point p in a metric space M to a nonempty subset S ⊂ M
is defined to be dist(p, S) = inf{d(p, s) : s ∈ S}.
(a) Show that p is a limit of S if and only if dist(p, S) = 0.

(b) Show that p �→ dist(p, S) is a uniformly continuous function of p ∈ M .

56. Prove that the 2-sphere is not homeomorphic to the plane.

57. If S is connected, is the interior of S connected? Prove this or give a counterex-
ample.

58. Theorem49 states that the closure of a connected set is connected.

(a) Is the closure of a disconnected set disconnected?

(b) What about the interior of a disconnected set?

*59. Prove that every countable metric space (not empty and not a singleton) is
disconnected. [Astonishingly, there exists a countable topological space which
is connected. Its topology does not arise from a metric.]

60. (a) Prove that a continuous function f : M → R, all of whose values are
integers, is constant provided that M is connected.

(b) What if all the values are irrational?

61. Prove that the (double) cone {(x, y, z) ∈ R3 : x2 + y2 = z2} is path-connected.

62. Prove that the annulus A = {z ∈ R2 : r ≤ |z| ≤ R} is connected.

63. A subset E of Rm is starlike if it contains a point p0 (called a center for E)
such that for each q ∈ E, the segment between p0 and q lies in E.

(a) If E is convex and nonempty prove that it is starlike.

(b) Why is the converse false?

(c) Is every starlike set connected?

(d) Is every connected set starlike? Why or why not?

*64. Suppose that E ⊂ Rm is open, bounded, and starlike, and p0 is a center for E.

(a) Is it true or false that all points p1 in a small enough neighborhood of p0
are also centers for E?

(b) Is the set of centers convex?

(c) Is it closed as a subset of E?

(d) Can it consist of a single point?

65. Suppose that A,B ⊂ R2 are convex, closed, and have nonempty interiors.

(a) Prove that A,B are the closure of their interiors.

(b) If A,B are compact, prove that they are homeomorphic.

[Hint: Draw a picture.]

66. (a) Prove that every connected open subset of Rm is path-connected.

(b) Is the same true for open connected subsets of the circle?

(c) What about connected nonopen subsets of the circle?

67. List the convex subsets of R up to homeomorphism. How many are there and
how many are compact?
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68. List the closed convex sets in R2 up to homeomorphism. There are nine. How
many are compact?

*69. Generalize Exercises 65 and 68 to R3; to Rm.

70. Prove that (a, b) and [a, b) are not homeomorphic metric spaces.

71. Let M and N be nonempty metric spaces.

(a) If M and N are connected prove that M ×N is connected.

(b) What about the converse?

(c) Answer the questions again for path-connectedness.

72. Let H be the hyperbola {(x, y) ∈ R2 : xy = 1 and x, y > 0} and let X be the
x-axis.

(a) Is the set S = X ∪H connected?

(b) What if we replace H with the graph G of any continuous positive function
f : R → (0,∞); is X ∪G connected?

(c) What if f is everywhere positive but discontinuous at just one point.

73. Is the disc minus a countable set of points connected? Path-connected? What
about the sphere or the torus instead of the disc?

74. Let S = R2�Q2. (Points (x, y) ∈ S have at least one irrational coordinate.) Is
S connected? Path-connected? Prove or disprove.

76. (a) The intersection of connected sets need not be connected. Give an exam-
ple.

(b) Suppose that S1, S2, S3, . . . is a sequence of connected, closed subsets of
the plane and S1 ⊃ S2 ⊃ . . .. Is S = <Sn connected? Give a proof or
counterexample.

*(c) Does the answer change if the sets are compact?

(d) What is the situation for a nested decreasing sequence of compact path-
connected sets?

77. If a metric space M is the union of path-connected sets Sα, all of which have
the nonempty path-connected set K in common, is M path-connected?

78. (p1, . . . , pn) is an ε-chain in a metric space M if for each i we have pi ∈ M and
d(pi, pi+1) < ε. The metric space is chain-connected if for each ε > 0 and
each pair of points p, q ∈ M there is an ε-chain from p to q.

(a) Show that every connected metric space is chain-connected.

(b) Show that if M is compact and chain-connected then it is connected.

(c) Is R�Z chain-connected?

(d) If M is complete and chain-connected, is it connected?

79. Prove that if M is nonempty, compact, locally path-connected, and connected
then it is path-connected. (See Exercise 143, below.)

*75. An arc is a path with no self-intersection. Define the concept of arc-connectedness
and prove that a metric space is path-connected if and only if it is arc-connected.
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80. The Hawaiian earring is the union of circles of radius 1/n and center x =
±1/n on the x-axis, for n ∈ N. See Figure 27 on page 58.

(a) Is it connected?

(b) Path-connected?

(c) Is it homeomorphic to the one-sided Hawaiian earring?

*81. The topologist’s sine curve is the set

{(x, y) : x = 0 and |y| ≤ 1 or 0 < x ≤ 1 and y = sin 1/x}.

See Figure 43. The topologist’s sine circle is shown in Figure 58. (It is the
union of a circular arc and the topologist’s sine curve.) Prove that it is path-
connected but not locally path-connected. (M is locally path-connected
if for each p ∈ M and each neighborhood U of p there is a path-connected
subneighborhood V of p.)

Figure 58 The topologist’s sine circle
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82. The graph of f : M → R is the set {(x, y) ∈ M × R : y = fx}.
(a) If M is connected and f is continuous, prove that the graph of f is con-

nected.

(b) Give an example to show that the converse is false.

(c) If M is path-connected and f is continuous, show that the graph is path-
connected.

(d) What about the converse?

83. The open cylinder is (0, 1)× S1. The punctured plane is R2� {0}.
(a) Prove that the open cylinder is homeomorphic to the punctured plane.

(b) Prove that the open cylinder, the double cone, and the plane are not
homeomorphic.

84. Is the closed strip {(x, y) ∈ R2 : 0 ≤ x ≤ 1} homeomorphic to the closed
half-plane {(x, y) ∈ R2 : x ≥ 0}? Prove or disprove.

85. Suppose that M is compact and that U is an open covering of M which is
“redundant” in the sense that each p ∈ M is contained in at least two members
of U. Show that U reduces to a finite subcovering with the same property.

86. Suppose that every open covering of M has a positive Lebesgue number. Give
an example of such an M that is not compact.

Exercises 87–94 treat the basic theorems in the chapter, avoiding the use of
sequences. The proofs will remain valid in general topological spaces.

87. Give a direct proof that [a, b] is covering compact. [Hint: Let U be an open
covering of [a, b] and consider the set

C = {x ∈ [a, b] : finitely many members of U cover [a, x]}.

Use the least upper bound principle to show that b ∈ C.]

88. Give a direct proof that a closed subset A of a covering compact setK is covering
compact. [Hint: If U is an open covering of A, adjoin the set W = M�A to U.
Is W = U ∪ {W} an open covering of K? If so, so what?]

89. Give a proof of Theorem36 using open coverings. That is, assume A is a
covering compact subset of M and f : M → N is continuous. Prove directly
that fA is covering compact. [Hint: What is the criterion for continuity in
terms of preimages?]

90. Suppose that f : M → N is a continuous bijection and M is covering compact.
Prove directly that f is a homeomorphism.

91. Suppose that M is covering compact and that f : M → N is continuous. Use
the Lebesgue number lemma to prove that f is uniformly continuous. [Hint:
Consider the covering of N by ε/2-neighborhoods {Nε/2(q) : q ∈ N} and its
preimage in M , {fpre(Nε/2(q)) : q ∈ N}.]
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92. Give a direct proof that the nested decreasing intersection of nonempty covering
compact sets is nonempty. [Hint: If A1 ⊃ A2 ⊃ . . . are covering compact,
consider the open sets Un = Ac

n. If <An = ∅, what does {Un} cover?]

93. Generalize Exercise 92 as follows. Suppose that M is covering compact and C
is a collection of closed subsets of M such that every intersection of finitely
many members of C is nonempty. (Such a collection C is said to have the
finite intersection property.) Prove that the grand intersection <C∈CC
is nonempty. [Hint: Consider the collection of open sets U = {Cc : C ∈ C.]

94. If every collection of closed subsets of M which has the finite intersection prop-
erty also has a nonempty grand intersection, prove that M is covering compact.
[Hint: Given an open covering U = {Uα}, consider the collection of closed sets
C = {U c

α}.]
95. Let S be a subset of a metric space M . With respect to the definitions on

page 92 prove the following.

(a) The closure of S is the intersection of all closed subsets of M that contain
S.

(b) The interior of S is the union of all open subsets of M that are contained
in S.

(c) The boundary of S is a closed set.

(d) Why does (a) imply the closure of S equals limS?

(e) If S is clopen, what is ∂S?

(f) Give an example of S ⊂ R such that ∂(∂S) 
= ∅, and infer that “the
boundary of the boundary ∂ ◦ ∂ is not always zero.”

96. If A ⊂ B ⊂ C, A is dense in B, and B is dense in C prove that A is dense in C.

97. Is the set of dyadic rationals (the denominators are powers of 2) dense in Q?
In R? Does one answer imply the other? (Recall that A is dense in B if A ⊂ B
and A ⊃ B.)

98. Show that S ⊂ M is somewhere dense in M if and only if int(S) 
= ∅. Equiva-
lently, S is nowhere dense in M if and only if its closure has empty interior.

99. Let M,N be nonempty metric spaces and P = M ×N .

(a) If M,N are perfect prove that P is perfect.

(b) If M,N are totally disconnected prove that P is totally disconnected.

(c) What about the converses?

(d) Infer that the Cartesian product of Cantor spaces is a Cantor space. (We
already know that the Cartesian product of compacts is compact.)

(e) Why does this imply that C × C = {(x, y) ∈ R2 : x ∈ C and y ∈ C} is
homeomorphic to C, C being the standard Cantor set?

100. Prove that every Cantor piece is a Cantor space. (Recall that M is a Cantor
space if it is compact, nonempty, totally disconnected and perfect, and that
A ⊂ M is a Cantor piece if it is nonempty and clopen.)
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*101. Let Σ be the set of all infinite sequences of zeroes and ones. For example,
(100111000011111 . . .) ∈ Σ. Define the metric

d(a, b) =
∑ |an − bn|

2n

where a = (an) and b = (bn) are points in Σ.

(a) Prove that Σ is compact.

(b) Prove that Σ is homeomorphic to the Cantor set.

102. Prove that no Peano curve is one-to-one. (Recall that a Peano curve is a
continuous map f : [0, 1] → R2 whose image has a nonempty interior.)

103. Prove that there is a continuous surjection R → R2. What about Rm?

104. Find two nonhomeomorphic compact subsets of R whose complements are
homeomorphic.

105. As on page 115, consider the subsets of R,

A = {0} ∪ [1, 2] ∪ {3} and B = {0} ∪ {1} ∪ [2, 3].

(a) Why is there no ambient homeomorphism of R to itself that carries A onto
B?

(b) Thinking of R as the x-axis, is there an ambient homeomorphism of R2 to
itself that carries A onto B?

106. Prove that the completion of a metric space is unique in the following natural
sense: A completion of a metric space M is a complete metric X space contain-
ing M as a metric subspace such that M is dense in X. That is, every point of
X is a limit of M .

(a) Prove that M is dense in the completion M̂ constructed in the proof of
Theorem 80.

(b) If X and X ′ are two completions of M prove that there is an isometry
i : X → X ′ such that i(p) = p for all p ∈ M .

(c) Prove that i is the unique such isometry.

(d) Infer that M̂ is unique.

107. If M is a metric subspace of a complete metric space S prove that M is a
completion of M .

*108. Consider the identity map id : Cmax → Cint where Cmax is the metric space
C([0, 1],R) of continuous real-valued functions defined on [0, 1], equipped with
the max-metric dmax(f, g) = max |f(x)−g(x)|, and Cint is C([0, 1],R) equipped
with the integral metric,

dint(f, g) =

∫ 1

0
|f(x)− g(x)| dx.

Show that id is a continuous linear bijection (an isomorphism) but its inverse
is not continuous.
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*109. A metric on M is an ultrametric if for all x, y, z ∈ M we have

d(x, z) ≤ max{d(x, y), d(y, z)}.

(Intuitively this means that the trip from x to z cannot be broken into shorter
legs by making a stopover at some y.)

(a) Show that the ultrametric property implies the triangle inequality.

(b) In an ultrametric space show that “all triangles are isosceles.”

(c) Show that a metric space with an ultrametric is totally disconnected.

(d) Define a metric on the set Σ of strings of zeroes and ones in Exercise 101
as

d∗(a, b) =

⎧⎪⎨⎪⎩
1

2n
if n is the smallest index for which an 
= bn

0 if a = b.

Show that d∗ is an ultrametric and prove that the identity map is a home-
omorphism (Σ, d) → (Σ, d∗).

*110. Q inherits the Euclidean metric from R but it also carries a very different metric,
the p-adic metric. Given a prime number p and an integer n, the p-adic norm
of n is

|n|p = 1

pk

where pk is the largest power of p that divides n. (The norm of 0 is by definition
0.) The more factors of p, the smaller the p-norm. Similarly, if x = a/b is a
fraction, we factor x as

x = pk · r
s

where p divides neither r nor s, and we set

|x|p = 1

pk
.

The p-adic metric on Q is

dp(x, y) = |x− y|p.

(a) Prove that dp is a metric with respect to which Q is perfect – every point
is a cluster point.

(b) Prove that dp is an ultrametric.

(c) Let Qp be the metric space completion of Q with respect to the metric dp,
and observe that the extension of dp to Qp remains an ultrametric. Infer
from Exercise 109 that Qp is totally disconnected.
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(d) Prove that Qp is locally compact, in the sense that every point has small
compact neighborhoods.

(e) Infer that Qp is covered by neighborhoods homeomorphic to the Cantor
set. See Gouvêa’s book, p-adic Numbers.

111. Let M = [0, 1] and letM1 be its division into two intervals [0, 1/2] and [1/2, 1].
Let M2 be its division into four intervals [0, 1/4], [1/4, 1/2], [1/2, 3/4], and
[3/4, 1]. Continuing these bisections generates natural divisions of [0, 1]. The
pieces are intervals. We label them with words using the letters 0 and 1 as
follows: 0 means “left” and 1 means “right,” so the four intervals in M2 are
labeled as 00, 01, 10, and 11 respectively.

(a) Verify that all endpoints of the intervals (except 0 and 1) have two ad-
dresses. For instance,

<
k

[
2k−1 − 1

2k
,
1

2

]
=

{
1

2

}
= <

k

[
1

2
,
2k−1 + 1

2k

]
.

(b) Verify that the points 0, 1, and all nonendpoints have unique addresses.

*112. Prove that #C = #R. [Hint: According to the Schroeder-Bernstein Theorem
from Chapter 1 it suffices to find injections C → R and R → C. The inclusion
C ⊂ R is an injection C → R. Each t ∈ [0, 1) has a unique base-2 expansion
τ(t) that does not terminate in an infinite string of ones. Replacing each 1 by
2 converts τ(t) to ω(t), an infinite address in the symbols 0 and 2. It does not
terminate in an infinite string of twos. Set h(t) =

∑∞
i=1 ωi/3

i and verify that
h : [0, 1) → C is an injection. Since there is an injection R → [0, 1), conclude
that there is an injection R → C, and hence that #C = #R.]

Remark The Continuum Hypothesis states that if S is any uncountable subset
of R then S and R have equal cardinality. The preceding coding shows that
C is not only uncountable (as is implied by Theorem56) but actually has the
same cardinality as R. That is, C is not a counterexample to the Continuum
Hypothesis. The same is true of all uncountable closed subsets of R. See
Exercise 151.

113. Let M be the standard Cantor set C. In the notation of Section 8, Cn is the
collection of 2n Cantor intervals of length 1/3n that nest down to C as n → ∞.
Verify that setting Ck = C ∩Ck gives divisions of C into disjoint clopen pieces.

*114. (a) Prove directly that there is a continuous surjection of the middle-thirds
Cantor set C onto the closed interval [0, 1]. [Hint: Each x ∈ C has a base
3 expansion (xn), all of whose entries are zeroes and twos. (For example,
2/3 = (20)base 3 and 1/3 = (02)base 3. Write y = (yn) by replacing the
twos in (xn) by ones and interpreting the answer base 2. Show that the
map x �→ y works.]
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(b) Compare this surjection to the one constructed from the bisection divisions
in Exercise 113.

115. Rotate the unit circle S1 by a fixed angle α, say R : S1 → S1. (In polar
coordinates, the transformation R sends (1, θ) to (1, θ + α).)

(a) If α/π is rational, show that each orbit of R is a finite set.

*(b) If α/π is irrational, show that each orbit is infinite and has closure equal
to S1.

116. A metric spaceM with metric d can always be remetrized so the metric becomes
bounded. Simply define the bounded metric

ρ(p, q) =
d(p, q)

1 + d(p, q)
.

(a) Prove that ρ is a metric. Why is it obviously bounded?

(b) Prove that the identity map M → M is a homeomorphism from M with
the d-metric to M with the ρ-metric.

(c) Infer that boundedness of M is not a topological property.

(d) Find homeomorphic metric spaces, one bounded and the other not.

117. Fold a piece of paper in half.

(a) Is this a continuous transformation of one rectangle into another?

(b) Is it injective?

(c) Draw an open set in the target rectangle, and find its preimage in the
original rectangle. Is it open?

(d) What if the open set meets the crease?

The baker’s transformation is a similar mapping. A rectangle of dough is
stretched to twice its length and then folded back on itself. Is the transformation
continuous? A formula for the baker’s transformation in one variable is f(x) =
1 − |1 − 2x|. The nth iterate of f is fn = f ◦ f ◦ . . . ◦ f , n times. The orbit
of a point x is

{x, f(x), f2(x), . . . , fn(x), . . .}.
[For clearer but more awkward notation one can write f◦n instead of fn. This
distinguishes composition f ◦ f from multiplication f · f .]
(e) If x is rational prove that the orbit of x is a finite set.

(f) If x is irrational what is the orbit?

*118. The implications of compactness are frequently equivalent to it. Prove

(a) If every continuous function f : M → R is bounded then M is compact.

(b) If every continuous bounded function f : M → R achieves a maximum or
minimum then M is compact.

(c) If every continuous function f : M → R has compact range fM then M
is compact.
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(d) If every nested decreasing sequence of nonempty closed subsets of M has
nonempty intersection then M is compact.

Together with Theorems 63 and 65, (a)–(d) give seven equivalent definitions of
compactness. [Hint: Reason contrapositively. If M is not compact then it con-
tains a sequence (pn) that has no convergent subsequence. It is fair to assume
that the points pn are distinct. Find radii rn > 0 such that the neighborhoods
Mrn(pn) are disjoint and no sequence qn ∈ Mrn(pn) has a convergent subse-
quence. Using the metric define a function fn : Mrn(pn) → R with a spike at
pn, such as

fn(x) =
rn − d(x, pn)

an + d(x, pn)

where an > 0. Set f(x) = fn(x) if x ∈ Mrn(pn), and f(x) = 0 if x belongs to
no Mrn(pn). Show that f is continuous. With the right choice of an show that
f is unbounded. With a different choice of an, it is bounded but achieves no
maximum, and so on.]

119. Let M be a metric space of diameter ≤ 2. The cone for M is the set

C = C(M) = {p0} ∪ M × (0, 1]

with the cone metric

ρ((p, s), (q, t)) = |s− t|+min{s, t}d(p, q)
ρ((p, s), p0) = s

ρ(p0, p0) = 0.

The point p0 is the vertex of the cone. Prove that ρ is a metric on C. [If M
is the unit circle, think of it in the plane z = 1 in R3 centered at the point
(0, 0, 1). Its cone is the 45-degree cone with vertex the origin.]

120. Recall that if for each embedding of M , h : M → N , hM is closed in N then
M is said to be absolutely closed. If each hM is bounded then M is absolutely
bounded. Theorem 41 implies that compact sets are absolutely closed and
absolutely bounded. Prove:

(a) If M is absolutely bounded then M is compact.

*(b) If M is absolutely closed then M is compact.

Thus these are two more conditions equivalent to compactness. [Hint: From
Exercise 118(a), if M is noncompact there is a continuous function f : M → R

that is unbounded. For Exercise 120(a), show that F (x) = (x, f(x)) embeds
M onto a nonbounded subset of M × R. For 120(b), justify the additional
assumption that the metric on M is bounded by 2. Then use Exercise 118(b) to
show that if M is noncompact then there is a continuous function g : M → (0, 1]
such that for some nonclustering sequence (pn), we have g(pn) → 0 as n → ∞.
Finally, show that G(x) = (x, gx) embeds M onto a nonclosed subset S of the
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cone C(M) discussed in Exercise 119. S will be nonclosed because it limits at
p0 but does not contain it.]

121. (a) Prove that every function defined on a discrete metric space is uniformly
continuous.

(b) Infer that it is false to assert that if every continuous function f : M → R

is uniformly continuous then M is compact.

(c) Prove, however, that if M is a metric subspace of a compact metric space
K and every continuous function f : M → R is uniformly continuous then
M is compact.

122. Recall that p is a cluster point of S if each Mrp contains infinitely many points
of S. The set of cluster points of S is denoted as S′. Prove:
(a) If S ⊂ T then S′ ⊂ T ′.
(b) (S ∪ T )′ = S′ ∪ T ′.
(c) S′ = (S)′.
(d) S′ is closed in M ; that is, S′′ ⊂ S′ where S′′ = (S′)′.
(e) Calculate N′, Q′, R′, (R�Q)′, and Q′′.
(f) Let T be the set of points {1/n : n ∈ N}. Calculate T ′ and T ′′.
(g) Give an example showing that S′′ can be a proper subset of S′.

123. Recall that p is a condensation point of S if each Mrp contains uncountably
many points of S. The set of condensation points of S is denoted as S∗. Prove:
(a) If S ⊂ T then S∗ ⊂ T∗.
(b) (S ∪ T )∗ = S∗ ∪ T∗.
(c) S∗ ⊂ S

∗
where S

∗
= (S)∗

(d) S∗ is closed in M ; that is, S∗′ ⊂ S∗where S∗′ = (S∗)′.
(e) S∗∗ ⊂ S∗where S∗∗ = (S∗)∗.
(f) Calculate N∗, Q∗, R∗, and (R�Q)∗.
(g) Give an example showing that S∗ can be a proper subset of (S)∗. Thus,

(c) is not in general an equality.

**(h) Give an example that S∗∗ can be a proper subset of S∗. Thus, (e) is
not in general an equality. [Hint: Consider the set M of all functions
f : [a, b] → [0, 1], continuous or not, and let the metric on M be the sup
metric, d(f, g) = sup{|f(x)− g(x)| : x ∈ [a, b]}. Consider the set S of all
“δ-functions with rational values.”]

**(i) Give examples that show in general that S∗ neither contains nor is con-
tained in S′∗where S′∗= (S′)∗. [Hint: δ-functions with values 1/n, n ∈ N.]

124. Recall that p is an interior point of S ⊂ M if some Mrp is contained in S.
The set of interior points of S is the interior of S and is denoted intS. For all
subsets S, T of the metric space M prove:

(a) intS = S� ∂S.

(b) intS = (Sc)c.
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(c) int(intS) = intS.

(d) int(S ∩ T ) = int(S ∩ intT .

(e) What are the dual equations for the closure?

(f) Prove that int(S ∪ T ) ⊃ intS ∪ intT . Show by example that the inclusion
can be strict, i.e., not an equality.

125. A point p is a boundary point of a set S ⊂ M if every neighborhood Mrp
contains points of both S and Sc. The boundary of S is denoted ∂S. For all
subsets S, T of a metric space M prove:

(a) S is clopen if and only if ∂S = ∅.
(b) ∂S = ∂Sc.

(c) ∂∂S ⊂ ∂S.

(d) ∂∂∂S = ∂∂S.

(e) ∂(S ∪ T ) ⊂ ∂S ∪ ∂T .

(f) Give an example in which (c) is a strict inclusion, ∂∂S 
= ∂S.

(g) What about (e)?

*126. Suppose that E is an uncountable subset of R. Prove that there exists a point
p ∈ R at which E condenses. [Hint: Use decimal expansions. Why must there
be an interval [n, n+1) containing uncountably many points of E? Why must it
contain a decimal subinterval with the same property? (A decimal subinterval
[a, b) has endpoints a = n+k/10, b = n+(k+1)/10 for some digit k, 0 ≤ k ≤ 9.)
Do you see lurking the decimal expansion of a condensation point?] Generalize
to R2 and to Rm.

127. The metric space M is separable if it contains a countable dense subset. [Note
the confusion of language: “Separable” has nothing to do with “separation.”]

(a) Prove that Rm is separable.

(b) Prove that every compact metric space is separable.

128. *(a) Prove that every metric subspace of a separable metric space is separable,
and deduce that every metric subspace of Rm or of a compact metric space
is separable.

(b) Is the property of being separable topological?

(c) Is the continuous image of a separable metric space separable?

129. Think up a nonseparable metric space.

130. Let B denote the collection of all ε-neighborhoods in Rm whose radius ε is
rational and whose center has all coordinates rational.

(a) Prove that B is countable.

(b) Prove that every open subset of Rm can be expressed as the countable
union of members of B.

(The union need not be disjoint, but it is at most a countable union because
there are only countably many members of B. A collection such as B is called
a countable base for the topology of Rm.)
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131. (a) Prove that every separable metric space has a countable base for its topol-
ogy, and conversely that every metric space with a countable base for its
topology is separable.

(b) Infer that every compact metric space has a countable base for its topology.

*132. Referring to Exercise 123, assume now that M is separable, S ⊂ M , and, as
before S′ is the set of cluster points of S while S∗ is the set of condensation
points of S. Prove:

(a) S∗ ⊂ (S′)∗ = (S)∗.
(b) S∗∗ = S∗′ = S∗.
(c) Why is (a) not in general an equality?

[Hints: For (a) write S ⊂ (S� S′) ∪ S′ and S = (S� S′) ∪ S′, show that
(S � S′)∗ = ∅, and use Exercise 123(a). For (b), Exercise 123(d) implies that
S∗∗ ⊂ S∗′ ⊂ S∗. To prove that S∗⊂ S∗∗, write S ⊂ (S� S∗) ∪ S∗ and show
that (S� S∗)∗ = ∅.]

*133. Prove that

(a) An uncountable subset of R clusters at some point of R.

(b) An uncountable subset of R clusters at some point of itself.

(c) An uncountable subset of R condenses at uncountably many points of
itself.

(d) What about Rm instead of R?

(e) What about any compact metric space?

(f) What about any separable metric space?

[Hint: Review Exercise 126.]

*134. Prove that Q̂, the Cauchy sequences in Q modulo the equivalence relation of
being co-Cauchy, is a field with respect to the natural arithmetic operations
defined on page 122, and that Q is naturally a subfield of Q̂.

135. Prove that the order on Q̂ defined on page 122 is a bona fide order which agrees
with the standard order on Q.

*136. Let M be the square [0, 1]2, and let aa, ba, bb, ab label its four quadrants – upper
right, upper left, lower left, and lower right.

(a) Define nested bisections of the square using this pattern repeatedly, and let
τk be a curve composed of line segments that visit the kth-order quadrants
systematically. Let τ = limk τk be the resulting Peano curve à la the
Cantor Surjection Theorem.

(b) Compare τ to the Peano curve f : I → I2 directly constructed on pages
271- 274 of the second edition of Munkres’ book Topology.

*137. Let P be a closed perfect subset of a separable complete metric space M . Prove
that each point of P is a condensation point of P . In symbols, P = P ′ ⇒
P = P∗.

**138. Given a Cantor space M ⊂ R2, given a line segment [p, q] ⊂ R2 with p, q 
∈ M ,
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and given an ε > 0, prove that there exists a path A in the ε-neighborhood of
[p, q] that joins p to q and is disjoint from M . [Hint: Think of A as a bisector
of M . From this bisection fact a dyadic disc partition of M can be constructed,
which leads to the proof that M is tame.]

139. To prove that Antoine’s Necklace A is a Cantor set, you need to show that A
is compact, perfect, nonempty, and totally disconnected.

(a) Do so. [Hint: What is the diameter of any connected component of An,
and what does that imply about A?]

**(b) If, in the Antoine construction two linked solid tori are placed very cleverly
inside each larger solid torus, show that the intersection A = <An is a
Cantor set.

*140. Consider the Hilbert cube

H = {(x1, x2, . . .) ∈ [0, 1]∞ : for each n ∈ N we have |xn| ≤ 1/2n}.
Prove that H is compact with respect to the metric

d(x, y)) = sup
n

|xn − yn|

where x = (xn), y = (yn). [Hint: Sequences of sequences.]

Remark Although compact, H is infinite-dimensional and is homeomorphic
to no subset of Rm.

141. Prove that the Hilbert cube is perfect and homeomorphic to its Cartesian
square, H ∼= H ×H.

***142. Assume that M is compact, nonempty, perfect, and homeomorphic to its Carte-
sian square, M ∼= M ×M . Must M be homeomorphic to the Cantor set, the
Hilbert cube, or some combination of them?

143. A Peano space is a metric space M that is the continuous image of the unit
interval: There is a continuous surjection τ : [0, 1] → M . Theorem72 states the
amazing fact that the 2-disc is a Peano space. Prove that every Peano space is

(a) compact,

(b) nonempty,

(c) path-connected,

*(d) and locally path-connected, in the sense that for each p ∈ M and each
neighborhood U of p there is a smaller neighborhood V of p such that any
two points of V can be joined by a path in U .

*144. The converse to Exercise 143 is the Hahn-Mazurkiewicz Theorem. Assume
that a metric space M is a compact, nonempty, path-connected, and locally
path-connected. Use the Cantor Surjection Theorem 70 to show that M is a
Peano space. [The key is to make uniformly short paths to fill in the gaps of
[0, 1]�C.]
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145. One of the famous theorems in plane topology is the Jordan Curve Theorem.
A Jordan curve J is a homeomorph of the unit circle in the plane. (Equiva-
lently it is f([a, b]) where f : [a, b] → R2 is continuous, f(a) = f(b), and for no
other pair of distinct s, t ∈ [a, b] does f(s) equal f(t). It is also called a simple
closed curve.) The Jordan Curve Theorem asserts that R2�J consists of two
disjoint, connected open sets, its inside and its outside, and every path between
them must meet J . Prove the Jordan Curve Theorem for the circle, the square,
the triangle, and – if you have courage – every simple closed polygon.

146. The utility problem gives three houses 1, 2, 3 in the plane and the three
utilities, Gas, Water, and Electricity. You are supposed to connect each house
to the three utilities without crossing utility lines. (The houses and utilities are
disjoint.)

(a) Use the Jordan curve theorem to show that there is no solution to the
utility problem in the plane.

*(b) Show also that the utility problem cannot be solved on the 2-sphere S2.

*(c) Show that the utility problem can be solved on the surface of the torus.

*(d) What about the surface of the Klein bottle?

***(e) Given utilities U1, . . . , Um and houses H1, . . . , Hn located on a surface
with g handles, find necessary and sufficient conditions on m,n, g so that
the utility problem can be solved.

147. Let M be a metric space and let K denote the class of nonempty compact
subsets of M . The r-neighborhood of A ∈ K is

MrA = {x ∈ M : ∃a ∈ A and d(x, a) < r} = >
a∈A

Mra.

For A,B ∈ K define

D(A,B) = inf{r > 0 : A ⊂ MrB and B ⊂ MrA}.
(a) Show that D is a metric on K. (It is called the Hausdorff metric and K

is called the hyperspace of M .)

(b) Denote by F the collection of finite nonempty subsets of M and prove that
F is dense in K. That is, given A ∈ K and given ε > 0 show there exists
F ∈ F such that D(A,F ) < ε.

*(c) If M is compact prove that K is compact.

(d) If M is connected prove that K is connected.

**(e) If M is path-connected is K path-connected?

(f) Do homeomorphic metric spaces have homeomorphic hyperspaces?

Remark The converse to (f), K(M) ∼= K(N) ⇒ M ∼= N is false. The
hyperspace of every Peano space is the Hilbert cube. This is a difficult
result but a good place to begin reading about hyperspaces is Sam Nadler’s
book Continuum Theory.
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**148. Start with a set S ⊂ R and successively take its closure, the complement of
its closure, the closure of that, and so on: S, cl(S), (cl(S))c, . . .. Do the same
to Sc. In total, how many distinct subsets of R can be produced this way?
In particular decide whether each chain S, cl(S), . . . consists of only finitely
many sets. For example, if S = Q then we get Q, R, ∅, ∅, R, R, . . . and
Qc, R, ∅, ∅, R, R, . . . for a total of four sets.

**149. Consider the letter T.

(a) Prove that there is no way to place uncountably many copies of the letter
T disjointly in the plane. [Hint: First prove this when the unit square
replaces the plane.]

(b) Prove that there is no way to place uncountably many homeomorphic
copies of the letter T disjointly in the plane.

(c) For which other letters of the alphabet is this true?

(d) Let U be a set in R3 formed like an umbrella: It is a disc with a perpendic-
ular segment attached to its center. Prove that uncountably many copies
of U cannot be placed disjointly in R3.

(e) What if the perpendicular segment is attached to the boundary of the
disc?

**150. Let M be a complete, separable metric space such as Rm. Prove the Cupcake
Theorem: Each closed set K ⊂ M can be expressed uniquely as the disjoint
union of a countable set and a perfect closed set,

C � P = K.

**151. Let M be an uncountable compact metric space.

(a) Prove that M contains a homeomorphic copy of the Cantor set. [Hint:
Imitate the construction of the standard Cantor set C.]

(b) Infer that Cantor sets are ubiquitous. There is a continuous surjection
σ : C → M and there is a continuous injection i : C → M .

(c) Infer that every uncountable closed set S ⊂ R has #S = #R, and hence
that the Continuum Hypothesis is valid for closed sets in R. [Hint: Cup-
cake and Exercise 112.]

(d) Is the same true if M is separable, uncountable, and complete?

**152. Write jingles at least as good as the following. Pay attention to the meter as
well as the rhyme.

When a set in the plane

is closed and bounded,

you can always draw

a curve around it.

Peter Přibik
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If a clopen set can be detected,

Your metric space is disconnected.

David Owens

A coffee cup feeling quite dazed,

said to a donut, amazed,

an open surjective continuous injection,

You’d be plastic and I’d be glazed.

Norah Esty

’Tis a most indisputable fact

If you want to make something compact

Make it bounded and closed

For you’re totally hosed

If either condition you lack.

Lest the reader infer an untruth

(Which I think would be highly uncouth)

I must hasten to add

There are sets to be had

Where the converse is false, fo’sooth.

Karla Westfahl

For ev’ry a and b in S

if there exists a path that’s straight

from a to b and it’s inside

then “S must be convex,” we state.

Alex Wang
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Prelim Problems†

1. Suppose that f : Rm → R satisfies two conditions:

(i) For each compact set K, f(K) is compact.

(ii) For every nested decreasing sequence of compacts (Kn),

f (<Kn) = < f(Kn).

Prove that f is continuous.

2. Let X ⊂ Rm be compact and f : X → R be continuous. Given ε > 0, show
that there is a constant M such that for all x, y ∈ X we have |f(x) − f(y)| ≤
M |x− y|+ ε.

3. Consider f : R2 → R. Assume that for each fixed x0, y �→ f(x0, y) is continuous
and for each fixed y0, x �→ f(x, y0) is continuous. Find such an f that is not
continuous.

4. Let f : R2 → R satisfy the following properties. For each fixed x0 ∈ R the
function y �→ f(x0, y) is continuous and for each fixed y0 ∈ R the function
x �→ f(x, y0) is continuous. Also assume that if K is any compact subset of R2

then f(K) is compact. Prove that f is continuous.

5. Let f(x, y) be a continuous real-valued function defined on the unit square
[0, 1]× [0, 1]. Prove that

g(x) = max{f(x, y) : y ∈ [0, 1]}

is continuous.

6. Let {Uk} be a cover of Rm by open sets. Prove that there is a cover {Vk} of Rm

by open sets Vk such that Vk ⊂ Uk and each compact subset of Rm is disjoint
from all but finitely many of the Vk.

7. A function f : [0, 1] → R is said to be upper semicontinuous if given x ∈ [0, 1]
and ε > 0 there exists a δ > 0 such that |y−x| < δ implies that f(y) < f(x) +ε.
Prove that an upper semicontinuous function on [0, 1] is bounded above and
attains its maximum value at some point p ∈ [0, 1].

8. Prove that a continuous function f : R → R which sends open sets to open sets
must be monotonic.

9. Show that [0, 1] cannot be written as a countably infinite union of disjoint closed
subintervals.

10. A connected component of a metric space M is a maximal connected subset
of M . Give an example of M ⊂ R having uncountably many connected com-
ponents. Can such a subset be open? Closed? Does your answer change if R2

replaces R?

†These are questions taken from the exam given to first-year math graduate students at U.C.
Berkeley.
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11. Let U ⊂ Rm be an open set. Suppose that the map h : U → Rm is a homeo-
morphism from U onto Rm which is uniformly continuous. Prove that U = Rm.

12. Let X be a nonempty connected set of real numbers. If every element of X is
rational prove that X has only one element.

13. Let A ⊂ Rm be compact, x ∈ A. Let (xn) be a sequence in A such that every
convergent subsequence of (xn) converges to x.

(a) Prove that the sequence (xn) converges.

(b) Give an example to show if A is not compact, the result in (a) is not
necessarily true.

14. Assume that f : R → R is uniformly continuous. Prove that there are constants
A,B such that |f(x)| ≤ A+B|x| for all x ∈ R.

15. Let h : [0, 1) → R be a uniformly continuous function where [0, 1) is the half-
open interval. Prove that there is a unique continuous map g : [0, 1] → R such
that g(x) = h(x) for all x ∈ [0, 1).



3
Functions of a Real Variable

1 Differentiation
The function f : (a, b) → R is differentiable at x if

(1) lim
t→x

f(t)− f(x)

t− x
= L

exists. This means L is a real number and for each ε > 0 there exists a δ > 0 such

that if 0 < |t − x| < δ then the differential quotient above differs from L by < ε.

The limit L is the derivative of f at x, L = f ′(x). In calculus language, Δx = t− x

is the change in the independent variable x while Δf = f(t) − f(x) is the resulting

change in the dependent variable y = f(x). Differentiability at x means that

f ′(x) = lim
Δx→0

Δf

Δx
.

We begin by reviewing the proofs of some standard calculus facts.

1 The Rules of Differentiation

(a) Differentiability implies continuity.

(b) If f and g are differentiable at x then so is f + g, the derivative being

(f + g)′(x) = f ′(x) + g′(x).

(c) If f and g are differentiable at x then so is their product f · g, the derivative

being given by the Leibniz Formula

(f · g)′(x) = f ′(x) · g(x) + f(x) · g′(x).
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(d) The derivative of a constant is zero, c′ = 0.

(e) If f and g are differentiable at x and g(x) 
= 0 then their ratio f/g is differen-

tiable at x, the derivative being(f
g

)′
(x) =

f ′(x) · g(x)− f(x) · g′(x)
g(x)2

.

(f) If f is differentiable at x and g is differentiable at y = f(x) then their composite

g ◦ f is differentiable at x, the derivative being given as the Chain Rule

(g ◦ f)′(x) = g′(y) · f ′(x).

Proof (a) Continuity in the calculus notation amounts to the assertion that Δf → 0

as Δx → 0. This is obvious: If the fraction Δf/Δx tends to a finite limit while its

denominator tends to zero, then its numerator must also tend to zero.

(b) Since Δ(f + g) = Δf +Δg, we have

Δ(f + g)

Δx
=

Δf

Δx
+

Δg

Δx
→ f ′(x) + g′(x)

as Δx → 0.

(c) Since Δ(f · g) = Δf · g(x+Δx) + f(x) ·Δg, continuity of g at x implies that

Δ(f · g)
Δx

=
Δf

Δx
g(x+Δx) + f(x)

Δg

Δx
→ f ′(x)g(x) + f(x)g′(x),

as Δx → 0.

(d) If c is a constant then Δc = 0 and c′ = 0.

(e) Since

Δ(f/g) =
g(x)Δf − f(x)Δg

g(x+Δx)g(x)
,

the formula follows when we divide by Δx and take the limit.

(f) The shortest proof of the chain rule for y = f(x) is by cancellation:

Δg

Δx
=

Δg

Δy

Δy

Δx
→ g′(y)f ′(x).

A slight flaw is present: Δy may be zero when Δx is not. This is not a big problem.

Differentiability of g at y implies that

Δg

Δy
= g′(y) + σ
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where σ = σ(Δy) → 0 as Δy → 0. Define σ(0) = 0. The formula

Δg = (g′(y) + σ)Δy

holds for all small Δy, including Δy = 0. Continuity of f at x (which is true by (a))

implies that Δf → 0 as Δx → 0. Thus

Δg

Δx
= (g′(y) + σ(Δf))

Δy

Δx
→ g′(y)f ′(x)

as Δx → 0.

2 Corollary The derivative of a polynomial a0 + a1x + · · · + anx
n exists at every

x ∈ R and equals a1 + 2a2x+ · · ·+ nanx
n−1.

Proof Immediate from the differentiation rules.

A function f : (a, b) → R that is differentiable at each x ∈ (a, b) is differentiable.

3 Mean Value Theorem A continuous function f : [a, b] → R that is differentiable

on the interval (a, b) has the mean value property: There exists a point θ ∈ (a, b)

such that

f(b)− f(a) = f ′(θ)(b− a).

4 Lemma If f : (a, b) → R is differentiable and achieves a minimum or maximum

at some θ ∈ (a, b) then f ′(θ) = 0.

Proof Assume that f has a minimum at θ. The derivative f ′(θ) is the limit of the

differential quotient (f(t)−f(θ))/(t− θ) as t → θ. Since f(t) ≥ f(θ) for all t ∈ (a, b),

the differential quotient is nonnegative for t > θ and nonpositive for t < θ. Thus

f ′(θ) is a limit of both nonnegative and nonpositive quantities, so f ′(θ) = 0. Similarly

f ′(θ) = 0 when f has a maximum at θ.

Proof of the Mean Value Theorem See Figure 59, where

S =
f(b)− f(a)

b− a

is the slope of the secant of the graph of f . The function φ(x) = f(x)− S(x− a) is

continuous on [a, b] and differentiable on (a, b). It has the same value, namely f(a),

at x = a and x = b. Since [a, b] is compact φ takes on maximum and minimum

values, and since it has the same value at both endpoints, φ has a maximum or a

minimum that occurs at an interior point θ ∈ (a, b). See Figure 60. By Lemma4 we

have φ′(θ) = 0 and f(b)− f(a) = f ′(θ)(b− a).
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Figure 59 The secant line for the graph of f

Figure 60 φ′(θ) = 0.

5 Corollary If f is differentiable and |f ′(x)| ≤ M for all x ∈ (a, b) then f satisfies

the global Lipschitz condition – for all t, x ∈ (a, b) we have

|f(t)− f(x)| ≤ M |t− x|.

In particular, if f ′(x) = 0 for all x ∈ (a, b) then f(x) is constant.

Proof |f(t)− f(x)| = |f ′(θ)(t− x)| for some θ between x and t.

Remark The Mean Value Theorem and this corollary are the most important tools

in calculus for making estimates.

It is often convenient to deal with two functions simultaneously, and for that we

have the following result.

6 Ratio Mean Value Theorem Suppose that the functions f and g are continuous

on an interval [a, b] and differentiable on the interval (a, b). Then there is a θ ∈ (a, b)

such that

Δf · g′(θ) = Δg · f ′(θ)
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where Δf = f(b) − f(a) and Δg = g(b) − g(a). (If g(x) ≡ x, the Ratio Mean Value

Theorem becomes the ordinary Mean Value Theorem.)

Proof If Δg 
= 0 then the theorem states that for some θ ∈ (a, b) we have

Δf

Δg
=

f ′(θ)
g′(θ)

.

This ratio expression is how to remember the theorem. The whole point here is that

f ′ and g′ are evaluated at the same θ. The function

Φ(x) = Δf · (g(x)− g(a)) − Δg · (f(x)− f(a))

is differentiable and its value at both endpoints a, b is 0. Since Φ is continuous it

takes on a maximum and a minimum somewhere in the interval [a, b]. Since Φ has

equal values at the endpoints of the interval, it must take on a maximum or minimum

at some point θ ∈ (a, b); i.e., θ 
= a, b. Then Φ′(θ) = 0 and Δf · g′(θ) = Δg · f ′(θ) as
claimed.

7 L’Hôpital’s Rule If f and g are differentiable functions defined on an interval

(a, b), both of which tend to 0 at b, and if the ratio of their derivatives f ′(x)/g′(x)
tends to a finite limit L at b then f(x)/g(x) also tends to L at b. (We assume that

g(x), g′(x) 
= 0.)

Rough Proof Let x ∈ (a, b) tend to b. Imagine a point t ∈ (a, b) tending to b

much faster than x does. It is a kind of “advance guard” for x. Then f(t)/f(x) and

g(t)/g(x) are as small as we wish, and by the Ratio Mean Value Theorem there is a

θ ∈ (x, t) such that

f(x)

g(x)
=

f(x)− 0

g(x)− 0

•
=

f(x)− f(t)

g(x)− g(t)
=

f ′(θ)
g′(θ)

.

The latter tends to L because θ is sandwiched between x and t as they tend to b.

The symbol
•
= means approximately equal. See Figure 61.

Figure 61 x and t escort θ toward b.
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Complete Proof Given ε > 0 we must find δ > 0 such that if |x − b| < δ then

|f(x)/g(x) − L| < ε. Since f ′(x)/g′(x) tends to L as x tends to b there does exist

δ > 0 such that if x ∈ (b− δ, b) then∣∣∣∣f ′(x)
g′(x)

− L

∣∣∣∣ < ε

2
.

For each x ∈ (b− δ, b) determine a point t ∈ (b− δ, b) which is so near to b that

|f(t)|+ |g(t)| <
g(x)2ε

4(|f(x)|+ |g(x)|)
|g(t)| <

|g(x)|
2

.

Since f(t) and g(t) tend to 0 as t tends to b, and since g(x) 
= 0 such a t exists. It

depends on x, of course. By this choice of t and the Ratio Mean Value Theorem we

have ∣∣∣∣f(x)g(x)
− L

∣∣∣∣ =

∣∣∣∣f(x)g(x)
− f(x)− f(t)

g(x)− g(t)
+

f(x)− f(t)

g(x)− g(t)
− L

∣∣∣∣
≤
∣∣∣∣g(x)f(t)− f(x)g(t)

g(x)(g(x)− g(t))

∣∣∣∣+ ∣∣∣∣f ′(θ)
g′(θ)

− L

∣∣∣∣ < ε,

which completes the proof that f(x)/g(x) → L as x → b.

It is clear that L’Hôpital’s Rule holds equally well as x tends to b or to a. It

is also true that it holds when x tends to ±∞ or when f and g tend to ±∞. See

Exercises 6 and 7.

From now on feel free to use L’Hôpital’s Rule!

8 Theorem If f is differentiable on (a, b) then its derivative function f ′(x) has the

intermediate value property.

Differentiability of f implies continuity of f , and so the Intermediate Value The-

orem from Chapter 2 applies to f and states that f takes on all intermediate values,

but this is not what Theorem8 is about. Not at all. Theorem8 concerns f ′ not
f . The function f ′ can well be discontinuous, but nevertheless it too takes on all

intermediate values. In a clear abuse of language, functions like f ′ possessing the

intermediate value property are called Darboux continuous, even when they are

discontinuous! Darboux was the first to realize how badly discontinuous a derivative
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function can be. Despite the fact that f ′ has the intermediate value property, it can

be discontinuous at almost every point of [a, b]. Strangely enough, however, f ′ can-
not be discontinuous at every point. If f is differentiable, f ′ must be continuous at

a dense, thick set of points. See Exercise 25 and the next section for the definitions.

Proof of Theorem 8 Suppose that a < x1 < x2 < b and

α = f ′(x1) < γ < f ′(x2) = β.

We must find θ ∈ (x1, x2) such that f ′(θ) = γ.

Choose a small h, 0 < h < x2 − x1, and draw the secant segment σ(x) between

the points (x, f(x)) and (x+h, f(x+h)) on the graph of f . Slide x from x1 to x2−h

continuously. This is the sliding secant method. See Figure 62.

Figure 62 The sliding secant

When h is small enough, slope σ(x1)
•
= f ′(x1) and slope σ(x2−h)

•
= f ′(x2). Thus

slope σ(x1) < γ < slope σ(x2 − h).

Continuity of f implies that the slope of σ(x) depends continuously on x, so by the

Intermediate Value Theorem for continuous functions there is an x ∈ (x1, x2 − h)

with slope σ(x) = γ. The Mean Value Theorem then gives a θ ∈ (x, x+ h) such that

f ′(θ) = γ.

9 Corollary The derivative of a differentiable function never has a jump disconti-

nuity.

Proof Near a jump, a function omits intermediate values.
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Pathological Examples

Nonjump discontinuities of f ′ may very well occur. The function

f(x) =

⎧⎨⎩ x2 sin
1

x
if x > 0

0 if x ≤ 0

is differentiable everywhere, even at x = 0, where f ′(0) = 0. Its derivative function

for x > 0 is

f ′(x) = 2x sin
1

x
− cos

1

x
,

which oscillates more and more rapidly with amplitude approximately 1 as x → 0.

Since f ′(x) 
→ 0 as x → 0, f ′ is discontinuous at x = 0. Figure 63 shows why f is

differentiable at x = 0 and has f ′(0) = 0. Although the graph oscillates wildly at 0,

it does so between the envelopes y = ±x2, and any curve between these envelopes is

tangent to the x-axis at the origin. Study this example, Figure 63.

Figure 63 The graphs of the function y = x2 sin(1/x) and its envelopes

y = ±x2; and the graph of its derivative

A similar but worse example is illustrated in Figure 64, where

g(x) =

⎧⎨⎩ x3/2 sin
1

x
if x > 0

0 if x ≤ 0

Its derivative at x = 0 is g′(0) = 0, while at x 
= 0 its derivative is

g′(x) =
3

2

√
x sin

1

x
− 1√

x
cos

1

x
,

which oscillates with increasing frequency and unbounded amplitude as x → 0 be-

cause 1/
√
x blows up at x = 0.
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Figure 64 The function y = x3/2 sin(1/x), its envelopes y = ±x3/2, and its

derivative.

Higher Derivatives

The derivative of f ′, if it exists, is the second derivative of f ,

(f ′)′(x) = f ′′(x) = lim
t→x

f ′(t)− f ′(x)
t− x

.

Higher derivatives are defined inductively and written f (r) = (f (r−1))′. If f (r)(x)

exists then f is rth-order differentiable at x. If f (r)(x) exists for each x ∈ (a, b)

then f is rth-order differentiable. If f (r)(x) exists for all r and all x then f

is infinitely differentiable or smooth. The zeroth derivative of f is f itself,

f (0)(x) = f(x).

10 Theorem If f is rth-order differentiable and r ≥ 1 then f (r−1)(x) is a continuous

function of x ∈ (a, b).

Proof Differentiability implies continuity and f (r−1)(x) is differentiable.

11 Corollary A smooth function is continuous. Each derivative of a smooth func-

tion is smooth and hence continuous.

Proof Obvious from the definition of smoothness and Theorem10.

Smoothness Classes

If f is differentiable and its derivative function f ′(x) is a continuous function of x

then f is continuously differentiable and we say that f is of class C1. If f is rth-

order differentiable and f (r)(x) is a continuous function of x then f is continuously
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r th-order differentiable and we say that f is of class Cr. If f is smooth then by

the preceding corollary it is of class Cr for all finite r and we say that f is of class

C∞. To round out the notation we say that a continuous function is of class C0.

Thinking of Cr as the set of functions of class Cr, we have the regularity hier-

archy

C0 ⊃ C1 ⊃ · · · ⊃ <
r∈N

Cr = C∞.

Each inclusion Cr ⊃ Cr+1 is proper. There exist continuous functions that are not

of class C1, C1 functions that are not of class C2, and so on. For example,

f(x) = |x| is of class C0 but not of class C1,

f(x) = x|x| is of class C1 but not of class C2,

f(x) = |x|3 is of class C2 but not of class C3,

. . .

Analytic Functions

A function that can be expressed locally as a convergent power series is analytic.

More precisely, the function f : (a, b) → R is analytic if for each x ∈ (a, b), there exist

a power series ∑
arh

r

and a δ > 0 such that if |h| < δ then the series converges and

f(x+ h) =

∞∑
r=0

arh
r.

The concept of series convergence will be discussed further in Section 3 and Chapter 4.

Among other things we show in Section 2 of Chapter 4 that analytic functions are

smooth, and if f(x+ h) =
∑

arh
r then

f (r)(x) = r!ar.

This gives uniqueness of the power series expression of a function: if two power

series express the same function f at x then they have identical coefficients, namely

f (r)(x)/r!. See Exercise 4.38 for a stronger type of uniqueness, namely the identity

theorem for analytic functions.

We write Cω for the class of analytic functions.
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A Nonanalytic Smooth Function

The fact that smooth functions need not be analytic is somewhat surprising; i.e.,

Cω is a proper subset of C∞. A standard example is

e(x) =
{

e−1/x if x > 0

0 if x ≤ 0.

Its smoothness is left as an exercise in the use of L’Hôpital’s Rule and induction,

Exercise 17. At x = 0 the graph of e(x) is infinitely tangent to the x-axis. Every

derivative e(r)(0) = 0. See Figure 65.

Figure 65 The graph of e(x) = e−1/x

It follows that e(x) is not analytic. For if it were then it could be expressed near

x = 0 as a convergent series e(h) =
∑

arh
r, and ar = e(r)(0)/r!. Thus ar = 0 for each

r, and the series converges to zero, whereas e(h) is different from zero when h > 0.

Although not analytic at x = 0, e(x) is analytic elsewhere. See also Exercise 4.37.

Taylor Approximation

The rth-order Taylor polynomial of an rth-order differentiable function f at x

is

P (h) = f(x) + f ′(x)h+
f ′′(x)
2!

h2 + . . .+
f (r)(x)

r!
hr =

r∑
k=0

f (k)(x)

k!
hk.
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The coefficients f (k)(x)/k! are constants, the variable is h. Differentiation of P with

respect to h at h = 0 gives

P (0) = f(x)

P ′(0) = f ′(x)

. . .

P (r)(0) = f (r)(x).

12 Taylor Approximation Theorem Assume that f : (a, b) → R is rth order

differentiable at x. Then

(a) P approximates f to order r at x in the sense that the Taylor remainder

R(h) = f(x+ h)− P (h)

is rth order flat at h = 0; i.e., R(h)/hr → 0 as h → 0.

(b) The Taylor polynomial is the only polynomial of degree ≤ r with this approxi-

mation property.

(c) If, in addition, f is (r+1)st-order differentiable on (a, b) then for some θ between

x and x+ h we have

R(h) =
f (r+1)(θ)

(r + 1)!
hr+1.

Remark (c) is the Lagrange form of the remainder. If
∣∣f (r+1)(θ)

∣∣ ≤ M for all

θ ∈ (a, b) then

R(h) ≤ Mhr+1

(r + 1)!
,

an estimate that is valid uniformly with respect to x and x+h in (a, b), whereas (a) is

only an infinitesimal pointwise estimate. Of course (c) requires stronger hypotheses

than (a).

Proof (a) The first r derivatives of R(h) exist and equal 0 at h = 0. If h > 0 then

repeated applications of the Mean Value Theorem give

R(h) = R(h)− 0 = R′(θ1)h = (R′(θ1)− 0)h = R′′(θ2)θ1h

= · · · = R(r−1)(θr−1)θr−2 . . . θ1h

where 0 < θr−1 < · · · < θ1 < h. Thus∣∣∣∣R(h)

hr

∣∣∣∣ =
∣∣∣∣∣R(r−1)(θr−1)θr−2 . . . θ1h

hr

∣∣∣∣∣ ≤
∣∣∣∣∣R(r−1)(θr−1)− 0

θr−1

∣∣∣∣∣→ 0
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as h → 0. On the other hand, if h < 0 the same is true with h < θ1 < · · · < θr−1 < 0.

(b) If Q(h) is a polynomial of degree ≤ r, Q �= P , then Q − P is not rth-order

flat at h = 0, so f(x+ h)−Q(h) cannot be rth-order flat either.

(c) Fix h > 0 and define

g(t) = f(x+ t)− P (t)− R(h)

hr+1
tr+1 = R(t)−R(h)

tr+1

hr+1

for 0 ≤ t ≤ h. Note that since P (t) is a polynomial of degree r, P (r+1)(t) = 0 for all

t, and

g(r+1)(t) = f (r+1)(x+ t)− (r + 1)!
R(h)

hr+1
.

Also, g(0) = g′(0) = · · · = g(r)(0) = 0, and g(h) = R(h)− R(h) = 0. Since g = 0

at 0 and h, the Mean Value Theorem gives a t1 ∈ (0, h) such that g′(t1) = 0. Since

g′(0) and g′(t1) = 0, the Mean Value Theorem gives a t2 ∈ (0, t1) such that g′(t2) = 0.

Continuing, we get a sequence t1 > t2 > · · · > tr+1 > 0 such that g(k)(tk) = 0. The

(r + 1)st equation, g(r+1)(tr+1) = 0, implies that

0 = f (r+1)(x+ tr+1)− (r + 1)!
R(h)

hr+1
.

Thus, θ = x + tr+1 makes the equation in (c) true. If h < 0 the argument is

symmetric.

Proof Obvious from the theorem and the fact that e(r)(0) = 0 for all r.

The Taylor series at x of a smooth function f is the infinite Taylor polynomial

T (h) =

∞∑
r=0

f (r)(x)

r!
hr.

In calculus, you compute the Taylor series of functions such as sinx, arctanx, ex,

etc. These functions are analytic: Their Taylor series converge and express them as

power series. In general, however, the Taylor series of a smooth function need not

converge to the function, and in fact it may fail to converge at all. The function

e(x) is an example of the first phenomenon. Its Taylor series at x = 0 converges, but

gives the wrong answer. Examples of divergent and totally divergent Taylor series

are indicated in Exercise 4.37.

On the other hand, if

13 CorollaryFor each r ∈ N the smooth nonanalytic function e(x) satisfies lim
h→0
e(h)/hr

.= 0
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The convergence of a Taylor series is related to how quickly the rth derivative

grows (in magnitude) as r → ∞. In Section 6 of Chapter 4 you will find necessary

and sufficient conditions on the growth rate that determine whether a smooth function

is analytic.

Inverse Functions

A strictly monotone continuous function f : (a, b) → R bijects (a, b) onto some

interval (c, d) where c = limt→a f(t) and d = limt→b in the increasing case. (We

permit c or d to be infinite.) It is a homeomorphism (a, b) → (c, d) and its inverse

function f−1 : (c, d) → (a, b) is also a homeomorphism. These facts were proved in

Chapter 2.

Does differentiability of f imply differentiability of f−1? If f ′ 
= 0 the answer is

“yes.” Keep in mind, however, the function f : x �→ x3. It shows that differentiability

of f−1 fails when f ′(x) = 0. For the inverse function is y �→ y1/3, which is not

differentiable at y = 0.

14 Inverse Function Theorem in dimension 1 If f : (a, b) → (c, d) is a differ-

entiable surjection and f ′(x) is never zero then f is a homeomorphism. Its inverse

is differentiable and its derivative at y ∈ (c, d) is

(f−1)′(y) =
1

f ′ ◦ f−1(y)

Proof If f ′ is never zero then by the intermediate value property of derivatives, it

is either always positive or always negative. We assume for all x that f ′(x) > 0. If

a < s < t < b then by the Mean Value Theorem there exists θ ∈ (s, t) such that

f(t)− f(s) = f ′(θ)(t− s) > 0. Thus f is strictly monotone. Differentiability implies

continuity, so f is a homeomorphism (a, b) → (c, d). To check differentiability of f−1

at y ∈ (c, d), define

x = f−1(y) and Δx = f−1(y +Δy)− x.

Then y = f(x) and Δy = f(x+Δx)− fx = Δf . Thus

Δf−1

Δy
=

f−1(y +Δy)− f−1(y)

Δy
=

Δx

Δy
=

1

Δy/Δx
=

1

Δf/Δx
.

Since f is a homeomorphism, Δx → 0 if and only if Δy → 0, so the limit of Δf−1/Δy

exists as Δy → 0 and equals 1/f ′(x) = 1/f ′ ◦ f−1(y).
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A longer but more geometric proof of the one-dimensional inverse function theo-

rem can be done in two steps.

(i) A function is differentiable if and only if its graph is differentiable.

(ii) The graph of f−1 is the reflection of the graph of f across the diagonal, and is

thus differentiable.

See Figure 66.

Figure 66 A picture proof of the inverse function theorem in R

If a homeomorphism f and its inverse are both of class Cr, r ≥ 1, then f is a Cr

diffeomorphism.

15 Corollary If f : (a, b) → (c, d) is a homeomorphism of class Cr, 1 ≤ r ≤ ∞, and

for all x ∈ (a, b) we have f ′(x) 
= 0 then f is a Cr diffeomorphism.

Proof If r = 1, the formula (f−1)′(y) = 1/f ′ ◦ f−1(y) implies that (f−1)′(y) is

continuous, so f is a C1 diffeomorphism. The Rules of Differentiation and induction

on r ≥ 2 complete the proof.
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The corollary remains true for analytic functions – the inverse of an analytic

function with nonvanishing derivative is analytic. The generalization of the inverse

function theorem to higher dimensions is a principal goal of Chapter 5.

2 Riemann Integration
Let f : [a, b] → R be given. Intuitively, the integral of f is the area under its graph;

i.e., for f ≥ 0 we have ∫ b

a
f(x) dx = areaU

where U is the undergraph of f ,

U = {(x, y) : a ≤ x ≤ b and 0 ≤ y < f(x)}.
The precise definition involves approximation. A partition pair consists of two finite

sets of points P, T ⊂ [a, b] where P = {x0, . . . , xn} and T = {t1, . . . , tn} are interlaced

as

a = x0 ≤ t1 ≤ x1 ≤ t2 ≤ x2 ≤ · · · ≤ tn ≤ xn = b.

We assume the points x0, . . . , xn are distinct. The Riemann sum corresponding to

f, P, T is

R(f, P, T ) =

n∑
i=1

f(ti)Δxi = f(t1)Δx1 + f(t2)Δx2 + . . .+ f(tn)Δxn

where Δxi = xi−xi−1. The Riemann sum R is the area of rectangles which approxi-

mate the area under the graph of f . See Figure 67. Think of the points ti as sample

points. We sample the value of the function f at ti.

The mesh of the partition P is the length of the largest subinterval [xi−1, xi]. A

partition with large mesh is coarse; one with small mesh is fine. In general, the finer

the better. A real number I is the Riemann integral of f over [a, b] if it satisfies

the following approximation condition:

∀ε > 0 ∃ δ > 0 such that if P, T is any partition pair then

meshP < δ ⇒ |R− I| < ε

where R = R(f, P, T ). If such an I exists it is unique, we denote it as∫ b

a
f(x) dx = I = lim

meshP→0
R(f, P, T ),

and we say that f is Riemann integrable with Riemann integral I.
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Figure 67 The area of the strip is f(ti)Δxi.

16 Theorem If f is Riemann integrable then it is bounded.

Proof Suppose not. Let I =
∫ b
a f(x) dx. There is some δ > 0 such that for all

partition pairs with meshP < δ, we have |R − I| < 1. Fix such a partition pair

P = {x0, . . . , xn}, T = {t1, . . . , tn}. If f is unbounded on [a, b] then there is also a

subinterval [xi0−1, xi0 ] on which it is unbounded. Choose a new set T′ = {t′1, . . . , t′n}
with t′i = ti for all i 
= i0 and choose t′i0 such that

|f(t′i0)− f(ti0)|Δxi0 > 2.

This is possible since the supremum of {|f(t)| : xi0−1 ≤ t ≤ xi0} is ∞. Let R′ =
R(f, P, T ′). Then |R − R′| > 2, contrary to the fact that both R and R′ differ from
I by < 1.

Let R denote the set of all functions that are Riemann integrable over [a, b].

17 Theorem (Linearity of the Integral)

(a) R is a vector space and f �→ ∫ ba f(x) dx is a linear map R→ R.

(b) The constant function h(x) = k is integrable and its integral is k(b− a).
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Proof (a) Riemann sums behave naturally under linear combination:

R(f + cg, P, T ) = R(f, P, T ) + cR(g, P, T ),

and it follows that their limits, as meshP → 0, give the expected formula∫ b

a
f(x) + cg(x) dx =

∫ b

a
f(x) dx+ c

∫ b

a
g(x) dx.

(b) Every Riemann sum for the constant function h(x) = k is k(b− a), so its integral

equals this number too.

18 Theorem (Monotonicity of the Integral) If f, g ∈ R and f ≤ g then∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

Proof For each partition pair P, T , we have R(f, P, T ) ≤ R(g, P, T ).

19 Corollary If f ∈ R and |f | ≤ M then | ∫ ba f(x) dx| ≤ M(b− a).

Proof By Theorem17, the constant functions ±M are integrable. By Theorem18,

−M ≤ f(x) ≤ M implies that

−M(b− a) ≤
∫ b

a
f(x) dx ≤ M(b− a).

Darboux Integrability

The lower sum and upper sum of a function f : [a, b] → [−M,M ] with respect

to a partition P of [a, b] are

L(f, P ) =

n∑
i=1

miΔxi and U(f, P ) =

n∑
i=1

MiΔxi

where

mi = inf{f(t) : xi−1 ≤ t ≤ xi} Mi = sup{f(t) : xi−1 ≤ t ≤ xi}.

We assume f is bounded in order to be sure that mi and Mi are real numbers. Clearly

L(f, P ) ≤ R(f, P, T ) ≤ U(f, P )
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a bxi−1 xi

a bxi−1 xi

a bxi−1 xi

miΔxi

f(ti)Δxi

MiΔxi

upper sum

lower sum

Riemann sum

Figure 68 The upper sum, a Riemann sum, and the lower sum

for all partition pairs P, T . See Figure 68.

The lower integral and upper integral of f over [a, b] are

I = sup
P

L(f, P ) and I = inf
P

U(f, P ).

P ranges over all partitions of [a, b] when we take the supremum and infimum. If the

lower and upper integrals of f are equal, I = I, then f is Darboux integrable and

their common value is its Darboux integral.

20 Theorem Riemann integrability is equivalent to Darboux integrability, and when

a function is integrable, its three integrals – lower, upper, and Riemann – are equal.
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To prove Theorem20 it is convenient to refine a partition P by adding more

partition points. The partition P ′ refines P if P ′ ⊃ P .

Suppose first that P′ = P ∪ {w} where w ∈ (xi0−1, xi0). The lower sums for

P and P ′ are the same except that mi0Δxi0 in L(f, P ) splits into two terms in

L(f, P ′). The sum of the two terms is at least as large as mi0Δxi0 . For the infimum

of f over the intervals [xi0−1, w] and [w, xi0 ] is at least as large as mi0. Similarly,

U(f, P ′) ≤ U(f, P ). See Figure 69.

Repetition continues the pattern and we formalize it as the

Refinement Principle Refining a partition causes the lower sum to increase and

the upper sum to decrease.

Figure 69 Refinement increases L and decreases U .

The common refinement P∗ of two partitions P , P ′ of [a, b] is

P∗= P ∪ P ′.

According to the Refinement Principle we have

L(f, P ) ≤ L(f, P∗) ≤ U(f, P∗) ≤ U(f, P ′).

We conclude that each lower sum is less than or equal to each upper sum, the lower

integral is less than or equal to the upper, and thus

A bounded function f : [a, b] → R is Darboux integrable(2)

if and only if ∀ε > 0 ∃P such that U(f, P )− L(f, P ) < ε.
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Proof of Theorem 20 Let f : [a, b] → R. We assert that f is Riemann integrable

if and only if it is Darboux integrable. One direction is easy: Riemann ⇒ Darboux.

Riemann integrability implies that f is bounded and that for each ε > 0 there exists

a δ > 0 such that if P is any partition with meshP < δ then

|R− I| < ε

4

where R = R(f, P, T ) and I is the Riemann integral of f . Fix such a partition P and

choose a set of sample points T = {ti} such that f(ti) is so near mi that

R(f, P, T )− L(f, P ) <
ε

4
.

(It is enough to choose ti ∈ [xi−1, xi] such that f(ti) − mi < ε/4(b − a).) Choose a

second set of sample points T ′ = {t′i} so that

U(f, P )−R(f, P, T ′) <
ε

4
.

Both R = R(f, P, T ) and R′ = R(f, P, T ′) differ from I by < ε/4. Thus

U − L = (U −R′) + (R′ − I) + (I −R) + (R− L) < ε,

from which (2) gives Darboux integrability. Since I, I, I are fixed numbers that

belong to the interval [L,U ] of length ε, and ε is arbitrary, the ε-principle implies

that

I = I = I,

which completes the proof that f is Darboux integrable and its Darboux integral

equals its Riemann integral.

Next, we assume Darboux integrability and prove Riemann integrability. (The

proof is messier because checking Riemann integrability requires that we look at all

fine partitions P , not just at those for which U − L is small.) Darboux integrability

implies that f is bounded, say f : [a, b] → [−M,M ] for M > 0. By (2) we know that

for each ε > 0 there is a partition P1 such that

U1 − L1 <
ε

3

where L1 = L(f, P1) and U1 = U(f, P1). Fix P1 and choose

δ =
ε

6n1M

where n1 is the number of P1-intervals. Consider any partition P with meshP < δ,

and fix a set T of sample points for P . We claim that the Riemann sum R(f, P, T )

M > 0

and choose

Consider any

and fix
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for every such partition pair P, T differs from the Darboux integral I by less than ε.

Then, by the ε-principle, f is Riemann integrable and its Riemann integral is I.

According to the Refinement Principle, the common refinement P∗ = P1 ∪P has

L1 ≤ L∗ ≤ U∗ ≤ U1

where L∗ = L(f, P∗) and U∗ = U(f, P∗). Hence U∗ − L∗ < ε/3.

We claim that 0 ≤ U − U∗ ≤ ε/3 where U = U(f, P ). Since P∗ refines P , each

P∗-interval I∗j = [x∗j−1, x
∗
j ] is contained in some P -interval Ii = [xi−1, xi]. Except for

n1 exceptional P∗-intervals I∗j , we have I∗j = Ii and M∗
j = Mi. Thus U − U∗ reduces

to a sum over the exceptional intervals. See Figure 70.

xi−1 xi
I∗s I∗s+1 I∗s+2

Mi = M∗
s

M∗
s+1

M∗
s+2

Figure 70 Ii contains three exceptional subintervals I∗j for

j = s, s+ 1, s+ 2.

Setting

I = {i : Ii contains exceptional subintervals}
J(i) = {j : I∗j is an exceptional subinterval of Ii}

therefore gives

0 ≤ U − U∗ =
∑
i∈I

MiΔxi −
∑
i∈I

∑
j∈J(i)

M∗
jΔx∗j =

∑
i∈I

∑
j∈J(i)

(Mi −M∗
j )Δx∗j .

For Δxi telescopes to
∑

j∈J(i)Δx∗j . Since 0 ≤ Mi −M∗
j ≤ 2M , and since there are at

most n1 exceptional intervals, each of length ≤ δ, this implies

0 ≤ U − U∗ ≤ 2Mn1δ < ε/3.

Similarly, L∗ − L < ε/3. Thus

U − L = (U − U∗) + (U∗ − L∗) + (L∗ − L) < ε.

for

We claim that 0 ≤ U − U∗ ≤ ε/3 where U = U(f, P ). Since P∗ refines P , each≤
is contained in some P -interval IiII = [xi−1, xi]. Except forP is contained in some P -interval IiI = [xi 1 xi] Except forP∗-interval∗ IjI = [xj 1, xj ]-interval I∗jI = [x∗j 1 x∗j ]∗∗ i [ i 1, i][ j−1, j ]

reducesreducesn1 exceptional Pn1 exceptional P
j
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P∗ i t l∗
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MiMM = M∗
sM

M∗
+2MsM +

M∗
+1MsM +

Setting

j = s, s+ 1, s+ 2.

I = {i : IiII contains exceptional subintervals}
J(i) = {j : I∗jI is an exceptional subinterval of IiII }
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Figure 70 IiII contains three exceptional subintervals I∗jI for

j 1 2

therefore gives

0 ≤ U − U
∑ ∑ ∑ ∑ ∑

s

U∗ =
∑

MiMM Δxi −
∑ ∑

M∗
jM Δ∗ x∗j =

∑ ∑
(MiMM −M∗
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Since the Darboux integral I and the Riemann sums R = R(f, P, T ) (with meshP

small) belong to [L,U ], an interval of length < ε, we get |R− I| < ε. Therefore f is

Riemann integrable and its Riemann integral equals its Darboux integral I.

According to Theorem20 and (2) we get

21 Riemann’s Integrability Criterion

A bounded function is Riemann integrable if and only if

∀ε > 0 ∃P such that U(f, P )− L(f, P ) < ε.

Example Every continuous function f : [a, b] → R is Riemann integrable. (See

also Corollary 24 to the Riemann-Lebesgue Theorem, below.) Since [a, b] is compact

and f is continuous, f is uniformly continuous. See Theorem42 in Chapter 2. Let

ε > 0 be given. Uniform continuity provides a δ > 0 such that if |t − s| < δ then

|f(t)−f(s)| < ε/(b−a). Choose any partition P with meshP < δ. On each partition

interval [xi−1, xi], we have Mi −mi ≤ ε/(b− a). Thus

U − L =
n∑

i=1

(Mi −mi)Δxi ≤ ε

(b− a)

∑
Δxi = ε.

By Riemann’s Integrability Criterion f is Riemann integrable.

Example The characteristic function (or indicator function) of a set E ⊂
R, χE , takes value 1 at points of E and value 0 at points of Ec. See Figure 71.

Some characteristic functions are Riemann integrable, while others aren’t. Riemann’s

Figure 71 The region below the graph of a characteristic function

Integrability Criterion implies that the characteristic function of an interval (including

Since the Darboux integral I and the Riemann sums R = R(f, P, T ) (with meshP

small) belong to [L,U ], an interval of length < ε, we get |R− I| < ε.

Riemann integrable and its Riemann integral equals its Darboux integ

ε/(b−a)

x ] we ha
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the degenerate case that the interval is a point) is Riemann integrable. The integral

of χ[a,b] is b − a. A step function is a finite sum of constants times characteristic

functions of intervals and is therefore Riemann integrable. A step function is a special

type of piecewise continuous function, i.e., a function that is continuous except

at finitely many points. See Figure 72. Bounded piecewise continuous functions are

Riemann integrable. See Corollary 25 below.

Figure 72 The graphs of a piecewise continuous function and a step

function.

Example The characteristic function of Q is not integrable on [a, b]. It is defined as

χQ(x) = 1 when x ∈ Q and χQ(x) = 0 when x �∈ Q. See Figure 73. Every lower sum

b ba a

Figure 73 The graph of χQ and the region below its graph

L(χQ, P ) is 0 and every upper sum is b − a. By Riemann’s Integrability Criterion,

χQ is not integrable. Note that χQ is discontinuous at every point, not merely at

rational points.
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The fact that χQ fails to be Riemann integrable is actually a failing of Riemann

integration theory, for the function χQ is fairly tame. Its integral ought to exist and

it ought to be 0, because the undergraph is just countably many line segments of

height 1, and their area ought to be 0.

A handy consequence of Riemann’s Integrability Criterion is the

22 Sandwich Principle f : [a, b] → R is Riemann integrable if, given ε > 0, there

are functions g, h ∈ R such that g ≤ f ≤ h and
∫ b
a h(x)− g(x) dx ≤ ε.

Proof For any partition P it is clear that

L(g, P ) ≤ L(f, P ) ≤ U(f, P ) ≤ U(h, P ).

Let ε > 0 be given. Since g and h are Riemann integrable, there is a δ > 0 such

that if meshP < δ then their Darboux sums differ from their integrals by < ε/3, and∫ b
a h(x)− g(x) dx ≤ ε/3. Thus∫ b

a
g(x) dx− L(g, P ) <

ε

3
and U(h, P )−

∫ b

a
h(x) dx <

ε

3
,

from which it follows that∫ b

a
g(x) dx− ε

3
< L(g, P ) ≤ L(f, P ) ≤ U(f, P ) ≤ U(h, P ) <

∫ b

a
h(x) dx+

ε

3
.

Then
∫ b
a h(x) dx − ∫ ba g(x) dx =

∫ b
a h(x) − g(x) dx ≤ ε/3 gives U(f, P ) − L(f, P ) < ε

and Riemann’s Integrability Criterion implies that f is Riemann integrable. See

Figure 74.

h

f
g

Figure 74 The graphs of g and h sandwich the graph of f .

Example Let f : [0, 1] → Q be defined as f(p/q) = 1/q when p/q ∈ Q is written in

lowest terms, and f(x) = 0 when x is irrational. This is the rational ruler function.
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Figure 75 The graph of the rational ruler function and the region below

its graph

Note that f is discontinuous at every x ∈ Q and is continuous at every x ∈ Qc. See

Figure 75. It is Riemann integrable and its integral is zero. For, given ε > 0, we can

consider the degenerate step function

s(x) =

{
1/q if p/q ∈ Q ∩ [0, 1] and 1/q ≥ ε

0 otherwise.

Then f is sandwiched between the Riemann integrable functions g = 0 and

h(x) = ε χ[0,1](x) + s(x).

The integral of h− g is ε, so the Sandwich Principle implies that f ∈ R.

Example Zeno’s staircase function Z(x) = 1/2 on the first half of [0, 1], Z(x) =

3/4 on the next quarter of [0, 1], and so on. See Figure 76. It is Riemann integrable

and its integral is 2/3. The function has infinitely many discontinuity points, one at

each point (2k − 1)/2k. In fact, every monotone function is Riemann integrable.† See

Corollary 26 below.

†To prove this directly is not hard. The key observation to make is that a monotone function is not

much different from a continuous function. It has only jump discontinuities, and only countably many

of them; given any ε > 0, there are only finitely many at which the jump is ≥ ε. See Exercise 1.31.
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Figure 76 Zeno’s staircase

These examples raise a natural question:

Exactly which functions are Riemann integrable?

To give an answer to the question, and for many other applications, the following

concept is very useful. A set Z ⊂ R is a zero set if for each ε > 0 there is a

countable covering of Z by open intervals (ai, bi) such that

∞∑
i=1

bi − ai ≤ ε

The sum of the series is the total length of the covering. Think of zero sets as

negligible. If a property holds for all points except those in a zero set then one says

that the property holds almost everywhere, abbreviated “a.e.”

23 Riemann-Lebesgue Theorem A function f : [a, b] → R is Riemann integrable

if and only if it is bounded and its set of discontinuity points is a zero set.

The set D of discontinuity points is exactly what its name implies,

D = {x ∈ [a, b] : f is discontinuous at the point x}.

A function whose set of discontinuity points is a zero set is continuous almost every-

where. The Riemann-Lebesgue Theorem states that a function is Riemann integrable

if and only if it is bounded and continuous almost everywhere.
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Examples of zero sets are

(a) Every subset of a zero set.

(b) Every finite set.

(c) Every countable union of zero sets.

(d) Every countable set.

(e) The middle-thirds Cantor set.

(a) is clear. For if Z0 ⊂ Z where Z is a zero set, and if ε > 0 is given, then

there is some open covering of Z by intervals whose total length is ≤ ε; but the same

collection of intervals covers Z0, which shows that Z0 is also a zero set.

(b) Let Z = {z1, . . . , zn} be a finite set and let ε > 0 be given. The intervals

(zi − ε/2n, zi + ε/2n), for i = 1, . . . , n, cover Z and have total length ε. Therefore

Z is a zero set. In particular, the empty set and any single point are zero sets.

(c) This is a typical “ε/2n -argument.” Let Z1, Z2, . . . be a sequence of zero sets

and Z = >Zj . We claim that Z is a zero set. Let ε > 0 be given. The set Z1 can be

covered by countably many intervals (ai1, bi1) with total length
∑

(bi1 − ai1) ≤ ε/2.

The set Z2 can be covered by countably many intervals (ai2, bi2) with total length∑
(bi2−ai2) ≤ ε/4. In general, the set Zj can be covered by countably many intervals

(aij , bij) with total length
∞∑
i=1

(bij − aij) ≤ ε

2j
.

Since the countable union of countable sets is countable, the collection of all the

intervals (aij , bij) is a countable covering of Z by open intervals, and the total length

of all these intervals is

∞∑
j=1

( ∞∑
i=1

bij − aij

)
≤

∞∑
j=1

ε

2j
=

ε

2
+

ε

4
+

ε

8
+ . . . = ε.

Thus Z is a zero set and (c) is proved.

(d) This is implied by (b) and (c).

(e) Let ε > 0 be given and choose n ∈ N such that 2n/3n < ε. The middle-thirds

Cantor set C is contained inside 2n closed intervals of length 1/3n, say I1, . . . , I2n .

Enlarge each closed interval Ii to an open interval (ai, bi) ⊃ Ii such that bi−ai = ε/2n.

(Since 1/3n < ε/2n, and Ii has length 1/3n, this is possible.) The total length of these

2n intervals (ai, bi) is ε. Thus C is a zero set.

It is nontrivial to prove that intervals are not zero sets. See Exercise 29.
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In the proof of the Riemann-Lebesgue Theorem, it is useful to focus on the “size”

of a discontinuity. A simple expression for this size is the oscillation of f at x,

oscx(f) = lim sup
t→x

f(t)− lim inf
t→x

f(t).

Equivalently,

oscx(f) = lim
r→0

diam f([x− r, x+ r]).

(Of course, r > 0.) It is clear that f is continuous at x if and only if oscx(f) = 0. It

is also clear that if I is any interval containing x in its interior then

MI −mI ≥ oscx(f)

where MI and mI are the supremum and infimum of f(t) as t varies in I. See

Figure 77.

Figure 77 The oscillation of f at x

Proof of the Riemann-Lebesgue Theorem The set D of discontinuity points of

f : [a, b] → [−M, M ] naturally filters itself as the countable union

D =
∞
>
k=1

Dk

where

Dk = {x ∈ [a, b] : oscx(f) ≥ 1/k}.
According to (a), (c) above, D is a zero set if and only if each Dk is a zero set.

Assume that f is Riemann integrable and let ε > 0 and k ∈ N be given. By

Theorem20 there is a partition P such that

U − L =
∑

(Mi −mi)Δxi < ε/k.
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We say that a P -interval Ii is “bad” if it contains a point of Dk in its interior.

A bad interval has a fairly big f -variation, namely Mi −mi ≥ 1/k. Since U − L =∑
(Mi−mi)Δxi < ε/k is small, there cannot be too many bad intervals. (This is the

key insight in the estimates.) More precisely,

ε

k
> U − L =

∑
(Mi −mi)Δxi ≥

∑
bad

(Mi −mi)Δxi ≥ 1

k

∑
bad

Δxi

implies (by canceling the factor 1/k from both sides of the inequality) the sum of

the lengths of the bad intervals is < ε. Thus, except for the finite set Dk ∩ P , Dk is

contained in finitely many open intervals whose total length is < ε. Since finite sets

are zero sets and ε is arbitrary, each Dk is a zero set. Therefore D = >Dk is a zero

set.

Conversely, assume that the discontinuity set D of f : [a, b] → [−M,M ] is a zero

set. Let ε > 0 be given. By Riemann’s Integrability Criterion, to prove that f is

Riemann integrable it suffices to find P with U(f, P ) − L(f, P ) < ε. Choose k ∈ N

so that
1

k
<

ε

2(b− a)
.

Since D is a zero set, so is Dk and hence there is a countable covering J of Dk by

open intervals Jj = (aj , bj) with total length∑
bj − aj ≤ ε

4M
.

These Jj are “bad” intervals: The f -variation on each Jj is ≥ 1/k. On the other

hand, for each x ∈ [a, b]�Dk there is an open interval Ix containing x such that

sup{f(t) : t ∈ Ix} − inf{f(t) : t ∈ Ix} < 1/k.

These intervals Ix are a covering I of the good set [a, b]�Dk. The union V = I ∪ J
is an open covering of [a, b]. Compactness of [a, b] implies that V has a Lebesgue

number λ > 0.

Let P = {x0, . . . , xn} be any partition of [a, b] having meshP < λ. We claim that

U(f, P ) − L(f, P ) < ε. Each P -interval Ii is contained wholly in some Ix or wholly

in some Jj . (This is what Lebesgue numbers are good for.) Set

J = {i ∈ {1, . . . , n} : Ii is contained in some bad interval Jj}.

See Figure 78. For some finite m, J1 ∪ · · · ∪ Jm contains those P -intervals Ii with
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Figure 78 The P -intervals Ii with large oscillation have i ∈ J and are

potentially “bad.”

i ∈ J. Then

U − L =

n∑
i=1

(Mi −mi)Δxi

=
∑
i∈J

(Mi −mi)Δxi +
∑
i 	∈J

(Mi −mi)Δxi

≤
∑
i∈J

2MΔxi +
∑
i 	∈J

Δxi/k

≤ 2M
m∑
j=1

bj − aj + (b− a)/k

<
ε

2
+

ε

2
= ε.

For the total length of the P -intervals Ii contained in the bad intervals J1, . . . , Jm
is no greater than

∑
bj − aj . As remarked at the outset, Riemann’s Integrability

Criterion then implies that f is integrable.

The Riemann-Lebesgue Theorem has many consequences, ten of which we list as

corollaries.

24 Corollary Every continuous function is Riemann integrable, and so is every

bounded piecewise continuous function.
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Proof The discontinuity set of a continuous function is empty, and is therefore a

zero set. The discontinuity set of a piecewise continuous function is finite, and is

therefore also a zero set. A continuous function defined on a compact interval [a, b]

is bounded. The piecewise continuous function was assumed to be bounded. By the

Riemann-Lebesgue Theorem, both these functions are Riemann integrable.

25 Corollary The characteristic function of S ⊂ [a, b] is Riemann integrable if and

only if the boundary of S is a zero set.

Proof ∂S is the discontinuity set of χS . See also Exercise 5.44

26 Corollary Every monotone function is Riemann integrable.

Proof The set of discontinuities of a monotone function f : [a, b] → R is countable

and therefore is a zero set. (See Exercise 1.31.) Since f is monotone, its values lie

in the interval between f(a) and f(b), so f is bounded. By the Riemann-Lebesgue

Theorem, f is Riemann integrable.

27 Corollary The product of Riemann integrable functions is Riemann integrable.

Proof Let f, g ∈ R be given. They are bounded and their product is bounded. By

the Riemann-Lebesgue Theorem their discontinuity sets, D(f) and D(g), are zero

sets, and D(f) ∪D(g) contains the discontinuity set of the product f · g. Since the

union of two zero sets is a zero set, the Riemann-Lebesgue Theorem implies that f ·g
is Riemann integrable.

28 Corollary If f : [a, b] → [c, d] is Riemann integrable and φ : [c, d] → R is

continuous, then the composite φ ◦ f is Riemann integrable.

Proof The discontinuity set of φ ◦ f is contained in the discontinuity set of f , and

therefore is a zero set. Since φ is continuous and [c, d] is compact, φ ◦ f is bounded.

By the Riemann-Lebesgue Theorem, φ ◦ f is Riemann integrable.

29 Corollary If f ∈ R then |f | ∈ R.

Proof The function φ : y �→ |y| is continuous, so x �→ |f(x)| is Riemann integrable

according to Corollary 28.

30 Corollary If a < c < b and f : [a, b] → R is Riemann integrable then its restric-

tions to [a, c] and [c, b] are Riemann integrable and∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.



f

Section 2 Riemann Integration 181

Conversely, Riemann integrability on [a, c] and [c, b] implies Riemann integrability on

[a, b].

Proof See Figure 79. The union of the discontinuity sets for the restrictions of f to

Figure 79 Additivity of the integral is equivalent to additivity of area.

the subintervals [a, c], [c, b] is the discontinuity set of f . The latter is a zero set if and

only if the former two are, and so by the Riemann-Lebesgue Theorem, f is Riemann

integrable if and only if its restrictions to [a, c] and [c, b] are.

Let χ[a,c] and χ[c,b] be the characteristic functions of [a, c] and [c, b]. By Corol-

lary 24 they are integrable, and by Corollary 27, so are the products χ[a,c] · f and

χ[c,b] · f . Since
f = χ[a,c] · f + χ(c,b] · f

the addition formula follows from linearity of the integral, Theorem17.

31 Corollary A Riemann integrable function f : [a, b] → [0,M ] has integral zero if

and only if f(x) = 0 almost everywhere.

Proof Suppose
∫
f = 0 but f(x0) = c > 0 at some continuity point x0 of f . By

continuity, f(x) ≥ c/2 for all x in some small interval I = [x0 − δ, x0 + δ]. Then

f(x) ≥ g(x) = (c/2)χI(x) everywhere, so
∫
f ≥ ∫

g = cδ > 0, contradicting the

assumption that f has integral zero. Thus, f = 0 at every continuity point. Riemann

integrability implies that almost every x0 is a continuity point, so f = 0 almost

everywhere. See Figure 80.

Conversely, assume that f(x) = 0 almost everywhere. Then every partition inter-

val Ii = [xi−1, xi] of every partition of [a, b] contains points at which f = 0, so mi = 0

31 Corollary A Riemann integrable function f : [a, b] → [0,M ] has integral zero if

and only if f(x) = 0 almost everywhere.and only if f(x) = 0 almost everywhere

Proof Suppose
∫
f = 0 but f(x0) = c > 0 at some continuity point x0 of f . By

ti it f( ) ≥ /2 f ll i ll i t l I [ δ δ] Th

f(x) ≥ g(x) = (c/2)χI(x) everywhere, so
∫
f ≥ ∫

g = cδ > 0, contradicting thef(x) ≥ g(x) = (c/2)χI(x) everywhere so
∫
f ≥ ∫

g = cδ > 0 contradicting the

continuity, f(x) ≥ c/2 for all x in some small interval I = [x0 − δ, x0 + δ]. Then

f(x) ≥ g(x) = (c/2)χI(x) everywhere so
∫
f ≥ ∫

g = cδ > 0 contradicting the

assumption that f has integral zero. Thus, f = 0 at every continuity point. Riemann

integrability implies that almost every x0 is a continuity point, so f = 0 almostintegrability implies that almost every x0 is a continuity point so f = 0 almost

everywhere. See Figure 80.

Conversely, assume that f(x) = 0 almost everywhere. Then every partition inter-

val IiII = [xi−1, xi] of every partition of [a, b] contains points at which f = 0, so mi = 0
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Figure 80 The shaded rectangle prevents the integral of f being zero.

where mi = inf{f(t) : t ∈ Ii}. Thus, L(f, P ) ≡ 0. Riemann integrability implies that

L(f, P ) → ∫
f as ‖P‖ → 0, so

∫
f = 0.

Corollary 28 and Exercises 33, 35, 47, 49 deal with the way that Riemann inte-

grability behaves under composition. If f ∈ R and φ is continuous then φ ◦ f ∈ R,
although the composition in the other order, f ◦ φ, may fail to be integrable. Con-

tinuity is too weak a hypothesis for such a “change of variable.” See Exercise 35. In

particular, the composite of Riemann integrable functions may fail to be Riemann in-

tegrable. See Exercise 33. However, we do have the following result when the change

of variables is sufficiently nice.

32 Corollary If f is Riemann integrable and ψ is a homeomorphism whose inverse

satisfies a Lipschitz condition then f ◦ ψ is Riemann integrable.

Proof More precisely, we assume that f : [a, b] → R is Riemann integrable, ψ bijects

[c, d] onto [a, b], ψ(c) = a, ψ(d) = b, and for some constant K and all s, t ∈ [a, b] we

have

|ψ−1(s)− ψ−1(t)| ≤ K|s− t|.
We then assert that f ◦ ψ is a Riemann integrable function [c, d] → R. Clearly f ◦ ψ
is bounded.

Let D be the set of discontinuity points of f . Then D′ = ψ−1(D) is the set of

discontinuity points of f ◦ ψ. Let ε > 0 be given. There is an open covering of

D by intervals (ai, bi) whose total length is ≤ ε/K. The homeomorphic intervals

(a′i, b
′
i) = ψ−1(ai, bi) cover D

′ and have total length

∑
b′i − a′i ≤

∑
K(bi − ai) ≤ ε.

Therefore D′ is a zero set and it follows from the Riemann-Lebesgue Theorem that

f ◦ ψ is integrable.

h i f{f(t) t I } Th L(f, P ) ≡ 0. Riemann integrability implies that

L(f, P ) → ∫
f as ‖P‖ → 0, so

∫
f = 0.

where mi = inf{f(t) : t ∈ IiII }. Thus, L(f
L(f P ) → ∫

f as ‖P‖ → 0 so
∫
f = 0

However, we do have the following result when the change

of variables is sufficiently nice.

Clearly f ◦ ψ
is bounded.
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33 Corollary If f ∈ R and ψ : [c, d] → [a, b] is a C1 diffeomorphism then f ◦ ψ is

Riemann integrable.

Proof The hypothesis that ψ is a C1 diffeomorphism means that it is a continuously

differentiable homeomorphism whose inverse is also continuously differentiable. By

the Mean Value Theorem, for all s, t ∈ [a, b] we have∣∣ψ−1(s)− ψ−1(t)
∣∣ ≤ K |s− t|

where K = max
x∈[a,b]
∣∣(ψ−1)′(x)

∣∣. By Corollary 32, f ◦ ψ is Riemann integrable.

Versions of the preceding theorem and corollary remain true without the hy-

potheses that ψ bijects. The proofs are harder because ψ can fold infinitely often.

See Exercises 42 and 44.

In calculus you learn that the derivative of the integral is the integrand. This we

now prove.

34 Fundamental Theorem of Calculus If f : [a, b] → R is Riemann integrable

then its indefinite integral

F (x) =

∫ x

a
f(t) dt

is a continuous function of x. The derivative of F (x) exists and equals f(x) at every

point x at which f is continuous.

Proof #1 Obvious from Figure 81.

ΔF (x)F (x)

f

a x x+ h b

Figure 81 Why does this picture give a proof of the Fundamental Theorem

of Calculus?
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Proof #2 Since f is Riemann integrable, it is bounded; say |f(x)| ≤ M for all x.

By Corollary 30 we have

|F (y)− F (x)| =
∣∣∣∣∫ y

x
f(t) dt

∣∣∣∣ ≤ M |y − x|.

Therefore F is continuous. Given ε > 0, choose δ < ε/M , and observe that

|y − x| < δ implies that |F (y) − F (x)| < Mδ < ε. In exactly the same way, if f is

continuous at x then

F (x+ h)− F (x)

h
=

1

h

∫ x+h

x
f(t) dt → f(x)

as h → 0. For if

m(x, h) = inf{f(s) : |s− x| ≤ |h|} M(x, h) = sup{f(s) : |s− x| ≤ |h|}

then

m(x, h) =
1

h

∫ x+h

x
m(x, h) dt ≤ 1

h

∫ x+h

x
f(t) dt

≤ 1

h

∫ x+h

x
M(x, h) dt = M(x, h).

When f is continuous at x, m(x, h) and M(x, h) converge to f(x) as h → 0, and so

must the integral sandwiched between them,

1

h

∫ x+h

x
f(t) dt → f(x).

(If h < 0 then 1
h

∫ x+h
x f(t) dt is interpreted as − 1

h

∫ x
x+h f(t) dt.)

35 Corollary The derivative of an indefinite Riemann integral exists almost every-

where and equals the integrand almost everywhere.

Proof Assume that f : [a, b] → R is Riemann integrable and F (x) is its indefinite

integral. By the Riemann-Lebesgue Theorem, f is continuous almost everywhere,

and by the Fundamental Theorem of Calculus, F ′(x) exists and equals f(x) wherever

f is continuous.

A second version of the Fundamental Theorem of Calculus concerns antideriva-

tives. If one function is the derivative of another, the second function is an an-

tiderivative of the first.
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Note When G is an antiderivative of g : [a, b] → R, we have

G′(x) = g(x)

for every x ∈ [a, b], not merely for almost every x ∈ [a, b].

36 Corollary Every continuous function has an antiderivative.

Proof Assume that f : [a, b] → R is continuous. By the Fundamental Theorem of

Calculus, the indefinite integral F (x) has a derivative everywhere, and F ′(x) = f(x)

everywhere.

Some discontinuous functions have an antiderivative and others don’t. Surpris-

ingly, the wildly oscillating function

f(x) =

{
0 if x ≤ 0

sin
π

x
if x > 0

has an antiderivative, but the jump function

g(x) =

{
0 if x ≤ 0

1 if x > 0

does not. See Exercise 40.

37 Antiderivative Theorem An antiderivative of a Riemann integrable function,

if it exists, differs from the indefinite integral by a constant.

Proof We assume that f : [a, b] → R is Riemann integrable, that G is an antideriva-

tive of f , and we assert that for all x ∈ [a, b] we have

G(x) =

∫ x

a
f(t) dt+ C,

where C is a constant. (In fact, C = G(a).) Partition [a, x] as

a = x0 < x1 < . . . < xn = x,

and choose tk ∈ [xk−1, xk] such that

G(xk)−G(xk−1) = G′(tk)Δxk.
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Such a tk exists by the Mean Value Theorem applied to the differentiable function

G. Telescoping gives

G(x)−G(a) =
n∑

k=1

G(xk)−G(xk−1) =
n∑

k=1

f(tk)Δxk,

which is a Riemann sum for f on the interval [a, x]. Since f is Riemann integrable,

the Riemann sum converges to F (x) as the mesh of the partition tends to zero. This

gives G(x)−G(a) = F (x) as claimed.

38 Corollary Standard integral formulas, such as∫ b

a
x2 dx =

b3 − a3

3
,

are valid.

Proof Every integral formula is actually a derivative formula, and the Antiderivative

Theorem converts derivative formulas to integral formulas.

Example The logarithm function is defined as the integral,

log x =

∫ x

1

1

t
dt.

Since the integrand 1/t is well defined and continuous when t > 0, log x is well

defined and differentiable for x > 0. Its derivative is 1/x. By the way, as is standard

in post-calculus vocabulary, log x refers to the natural logarithm, not to the base-10

logarithm. See also Exercise 16.

An antiderivative of f has G′(x) = f(x) everywhere, and differs from the indefinite

integral F (x) by a constant. But what if we assume instead that H ′(x) = f(x)

almost everywhere? Should this not also imply H(x) differs from F (x) by a constant?

Surprisingly, the answer is “no.”

37 Theorem There exists a continuous function H : [0, 1] → R whose derivative

exists and equals zero almost everywhere, but which is not constant.

Proof The counterexample is the Devil’s staircase function, also called the Can-

tor function. Its graph is shown in Figure 82 and it is defined as follows.

Each x ∈ [0, 1] has a base-3 expansion (.ω1ω2ω3 . . . )3 where

x =

∞∑
i=1

ωi

3i
.
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Figure 82 The Devil’s staircase

Each ωi is 0, 1, or 2. If x ∈ C, the standard Cantor set constructed in Chapter 2,

then x has a unique expansion in which each ωi equals 0 or 2. The function H sends

x ∈ C to

H(x) =
∞∑
i=1

ωi/2

2i
.

H has equal values at the endpoints of the discarded gap intervals and so we extend

H to them by letting it be constant on each. This accounts for the steps in its graph.

There are two things to check – the definition of H makes sense and H has the

properties asserted. Continuity of the map H : C → [0, 1] is simple. As we showed

in Chapter 2, C is the nested intersection <Cn where Cn is the disjoint union of 2n

intervals of length 1/3n, the endpoints of which are fractions with denominator 3n.

Between the intervals Cα in Cn there are open discarded intervals of length ≥ 1/3n.

Let ε > 0 be given, choose n with 1/2n < ε, and take δ = 1/3n. If x, x′ ∈ C have

|x− x′| < δ = 1/3n then they lie in a common interval Cα in Cn. For the distance

between different intervals Cα, Cβ in Cn is at least 1/3n. Therefore the base-3

expansion of x and x′ agree for the first n terms, which implies |H(x)−H(x′)| ≤∑∞
j=n+1 1/2

j < ε and gives continuity on C.
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At stage n in the Cantor set construction we discard the open middle third of an

interval Cα = [�α, �α + 1/3n], where the left endpoint is

�α =

n∑
i=1

αi

3i
= (.α1 α2 . . . αn)3.

and each αi is 0 or 2. Thus the discarded interval is

(�α + 1/3n+1, �α + 2/3n+1) = ((.α 1)3, (.α 2)3) = ((.α 0 2)3, (.α 2)3)

since 1/3n+1 =
∑∞

j=n+2 2/3
j . This expresses both endpoints base-3 using only the

numerals 0 and 2. Evaluating H on them gives equal value:

H(�α + 1/3n+1) = H((.α 0 2)3) =

n∑
i=1

αi/2

2i
+

0

2n+1
+

∞∑
j=n+2

1

2j

H(�α + 2/3n+1) = H((.α 2)3) =
n∑

i=1

αi/2

2i
+

1

2n+1
.

This verifies that the definition of H being constant on the discarded intervals makes

sense and completes the proof that H is continuous on [0, 1].

It is clear that H(0) = 0 and

H(1) = H((.2)3) =
∞∑
i=1

2/2

2i
= 1.

Thus H is surjective. If x, x′ ∈ C and x < x′ then it is also clear that H(x) ≤
H(x′), which implies that H is nondecreasing on [0, 1]. Since H is constant on the

complement of the Cantor set, its derivative exists and is zero almost everywhere.

A yet more pathological example is a strictly monotone, continuous function J

whose derivative is almost everywhere zero. Its graph is a sort of Devil’s ski slope,

almost everywhere level but also everywhere downhill. To construct J , start with H

and extend it to a function Ĥ : R → R by setting Ĥ(x+ n) = H(x) + n for all n ∈ Z

and all x ∈ [0, 1]. Then set

J(x) =

∞∑
k=0

Ĥ(3kx)

4k
.

The values of Ĥ(3kx) for x ∈ [0, 1] are ≤ 3k, which is much smaller than the de-

nominator 4k. Thus the series converges and J(x) is well defined. According to

the Weierstrass M -test, proved in the next chapter, J is continuous. Since Ĥ(3kx)

≤
he
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strictly increases for any pair of points at distance > 1/3k apart, and this fact is

preserved when we take sums, J strictly increases. The proof that J ′(x) = 0 almost

everywhere requires deeper theory. See Exercise 48 on page 456.

Next, we justify two common methods of integration.

38 Integration by Substitution If f ∈ R and g : [c, d] → [a, b] is a continuously

differentiable bijection with g′ > 0 (g is a C1 diffeomorphism) then∫ b

a
f(y) dy =

∫ d

c
f(g(x))g′(x) dx.

Proof The first integral exists by assumption. By Corollary 33 the composite f ◦g is

Riemann integrable. Since g′ is continuous, the second integral exists by Corollary 27.

To show that the two integrals are equal we resort again to Riemann sums. Let P

partition the interval [c, d] as

c = x0 < x1 < · · · < xn = d

and choose tk ∈ [xk−1, xk] such that

g(xk)− g(xk−1) = g′(tk)Δxk.

The Mean Value Theorem ensures that such a tk exists. Since g is a diffeomorphism

we have a partition Q of the interval [a, b]

a = y0 < y1 < . . . < yn = b

where yk = g(xk), and meshP → 0 implies that meshQ → 0. Set sk = g(tk). This

gives two equal Riemann sums

n∑
k=1

f(sk)Δyk =
n∑

k=1

f(g(tk))g
′(tk)Δxk

which converge to the integrals
∫ b
a f(y) dy and

∫ d
c f(g(t)g′(t) dt as meshP → 0. Since

the limits of equals are equal, the integrals are equal.

Actually, it is sufficient to assume that g′ ∈ R.
39 Integration by Parts If f, g : [a, b] → R are differentiable and f ′, g′ ∈ R then∫ b

a
f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−

∫ b

a
f ′(x)g(x) dx.
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Proof Differentiability implies continuity implies integrability, so f, g ∈ R. Since

the product of Riemann integrable functions is Riemann integrable, f ′g and fg′

are Riemann integrable. By the Leibniz Rule, (fg)′(x) = f(x)g′(x) + f ′(x)g(x)
everywhere. That is, fg is an antiderivative of f ′g+fg′. The Antiderivative Theorem

states that fg differs from the indefinite integral of f ′g+ fg′ by a constant. That is,

for all t ∈ [a, b] we have

f(t)g(t)− f(a)g(a) =

∫ t

a
f ′(x)g(x) + f(x)g′(x) dx

=

∫ t

a
f ′(x)g(x) dx+

∫ t

a
f(x)g′(x) dx.

Setting t = b gives the result.

Improper Integrals

Assume that f : [a, b) → R is Riemann integrable when restricted to any closed

subinterval [a, c] ⊂ [a, b). You may imagine that f(x) has some unpleasant behavior

as x → b, such as lim supx→b |f(x)| = ∞ and/or b = ∞. See Figure 83.

Figure 83 The improper integral converges if and only if the total

undergraph area is finite.
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If the limit of
∫ c
a f(x) dx exists (and is a real number) as c → b then it is natural

to define it as the improper Riemann integral
∫ b

a
f(x) dx = lim

c→b

∫ c

a
f(x) dx.

In order that the two-sided improper integral exists for a function f : (a, b) → R

it is natural to fix some point m ∈ (a, b) and require that both improper integrals∫m
a f(x) dx and

∫ b
m f(x) dx exist. Their sum is the improper integral

∫ b
a f(x) dx.

With some ingenuity you can devise a function f : R → R whose improper integral∫∞
−∞ f(x) dx exists despite the fact that f is unbounded at both ±∞. See Exercise 55.

3 Series
A series is a formal sum

∑
ak where the terms ak are real numbers. The nth partial

sum of the series is

An = a0 + a1 + a2 + · · ·+ an.

The series converges to a real number A if An → A as n → ∞, and we write

A =
∞∑
k=0

ak.

A series that does not converge diverges. The basic question to ask about a series

is: Does it converge or diverge?

For example, if λ is a constant and |λ| < 1 then the geometric series

∞∑
k=0

λk = 1 + λ+ · · ·+ λn + . . .

converges to 1/(1− λ). For its partial sums are

Λn = 1 + λ+ λ2 + · · ·+ λn =
1− λn+1

1− λ

and λn+1 → 0 as n → ∞. On the other hand, if |λ| ≥ 1 then the series
∑

λk diverges.

Let
∑

an be a series. The Cauchy Convergence Criterion from Chapter 1 applied

to its sequence of partial sums yields the CCC for series
∑

ak converges if and only if

∀ε > 0 ∃N such that m,n ≥ N ⇒
∣∣∣∣∣

n∑
k=m

ak

∣∣∣∣∣ < ε.

to a real number
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One immediate consequence of the CCC is that no finite number of terms affects

convergence of a series. Rather, it is the tail of the series, the terms ak with k large,

that determines convergence or divergence. Likewise, whether the series leads off

with a term of index k = 0 or k = 1, etc. is irrelevant.

A second consequence of the CCC is that if ak does not converge to zero as

k → ∞ then
∑

ak does not converge. For Cauchyness of the partial sum sequence

(An) implies that an = An − An−1 becomes small when n → ∞. If |λ| ≥ 1 then

the geometric series
∑

λk diverges since its terms do not converge to zero. The

harmonic series ∞∑
k=1

1

k
= 1 +

1

2
+

1

3
+ . . .

gives an example that a series can diverge even though its terms do tend to zero. See

below.

Series theory has a large number of convergence tests. All boil down to the

following result.

40 Comparison Test If a series
∑

bk dominates a series
∑

ak in the sense that

for all sufficiently large k we have |ak| ≤ bk then convergence of
∑

bk implies conver-

gence of
∑

ak.

Proof Given ε > 0, convergence of
∑

bk implies there is a large N such that for all

m,n ≥ N we have
∑n

k=m bk < ε. Thus∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ ≤
n∑

k=m

|ak| ≤
n∑

k=m

bk < ε

and convergence of
∑

ak follows from the CCC.

Example The series
∑

sin(k)/2k converges since it is dominated by the geometric

series
∑

1/2k.

A series
∑

ak converges absolutely if
∑ |ak| converges. The comparison test

shows that absolute convergence implies convergence. A series that converges but not

absolutely converges conditionally. That is,
∑

ak converges and
∑ |ak| diverges.

See below.

Series and integrals are both infinite sums. You can imagine a series as an im-

proper integral in which the integration variable is an integer,

∞∑
k=0

ak =

∫
N

ak dk.
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More precisely, given a series
∑

ak, define f : [0,∞) → R by setting

f(x) = ak if k − 1 < x ≤ k.

See Figure 84.

Figure 84 The pictorial proof of the integral test

Then ∞∑
k=0

ak =

∫ ∞

0
f(x) dx.

The series converges if and only if the improper integral does. The natural interpre-

tation of this picture is the

41 Integral Test Suppose that
∫∞
0 f(x) dx is a given improper integral and

∑
ak is

a given series.

(a) If |ak| ≤ f(x) for all sufficiently large k and all x ∈ (k − 1, k] then convergence

of the improper integral implies convergence of the series.

(b) If |f(x)| ≤ ak for all sufficiently large k and all x ∈ [k, k + 1) then divergence

of the improper integral implies divergence of the series .

Proof (a) For some large N0 and all N ≥ N0 we have

N∑
k=N0+1

|ak| ≤
∫ N

N0

f(x) dx ≤
∫ ∞

0
f(x) dx,
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which is a finite real number. An increasing, bounded sequence converges to a limit, so

the tail of the series
∑ |ak| converges and the whole series

∑ |ak| converges. Absolute

convergence implies convergence.

The proof of (b) is left as Exercise 58.

Example The p-series
∑

1/kp converges when p > 1 and diverges when p ≤ 1.

Case 1. p > 1. By the Fundamental Theorem of Calculus and differentiation,∫ b

1

1

xp
dx =

b1−p − 1

1− p
→ 1

p− 1

as b → ∞. The improper integral converges and dominates the p-series, which implies

convergence of the series by the integral test.

Case 2. p ≤ 1. The p-series dominates the improper integral

∫ b

1

1

xp
dx =

⎧⎪⎨⎪⎩
log b if p = 1

b1−p − 1

1− p
if p < 1.

As b → ∞, these quantities blow up, and the integral test implies divergence of the

series. When p = 1 we have the harmonic series, which we have just shown to diverge.

The exponential growth rate of the series
∑

ak is

α = lim sup
k→∞

k
√

|ak|.

Example
∑

αk has exponential growth rate α.

42 Root Test Let α be the exponential growth rate of a series
∑

ak. If α < 1 then

the series converges, if α > 1 then the series diverges, and if α = 1 then the root test

is inconclusive.

Proof If α < 1 then we fix a constant β with

α < β < 1.

Then for all large k we have |ak|1/k ≤ β; i.e., |ak| ≤ βk, which gives convergence of∑
ak by comparison to the geometric series

∑
βk.

If α > 1, choose β with 1 < β < α. Then |ak| ≥ βk for infinitely many k. Since

the terms ak do not converge to 0, the series diverges.
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To show that the root test is inconclusive when α = 1, we must find two series,

one convergent and the other divergent, both having exponential growth rate α = 1.

The examples are p-series. We have

log

(
1

kp

)1/k
=

−p log(k)

k
∼ −p log(x)

x
∼ −p/x

1
∼ 0

by L’Hôpital’s Rule as k = x → ∞. Therefore α = limk→∞(1/kp)1/k = 1 for all

p-series. Since the square series
∑

1/k2 converges and the harmonic series
∑

1/k

diverges the root test is inconclusive when α = 1.

43 Ratio Test Let the ratio between successive terms of the series
∑

ak be rk =

|ak+1/ak|, and set

lim sup
k→∞

rk = ρ lim inf
k→∞

rk = λ.

If ρ < 1 then the series converges, if λ > 1 then the series diverges, and otherwise

the ratio test is inconclusive.

Proof If ρ < 1, choose β with ρ < β < 1. For all k ≥ some K, |ak+1/ak| < β; i.e.,

|ak| ≤ βk−K |aK | = Cβk

where C = β−K |aK | is a constant. Convergence of∑ ak follows from comparison with

the geometric series
∑

Cβk. If λ > 1, choose β with 1 < β < λ. Then |ak| ≥ βk/C

for all large k, and
∑

ak diverges because its terms do not converge to 0. Again the

p-series all have ratio limit ρ = λ = 1 and demonstrate the inconclusiveness of the

ratio test when ρ = 1 or λ = 1.

Although it is usually easier to apply the ratio test than the root test, the latter

has a strictly wider scope. See Exercises 61 and 65.

Conditional Convergence

If (ak) is a decreasing sequence in R that converges to 0 then its alternating

series ∑
(−1)k+1ak = a1 − a2 + a3 − . . .

converges. For

A2n = (a1 − a2) + (a3 − a4) + . . . (a2n−1 − a2n)
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0 a2n a2n−1 a4 a3 a2 a1

a2n−1 − a2n a3 − a4 a1 − a2

Figure 85 The pictorial proof of alternating convergence

and ak−1 − ak is the length of the the interval Ik = (ak, ak−1). The intervals Ik are

disjoint, so the sum of their lengths is at most the length of (0, a1), namely a1. See

Figure 85.

The sequence (A2n) is increasing and bounded, so limn→∞A2n exists. The partial

sum A2n+1 differs from A2n by a2n+1, a quantity that converges to 0 as n → ∞, so

lim
n→∞A2n = lim

n→∞A2n+1

and the alternating series converges.

When ak = 1/k we have the alternating harmonic series,

∞∑
k=1

(−1)k+1

k
= 1− 1

2
+

1

3
− 1

4
+ . . .

which we have just shown is convergent.

Series of Functions

A series of functions is of the form

∞∑
k=0

fk(x),

where each term fk : (a, b) → R is a function. For example, in a power series∑
ckx

k

the functions are monomials ckx
k. (The coefficients ck are constants and x is a real

variable.) If you think of λ = x as a variable then the geometric series is a power

series whose coefficients are 1, namely
∑

xk. Another example of a series of functions

is a Fourier series ∑
ak sin(kx) + bk cos(kx).
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44 Radius of Convergence Theorem If
∑

ckx
k is a power series then there is

a unique R with 0 ≤ R ≤ ∞, its radius of convergence, such that the series

converges whenever |x| < R, and diverges whenever |x| > R. Moreover R is given by

the formula

R =
1

lim sup
k→∞

k
√|ck|

.

Proof Apply the root test to the series
∑

ckx
k. Then

lim sup
k→∞

k

√
|ckxk| = |x| lim sup

k→∞
k
√

|ck| = |x|
R

.

If |x| < R the root test gives convergence. If |x| > R it gives divergence.

There are power series with any given radius of convergence, 0 ≤ R ≤ ∞. The

series
∑

kkxk has R = 0. The series
∑

xk/σk has R = σ for 0 < σ < ∞. The series∑
xk/k! has R = ∞. Eventually, we show that a function defined by a power series is

analytic: It has all derivatives at all points and it can be expanded as a Taylor series

at each point inside its radius of convergence, not merely at x = 0. See Section 6 in

Chapter 4.
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Exercises
1. Assume that f : R → R satisfies |f(t)− f(x)| ≤ |t− x|2 for all t, x. Prove that

f is constant.

2. A function f : (a, b) → R satisfies a Hölder condition of order α if α > 0,
and for some constant H and all u, x ∈ (a, b) we have

|f(u)− f(x)| ≤ H|u− x|α

The function is said to be α-Hölder, with α-Hölder constant H. (The terms
“Lipschitz function of order α” and “α-Lipschitz function” are sometimes used
with the same meaning.)

(a) Prove that an α-Hölder function defined on (a, b) is uniformly continuous
and infer that it extends uniquely to a continuous function defined on
[a, b]. Is the extended function α-Hölder?

(b) What does α-Hölder continuity mean when α = 1?

(c) Prove that α-Hölder continuity when α > 1 implies that f is constant.

3. Assume that f : (a, b) → R is differentiable.

(a) If f ′(x) > 0 for all x, prove that f is strictly monotone increasing.

(b) If f ′(x) ≥ 0 for all x, what can you prove?

4. Prove that
√
n+ 1−√

n → 0 as n → ∞.

5. Assume that f : R → R is continuous, and for all x �= 0, f ′(x) exists. If
lim
x→0

f ′(x) = L exists, does it follow that f ′(0) exists? Prove or disprove.

6. In L’Hôpital’s Rule, replace the interval (a, b) with the half-line (a,∞) and
interpret “x tends to b” as “x → ∞.” Show that if f/g tends to 0/0 and f ′/g′

tends to L then f/g tends to L also. Prove that this continues to hold when
L = ∞ in the sense that if f ′/g′ → ∞ then f/g → ∞.

7. In L’Hôpital’s Rule, replace the assumption that f/g tends to 0/0 with the
assumption that it tends to ∞/∞. If f ′/g′ tends to L, prove that f/g tends
to L also. [Hint: Think of a rear guard instead of an advance guard.] [Query:
Is there a way to deduce the ∞/∞ case from the 0/0 case? Näıvely taking
reciprocals does not work.]

8. (a) Draw the graph of a continuous function defined on [0, 1] that is differen-
tiable on the interval (0, 1) but not at the endpoints.

(b) Can you find a formula for such a function?

(c) Does the Mean Value Theorem apply to such a function?

9. Assume that f : R → R is differentiable.

(a) If there is an L < 1 such that for each x ∈ R we have f ′(x) < L, prove
that there exists a unique point x such that f(x) = x. [x is a fixed point
for f.]

(b) Show by example that (a) fails if L = 1.
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10. Concoct a function f : R → R with a discontinuity of the second kind at x = 0
such that f does not have the intermediate value property there. Infer that it
is incorrect to assert that functions without jumps are Darboux continuous.

*11. Let f : (a, b) → R be given.

(a) If f ′′(x) exists, prove that

lim
h→0

f(x− h)− 2f(x) + f(x+ h)

h2
= f ′′(x).

(b) Find an example that this limit can exist even when f ′′(x) fails to exist.

*12. Assume that f : (−1, 1) → R and f ′(0) exists. If αn, βn → 0 as n → ∞, define
the difference quotient

Dn =
f(βn)− f(an)

βn − αn
.

(a) Prove that lim
n→∞Dn = f ′(0) under each of the following conditions.

(i) αn < 0 < βn.

(ii) 0 < αn < βn and
βn

βn − αn
≤ M .

(iii) f ′(x) exists and is continuous for all x ∈ (−1, 1).

(b) Set f(x) = x2 sin(1/x) for x �= 0 and f(0) = 0. Observe that f is differen-
tiable everywhere in (−1, 1) and f ′(0) = 0. Find αn, βn that tend to 0 in
such a way that Dn converges to a limit unequal to f ′(0).

13. Assume that f and g are rth order differentiable functions (a, b) → R, r ≥ 1.
Prove the Higher-Order Leibniz Product Rule for the function f · g,

(f · g)(r)(x) =
r∑

k=0

(
r

k

)
f (k)(x) · g(r−k)(x).

where

(
r

k

)
= r!/(k!(r − k)!) is the binomial coefficient, r choose k. [Hint:

Induction.]

14. For each r ≥ 1, find a function that is Cr but not Cr+1.

15. Define f(x) = x2 if x < 0 and f(x) = x + x2 if x ≥ 0. Differentiation gives
f ′′(x) ≡ 2. This is bogus. Why?

16. log x is defined to be
∫ x
1 1/t dt for x > 0. Using only the mathematics explained

in this chapter,

(a) Prove that log is a smooth function.

(b) Prove that log(xy) = log x+ log y for all x, y > 0. [Hint: Fix y and define
f(x) = log(xy)− log x− log y. Show that f(x) ≡ 0.]

(c) Prove that log is strictly monotone increasing and its range is all of R.

f ′′(x).
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17. Define e : R → R by

e(x) =
{

e−1/x if x > 0
0 if x ≤ 0

(a) Prove that e is smooth; that is, e has derivatives of all orders at all points
x. [Hint: L’Hôpital and induction. Feel free to use the standard differen-
tiation formulas about ex from calculus.]

(b) Is e analytic?
(c) Show that the bump function

β(x) = e2e(1− x) · e(x+ 1)

is smooth, identically zero outside the interval (−1, 1), positive inside the
interval (−1, 1), and takes value 1 at x = 0.† (e2 is the square of the base of
the natural logarithms, while e(x) is the function just defined. Apologies
to the abused notation.)

(d) For |x| < 1 show that

β(x) = e2x
2/(x2−1).

Bump functions have wide use in smooth function theory and differential
topology. The graph of β looks like a bump. See Figure 86.

Figure 86 The graph of the bump function β

**18. Let L be any closed set in R. Prove that there is a smooth function f : R → [0, 1]
such that f(x) = 0 if and only if x ∈ L. To put it another way, every closed set
in R is the zero locus of some smooth function. [Hint: Use Exercise 17(c).]

†The support of a function is the closure of the set of points at which the function is nonzero.
The support of β is [−1, 1].

e2x
2/(x2−1).
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19. Recall that the oscillation of an arbitrary function f : [a, b] → R at x is

oscx f = lim sup
t→x

f(t)− lim inf
t→x

f(t)

In the proof of the Riemann-Lebesgue Theorem Dk refers to the set of points
with oscillation ≥ 1/k.

(a) Prove that Dk is closed.

(b) Infer that the discontinuity set of f is a countable union of closed sets.
(This is called an Fσ-set.)

(c) Infer from (b) that the set of continuity points is a countable intersection
of open sets. (This is called a Gδ-set).)

*20. Baire’s Theorem (page 256) asserts that if a complete metric space is the count-
able union of closed subsets then at least one of them has nonempty interior.
Use Baire’s Theorem to show that the set of irrational numbers is not the
countable union of closed subsets of R.

21. Use Exercises 19 and 20 to show there is no function f : R → R which is discon-
tinuous at every irrational number and continuous at every rational number.

**22. Show that there exists a subset S of the middle-thirds Cantor set which is never
the discontinuity set of a function f : R → R. Infer that some zero sets are
never discontinuity sets of Riemann integrable functions. [Hint: How many
subsets of C are there? How many can be countable unions of closed sets?]

**23. Suppose that fn : [a, b] → R is a sequence of continuous functions that converges
pointwise to a limit function f : [a, b] → R. Such an f is said to be of Baire
class 1. (Pointwise convergence is discussed in the next chapter. It means
what it says: For each x, fn(x) converges to f(x) as n → ∞. Continuous
functions are considered to be of Baire class 0, and in general a Baire class
r function is the pointwise limit of a sequence of Baire class r − 1 functions.
Strictly speaking, it should not be of Baire class r− 1 itself, but for simplicity I
include continuous functions among Baire class 1 functions. It is an interesting
fact that for every r there are Baire class r functions not of Baire class r − 1.
You might consult A Primer of Real Functions by Ralph Boas.)
Prove that the set Dk of discontinuity points with oscillation ≥ 1/k is nowhere
dense, as follows. To arrive at a contradiction, suppose that Dk is dense in
some interval (α, β) ⊂ [a, b]. By Exercise 19, Dk is closed, so it contains (α, β).
Cover R by countably many intervals (a�, b�) of length < 1/k and set

H� = fpre(a�, b�).

(a) Why does >�H� = [a, b]?

(b) Show that no H� contains a subinterval of (α, β).
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(c) Why are

F�mn = {x ∈ [a, b] : a� +
1

m
≤ fn(x) ≤ b� − 1

m
}

E�mN = <
n≥N

F�mn

closed?

(d) Show that
H� = >

m,N∈N
E�mN .

(e) Use (a) and Baire’s Theorem (page 243) to deduce that some E�mN con-
tains a subinterval of (α, β).

(f) Why does (e) contradict (b) and complete the proof that Dk is nowhere
dense?

24. Combine Exercises 19, 23, and Baire’s Theorem to show that a Baire class 1
function has a dense set of continuity points.

25. Suppose that g : [a, b] → R is differentiable.

(a) Prove that g′ is of Baire class 1. [Hint: Extend g to a differentiable function
defined on a larger interval and consider

fn(x) =
g(x+ 1/n)− g(x)

1/n

for x ∈ [a, b]. Is fn(x) continuous? Does fn(x) converge pointwise to g′(x)
as n → ∞?]

(b) Infer from Exercise 24 that a derivative cannot be everywhere discontinu-
ous. It must be continuous on a dense subset of its domain of definition.

26. Redefine Riemann and Darboux integrability using dyadic partitions.

(a) Prove that the integrals are unaffected.

(b) Infer that Riemann’s integrability criterion can be restated in terms of
dyadic partitions.

(c) Repeat the analysis using only partitions of [a, b] into subintervals of length
(b− a)/n.

27. In many calculus books, the definition of the integral is given as∫ b

a
f(x) dx = lim

n→∞

n∑
k=1

f(x∗k)
b− a

n

where x∗k is the midpoint of the kth interval of [a, b] having length (b − a)/n,
namely

[a+ (k − 1)(b− a)/n, a+ k(b− a)/n].

See Stewart’s Calculus with Early Transcendentals, for example.
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(a) If f is continuous, show that the calculus-style limit exists and equals the
Riemann integral of f . [Hint: This is a one-liner.]

(b) Show by example that the calculus-style limit can exist for functions which
are not Riemann integrable.

(c) Infer that the calculus-style definition of the integral is inadequate for real
analysis.

28. Suppose that Z ⊂ R. Prove that the following are equivalent.

(i) Z is a zero set.

(ii) For each ε > 0 there is a countable covering of Z by closed intervals [ai, bi]
with total length

∑
bi − ai < ε.

(iii) For each ε > 0 there is a countable covering of Z by sets Si with total
diameter

∑
diamSi < ε.

*29. Prove that the interval [a, b] is not a zero set.

(a) Explain why the following observation is not a solution to the problem:
“Every open interval that contains [a, b] has length > b− a.”

(b) Instead, suppose there is a “bad” covering of [a, b] by open intervals {Ii}
whose total length is < b− a, and justify the following steps.

(i) It is enough to deal with finite bad coverings.

(ii) Let B = {I1, . . . , In} be a bad covering such that n is minimal among
all bad coverings.

(iii) Show that no bad covering has n = 1 so we have n ≥ 2.

(iv) Show that it is no loss of generality to assume a ∈ I1 and I1 ∩ I2 �= ∅.
(v) Show that I = I1 ∪ I2 is an open interval and |I| < |I1|+ |I2|.
(vi) Show that B′ = {I, I3, . . . , In} is a bad covering of [a, b] with fewer

intervals, a contradiction to minimality of n.

30. The standard middle-quarters Cantor set Q is formed by removing the
middle quarter from [0, 1], then removing the middle quarter from each of the
remaining two intervals, then removing the middle quarter from each of the
remaining four intervals, and so on.

(a) Prove that Q is a zero set.

(b) Formulate the natural definition of the middle β-Cantor set.

(c) Is it also a zero set? Prove or disprove.

*31. Define a Cantor set by removing from [0, 1] the middle interval of length 1/4.
From the remaining two intervals F 1 remove the middle intervals of length
1/16. From the remaining four intervals F 2 remove the middle intervals of
length 1/64, and so on. At the nth step in the construction Fn consists of 2n

subintervals of Fn−1.

(a) Prove that F = <Fn is a Cantor set but not a zero set. It is referred to
as a fat Cantor set.

(b) Infer that being a zero set is not a topological property: If two sets are
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homeomorphic and one is a zero set then the other need not be a zero set.
[Hint: To get a sense of this fat Cantor set, calculate the total length of the
intervals which comprise its complement. See Figure 52 and Exercise 35.]

32. Consider the characteristic function of the dyadic rational numbers, f(x) = 1
if x = k/2n for some k ∈ Z and n ∈ N, and f(x) = 0 otherwise.

(a) What is its set of discontinuities?

(b) At which points is its oscillation ≥ ε?

(c) Is it integrable? Explain, both by the Riemann-Lebesgue Theorem and
directly from the definition.

(d) Consider the dyadic ruler function g(x) = 1/2n if x = k/2n and g(x) =
0 otherwise. Graph it and answer the questions posed in (a), (b), (c).

33. (a) Prove that the characteristic function f of the middle-thirds Cantor set C
is Riemann integrable but the characteristic function g of the fat Cantor
set F (Exercise 31) is not.

(b) Why is there a homeomorphism h : [0, 1] → [0, 1] sending C onto F?

(c) Infer that the composite of Riemann integrable functions need not be Rie-
mann integrable. How is this example related to Corollaries 28 and 32 of
the Riemann-Lebesgue Theorem? See also Exercise 35.

*34. Assume that ψ : [a, b] → R is continuously differentiable. A critical point of
ψ is an x such that ψ′(x) = 0. A critical value is a number y such that for at
least one critical point x we have y = ψ(x).

(a) Prove that the set of critical values is a zero set. (This is the Morse-Sard
Theorem in dimension one.)

(b) Generalize this to continuously differentiable functions R → R.

*35. Let F ⊂ [0, 1] be the fat Cantor set from Exercise 31, and define

ψ(x) =

∫ x

0
dist(t, F ) dt

where dist(t, F ) refers to the minimum distance from t to F .

(a) Why is ψ a continuously differentiable homeomorphism from [0, 1] onto
[0, L] where L = ψ(1)?

(b) What is the set of critical points of ψ? (See Exercise 34.)

(c) Why is ψ(F ) a Cantor set of zero measure?

(d) Let f be the characteristic function of ψ(F ). Why is f Riemann integrable
but f ◦ ψ not?

(e) What is the relation of (d) to Exercise 33?

See also Exercise 6.77.

36. Generalizing Exercise 1.31, we say that f : (a, b) → R has a jump discontinu-
ity (or a discontinuity of the first kind) at c ∈ (a, b) if

f(c−) = lim
x→c−

f(x) and f(c+) = lim
x→c+

f(x)
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exist, but are either unequal or are unequal to f(c). (The three quantities exist
and are equal if and only if f is continuous at c.) An oscillating discontinuity
(or a discontinuity of the second kind is any nonjump discontinuity.

(a) Show that f : R → R has at most countably many jump discontinuities.

(b) What about the function

f(x) =

{
sin

1

x
if x > 0

0 if x ≤ 0?

(c) What about the characteristic function of the rationals?

37. Suppose that f : R → [−M,M ] has no jump discontinuities. Does f have the
intermediate value property? (Proof or counterexample.)

**38. Recall that P(S) = 2S is the power set of S, the collection of all subsets of S,
and R is the set of Riemann integrable functions f : [a, b] → R.

(a) Prove that the cardinality of R is the same as the cardinality of P(R),
which is greater than the cardinality of R.

(b) Call two functions in R integrally equivalent if they differ only on a
zero set. Prove that the collection of integral equivalence classes of R has
the same cardinality as R, namely 2N.

(c) Is it better to count Riemann integrable functions or integral equivalence
classes of Riemann integrable functions?

(d) Show that f, g ∈ R are integrally equivalent if and only if the integral of
|f − g| is zero.

39. Consider the characteristic functions f(x) and g(x) of the intervals [1, 4] and
[2, 5]. The derivatives f ′ and g′ exist almost everywhere. The integration-by-
parts formula says that

∫ 3

0
f(x)g′(x) dx = f(3)g(3)− f(0)g(0)−

∫ 3

0
f ′(x)g(x) dx.

But both integrals are zero, while f(3)g(3)− f(0)g(0) = 1. Where is the error?

40. Set

f(x) =

{
0 if x ≤ 0

sin
π

x
if x > 0

and g(x) =

{
0 if x ≤ 0
1 if x > 0.

Prove that f has an antiderivative but g does not.

41. Show that any two antiderivatives of a function differ by a constant. [Hint:
This is a one-liner.]

42. Suppose that ψ : [c, d] → [a, b] is continuous and for every zero set Z ⊂ [a, b],
ψpre(Z) is a zero set in [c, d].

(a) If f is Riemann integrable, prove that f ◦ ψ is Riemann integrable.

(b) Derive Corollary 32 from (a).

37
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43. Let ψ(x) = x sin 1/x for 0 < x ≤ 1 and ψ(0) = 0.

(a) If f : [−1, 1] → R is Riemann integrable, prove that f ◦ ψ is Riemann
integrable.

(b) What happens for ψ(x) =
√
x sin 1/x?

*44. Assume that ψ : [c, d] → [a, b] is continuously differentiable.

(a) If the critical points of ψ form a zero set in [c, d] and f is Riemann inte-
grable on [a, b] prove that f ◦ ψ is Riemann integrable on [c, d].

(b) Conversely, prove that if f ◦ ψ is Riemann integrable for each Riemann
integrable f on [a, b], then the critical points of ψ form a zero set. [Hint:
Think in terms of Exercise 34.]

(c) Prove (a) and (b) under the weaker assumption that ψ is continuously
differentiable except at finitely many points of [c, d].

(d) Derive part (a) of Exercise 35 from (c).

(e) Weaken the assumption further to ψ being continuously differentiable on
an open subset of [c, d] whose complement is a zero set.

Remark The following assertion, to be proved in Chapter 6, is related to the
preceding exercises. If f : [a, b] → R satisfies a Lipschitz condition or is
monotone then the set of points at which f ′(x) fails to exist is a zero set.
Thus: “A Lipschitz function is differentiable almost everywhere,” which is
Rademacher’s Theorem in dimension 1, and a “monotone function is al-
most everywhere differentiable,” which is the last theorem in Lebesgue’s book,
Leçons sur l’intégration. See Theorem6.57 and Corollary 6.59.

45. (a) Define the oscillation for a function from one metric space to another,
f : M → N .

(b) Is it true that f is continuous at a point if and only if its oscillation is zero
there? Prove or disprove.

(c) Is the set of points at which the oscillation of f is ≥ 1/k closed in M?
Prove or disprove.

46. (a) Prove that the integral of the Zeno’s staircase function described on page 174
is 2/3.

(b) What about the Devil’s staircase?

47. In the proof of Corollary 28 of the Riemann-Lebesgue Theorem, it is asserted
that when φ is continuous the discontinuity set of φ ◦ f is contained in the
discontinuity set of f .

(a) Prove this.

(b) Give an example where the inclusion is not an equality.

(c) Find a sufficient condition on φ so that φ◦f and f have equal discontinuity
sets for all f ∈ R

(d) Is your condition necessary too?
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48. Assume that f ∈ R and for some m > 0 we have |f(x)| ≥ m for all x ∈ [a, b].
Prove that the reciprocal of f , 1/f(x), also belongs to R. If f ∈ R, |f(x)| > 0,
but no m > 0 is an underbound for |f |, prove that the reciprocal of f is not
Riemann integrable.

49. Corollary 28 to the Riemann-Lebesgue Theorem asserts that if f ∈ R and φ
is continuous, then φ ◦ f ∈ R. Show that piecewise continuity cannot replace
continuity. [Hint: Take f to be a ruler function and φ to be a characteristic
function.]

**50. Assume that f : [a, b] → [c, d] is a Riemann integrable bijection. Is the inverse
bijection also Riemann integrable? Prove or disprove.

51. If f, g are Riemann integrable on [a, b], and f(x) < g(x) for all x ∈ [a, b], prove

that
∫ b
a f(x) dx <

∫ b
a g(x) dx. (Note the strict inequality.)

52. Let f : [a, b] → R be given. Prove or give counterexamples to the following
assertions.

(a) f ∈ R⇒ |f | ∈ R.
(b) |f | ∈ R⇒ f ∈ R.
(c) f ∈ R and |f(x)| ≥ c > 0 for all x ⇒ 1/f ∈ R.
(d) f ∈ R⇒ f2 ∈ R.
(e) f2 ∈ R⇒ f ∈ R.
(f) f3 ∈ R⇒ f ∈ R.
(g) f2 ∈ R and f(x) ≥ 0 for all x ⇒ f ∈ R.

[Here f2 and f3 refer to the functions f(x) · f(x) and f(x) · f(x). f(x),
not the iterates.]

53. Given f, g ∈ R, prove that max(f, g) and min(f, g) are Riemann integrable,
where max(f, g)(x) = max(f(x), g(x)) and min(f, g)(x) = min(f(x), g(x)).

54. Assume that f, g : [0, 1] → R are Riemann integrable and f(x) = g(x) except
on the middle-thirds Cantor set C.

(a) Prove that f and g have the same integral.

(b) Is the same true if f(x) = g(x) except for x ∈ Q?

(c) How is this related to the fact that the characteristic function of Q is not
Riemann integrable?

55. Invent a continuous function f : R → R whose improper integral is zero, but
which is unbounded as x → −∞ and x → ∞. [Hint: f is far from monotone.]

56. Assume that f : R → R and that the restriction of f to each closed interval is
Riemann integrable.

(a) Formulate the concepts of conditional and absolute convergence of the
improper Riemann integral of f .

(b) Find an example that distinguishes them.



208 Functions of a Real Variable Chapter 3

57. Construct a function f : [−1, 1] → R such that

lim
r→0

(∫ −r

−1
f(x) dx+

∫ 1

r
f(x) dx

)
exists (and is a finite real number) but the improper integral

∫ 1
−1 f(x) dx does

not exist. Do the same for a function g : R → R such that

lim
R→∞

∫ R

−R
f(x) dx

exists but the improper integral
∫∞
−∞ g(x) dx fails to exist. [Hint: The functions

are not symmetric across 0.]

58. Let f : [0,∞) → [0,∞) and
∑

ak be given. Assume that for all sufficiently
large k and all x ∈ [k, k + 1) we have f(x) ≤ ak. Prove that divergence of the
improper integral

∫∞
0 f(x) dx implies divergence of

∑
ak.

59. Prove that if an ≥ 0 and
∑

an converges then
∑

(
√
an)/n converges.

60. (a) If
∑

an converges and (bn) is monotonic and bounded, prove that
∑

anbn
converges.

(b) If the monotonicity condition is dropped, or replaced by the assumption
that limn→∞ bn = 0, find a counterexample to convergence of

∑
anbn.

61. Find an example of a series of positive terms that converges despite the fact
that lim supn→∞ |an+1/an| = ∞. Infer that ρ cannot replace λ in the divergence
half of the ratio test.

62. Prove that if the terms of a sequence decrease monotonically, a1 ≥ a2 ≥ . . .,
and converge to 0 then the series

∑
ak converges if and only if the associated

dyadic series

a1 + 2a2 + 4a4 + 8a8 + · · · =
∑

2ka2k

converges. (I call this the block test because it groups the terms of the series
in blocks of length 2k−1.)

63. Prove that
∑

1/k(log(k))p converges when p > 1 and diverges when p ≤ 1.
Here k = 2, 3, . . .. [Hint: Integral test or block test.]

64. Concoct a series
∑

ak such that (−1)kak > 0, ak → 0, but the series diverges.

65. Compare the root and ratio tests.

(a) Show that if a series has exponential growth rate ρ then it has ratio lim sup
ρ. Infer that the ratio test is subordinate to the root test.

(b) Concoct a series such that the root test is conclusive but the ratio test is
not. Infer that the root test has strictly wider scope than the ratio test.

66. Show that there is no simple comparison test for conditionally convergent series:

(a) Find two series
∑

ak and
∑

bk such that
∑

bk converges conditionally,
ak/bk → 1 as k → ∞, and

∑
ak diverges.
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(b) Why is this impossible if the series
∑

bk is absolutely convergent?

67. An infinite product is an expression
∏

ck where ck > 0. The nth partial
product is Cn = c1 · · · cn. If Cn converges to a limit C �= 0 then the product
converges to C. Write ck = 1 + ak. If each ak ≥ 0 or each ak ≤ 0 prove that∑

ak converges if and only if
∏

ck converges. [Hint: Take logarithms.]

68. Show that conditional convergence of the series
∑

ak and the product
∏
(1+ak)

can be unrelated to each other:

(a) Set ak = (−1)k/
√
k. The series

∑
ak converges but the corresponding

product
∏
(1 + ak) diverges. [Hint: Group the terms in the product two

at a time.]

(b) When k is odd, set bk = 1/
√
k and bk+1 = 1/k − 1/

√
k. The series

∑
bk

diverges while the corresponding product
∏

k≥2(1 + bk) converges.

69. Consider a series
∑

ak and rearrange its terms by some bijection β : N → N,
forming a new series

∑
aβ(k). The rearranged series converges if and only if the

partial sums aβ(1) + . . .+ aβ(n) converge to a limit as n → ∞.

(a) Prove that every rearrangement of a convergent series of nonnegative terms
converges – and converges to the same sum as the original series.

(b) Do the same for absolutely convergent series.

*70. Let
∑

ak be given.

(a) If
∑

ak converges conditionally, prove that rearrangement totally alters its
convergence in the sense that some rearrangements

∑
bk of

∑
ak diverge to

+∞, others diverge to −∞, and others converge to any given real number.

(b) Infer that a series is absolutely convergent if and only if every rearrange-
ment converges. (The fact that rearrangement radically alters conditional
convergence shows that although finite addition is commutative, infinite
addition (i.e., summing a series) is not.)

**71. Suppose that
∑

ak converges conditionally. If
∑

bk is a rearrangement of
∑

ak,
let Y be the set of subsequential limits of (Bn) where Bn is the nth partial sum
of

∑
bk. That is, y ∈ Y if and only if some Bn�

→ y as � → ∞.

(a) Prove that Y is closed and connected.

(b) If Y is compact and nonempty, prove that
∑

bk converges to Y in the
sense that dH(Yn, Y ) → 0 as n → ∞, where dH is the Hausdorff metric on
the space of compact subsets of R and Yn is the closure of {Bm : m ≥ n}.
See Exercise 2.147.

(c) Prove that each closed and connected subset of R is the set of subsequential
limits of some rearrangement of

∑
ak.

The article, “The Remarkable Theorem of Lévy and Steinitz” by Peter
Rosenthal in the American Math Monthly of April 1987 deals with some
of these issues, including the higher dimensional situation.

(b) When k is odd, set bk = 1/
√
k and bk+1 = 1/k − 1/

√
k. The series

∑
bk

diverges while the corresponding product
∏

(1 + bk) converges
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**72. Absolutely convergent series can be multiplied in a natural way, the result being
their Cauchy product, ( ∞∑

i=0

ai

)⎛⎝ ∞∑
j=0

bj

⎞⎠ =
∞∑
k=0

ck

where ck = a0bk + a1bk−1 + · · ·+ akb0.

(a) Prove that
∑

ck converges absolutely.

(b) Formulate some algebraic laws for such products (commutativity, distribu-
tivity, and so on). Prove two of them.
[Hint for (a): Write the products aibj in an ∞×∞ matrix array M , and
let An, Bn, Cn be the nth partial sums of

∑
ai,
∑

bj ,
∑

ck. You are asked
to prove that (limAn)(limBn) = limCn. The product of the limits is the
limit of the products. The product AnBn is the sum of all the aibj in
the n × n corner submatrix of M and cn is the sum of its antidiagonal.
Now estimate AnBn − Cn. Alternately, assume that an, bn ≥ 0 and draw
a rectangle R with edges A,B. Observe that R is the union of rectangles
Rij with edges ai, bj .]

**73. With reference to Exercise 72,

(a) Reduce the hypothesis that both series
∑

ai and
∑

bj are absolutely con-
vergent to merely one being absolutely convergent and the other conver-
gent. (Exercises 72 and 73(a) are known as Mertens’ Theorem.)

(b) Find an example to show that the Cauchy product of two conditionally
convergent series may diverge.

**74. The Riemann ζ-function is defined to be ζ(s) =
∑∞

n=1 n
−s where s > 1. It

is the sum of the p-series when p = s. Establish Euler’s product formula,

ζ(s) =

∞∏
k=1

1

1− p−s
k

where pk is the kth prime number. Thus, p1 = 2, p2 = 3, and so on. Prove that
the infinite product converges. [Hint: Each factor in the infinite product is the
sum of a geometric series 1+ p−s

k +(p−s
k )2+ . . .. Replace each factor by its geo-

metric series and write out the nth partial product. Apply Mertens’ Theorem,
collect terms, and recall that every integer has a unique prime factorization.]



4
Function Spaces

1 Uniform Convergence and C0[a, b]

Points converge to a limit if they get physically closer and closer to it. What about

a sequence of functions? When do functions converge to a limit function? What

should it mean that they get closer and closer to a limit function? The simplest idea

is that a sequence of functions fn converges to a limit function f if for each x, the

values fn(x) converge to f(x) as n → ∞. This is called pointwise convergence:

A sequence of functions fn : [a, b] → R converges pointwise to a limit function

f : [a, b] → R if for each x ∈ [a, b] we have

lim
n→∞ fn(x) = f(x).

The function f is the pointwise limit of the sequence (fn) and we write

fn → f or lim
n→∞ fn = f.

Note that the limit refers to n → ∞, not to x → ∞. The same definition applies to

functions from one metric space to another.

The requirement of uniform convergence is stronger. The sequence of functions

fn : [a, b] → R converges uniformly to the limit function f : [a, b] → R if for each

ε > 0 there is an N such that for all n ≥ N and all x ∈ [a, b],

(1) |fn(x)− f(x)| < ε.

© Springer International Publishing Switzerland 2015
C.C. Pugh, Real Mathematical Analysis, Undergraduate Texts
in Mathematics, DOI 10.1007/978-3-319-17771-7
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The function f is the uniform limit of the sequence (fn) and we write

fn ⇒ f or unif lim
n→∞ fn = f.

Your intuition about uniform convergence is crucial. Draw a tube V of vertical

radius ε around the graph of f . For n large, the graph of fn must lie wholly in V .

See Figure 87. Absorb this picture!

Figure 87 The graph of fn is contained in the ε-tube around the graph of

f .

It is clear that uniform convergence implies pointwise convergence. The difference

between the two definitions is apparent in the following standard example.

Example Define fn : (0, 1) → R by fn(x) = xn. For each x ∈ (0, 1) it is clear that

fn(x) → 0. The functions converge pointwise to the zero function as n → ∞. They

do not converge uniformly. For if ε = 1/10 then the point xn = n
√

1/2 is sent by fn
to 1/2 and thus not all points x satisfy (1) when n is large. The graph of fn fails to

lie in the ε-tube V . See Figure 88.

The lesson to draw is that pointwise convergence of a sequence of functions is

frequently too weak a concept. Gravitating toward uniform convergence we ask the

natural question:

Which properties of functions are

preserved under uniform convergence?
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The answers are found in Theorem1, Exercise 4, Theorem6, and Theorem9. Uniform

limits preserve continuity, uniform continuity, integrability, and – with an additional

hypothesis – differentiability.

Figure 88 Non-uniform, pointwise convergence

1 Theorem If fn ⇒ f and each fn is continuous at x0 then f is continuous at x0.

In other words,

The uniform limit of continuous functions is continuous.

Proof For simplicity, assume that the functions have domain [a, b] and target R.

(See also Section 8 and Exercise 2.) Let ε > 0 and x0 ∈ [a, b] be given. There is an

N such that for all n ≥ N and all x ∈ [a, b] we have

|fn(x)− f(x)| < ε

3
.

The function fN is continuous at x0 and so there is a δ > 0 such that |x − x0| < δ

implies

|fN (x)− fN (x0)| < ε

3
.

Thus, if |x− x0| < δ then

|f(x)− f(x0)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (x0)|+ |fN (x0)− f(x0)|
≤ ε

3
+

ε

3
+

ε

3
= ε,

which completes the proof that f is continuous at x0.
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Without uniform convergence the theorem fails. For example, we can define

fn : [0, 1] → R as before, fn(x) = xn. Then fn(x) converges pointwise to the function

f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1.

The function f is not continuous and the convergence is not uniform. What about the

converse? If the limit and the functions are continuous, does pointwise convergence

imply uniform convergence? The answer is “no,” as is shown by xn on (0, 1). But

what if the functions have a compact domain of definition, [a, b]? The answer is still

“no.”

Example John Kelley refers to this as the growing steeple,

fn(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n2x if 0 ≤ x ≤ 1

n

2n− n2x if
1

n
≤ x ≤ 2

n

0 if
2

n
≤ x ≤ 1.

See Figure 89.

Then lim
n→∞ fn(x) = 0 for each x, and fn converges pointwise to the function

f = 0. Even if the functions have compact domain of definition, and are uniformly

bounded and uniformly continuous, pointwise convergence does not imply uniform

convergence. For an example, just multiply the growing steeple functions by 1/n.

The natural way to view uniform convergence is in a function space. Let Cb =

Cb([a, b],R) denote the set of all bounded functions [a, b] → R. The elements of Cb

are functions f, g, etc. Each is bounded. Define the sup norm on Cb as

‖f‖ = sup{|f(x)| : x ∈ [a, b]}.

The sup norm satisfies the norm axioms discussed in Chapter 1, page 28.

‖f‖ ≥ 0 and ‖f‖ = 0 if and only if f = 0

‖cf‖ = |c|‖f‖
‖f + g‖ ≤ ‖f‖+ ‖g‖.

As we observed in Chapter 2, any norm defines a metric. In the case at hand,

d(f, g) = sup{|f(x)− g(x)| : x ∈ [a, b]}
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Figure 89 The sequence of functions converges pointwise to the zero

function, but not uniformly.

Figure 90 The sup norm of f and the sup distance between f and g
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is the corresponding metric on Cb. See Figure 90. To distinguish the norm ‖f‖ =

sup |f(x)| from other norms on Cb we sometimes write ‖f‖sup for the sup norm.

The thing to remember is that Cb is a metric space whose elements are functions.

Ponder this.

2 Theorem Convergence with respect to the sup metric d is equivalent to uniform

convergence.

Proof If d(fn, f) → 0 then sup{|fnx − fx| : x ∈ [a, b]} → 0, so fn ⇒ f , and

conversely.

3 Theorem Cb is a complete metric space.

Proof Let (fn) be a Cauchy sequence in Cb. For each individual x0 ∈ [a, b] the values

fn(x0) form a Cauchy sequence in R since

|fn(x0)− fm(x0)| ≤ sup{|fn(x)− fm(x)| : x ∈ [a, b]} = d(fn, fm).

Thus, for each x ∈ [a, b],

lim
n→∞ fn(x)

exists. Define this limit to be f(x). It is clear that fn converges pointwise to f . In

fact, the convergence is uniform. For let ε > 0 be given. Since (fn) is a Cauchy

sequence with respect to d, there exists N such that m,n ≥ N imply

d(fn, fm) <
ε

2
.

Also, since fn converges pointwise to f , for each x ∈ [a, b] there exists an m = m(x) ≥
N such that

|fm(x)− f(x)| < ε

2
.

If n ≥ N and x ∈ [a, b] then

|fn(x)− f(x)| ≤ |fn(x)− fm(x)(x)|+ |fm(x)(x)− f(x)|
<

ε

2
+

ε

2
= ε.

Hence fn ⇒ f . The function f is bounded. For fN is bounded and for all x we

have |fN (x) − f(x)| < ε. Thus f ∈ Cb. By Theorem2, uniform convergence implies

d-convergence, d(fn, f) → 0, and the Cauchy sequence (fn) converges to a limit in

the metric space Cb.
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The preceding proof is subtle. The uniform inequality d(fn, f) < ε is derived by

nonuniform means – for each x we make a separate estimate using an m(x) depending

nonuniformly on x. It is a case of the ends justifying the means.

Let C0 = C0([a, b],R) denote the set of continuous functions [a, b] → R. Each

f ∈ C0 belongs to Cb since a continuous function defined on a compact domain is

bounded. That is, C0 ⊂ Cb.

4 Corollary C0 is a closed subset of Cb. It is a complete metric space.

Proof Theorem1 implies that a limit in Cb of a sequence of functions in C0 lies in

C0. That is, C0 is closed in Cb. A closed subset of a complete space is complete.

Just as it is reasonable to discuss the convergence of a sequence of functions we

can also discuss the convergence of a series of functions
∑

fk. Merely consider the

nth partial sum

Fn(x) =
n∑

k=0

fk(x).

It is a function. If the sequence of functions (Fn) converges to a limit function F

then the series converges, and we write

F (x) =

∞∑
k=0

fk(x).

If the sequence of partial sums converges uniformly then we say the series converges

uniformly. If the series of absolute values
∑ |fk(x)| converges then the series

∑
fk

converges absolutely.

5 Weierstrass M-test If
∑

Mk is a convergent series of constants and if fk ∈ Cb

satisfies ‖fk‖ ≤ Mk for all k then
∑

fk converges uniformly and absolutely.

Proof If n > m then the partial sums of the series of absolute values telescope as

d(Fn, Fm) ≤ d(Fn, Fn−1) + · · ·+ d(Fm+1, Fm)

=

n∑
k=m+1

‖fk‖ ≤
n∑

k=m+1

Mk.

Since
∑

Mk converges, the last sum is < ε when m,n are large. Thus (Fn) is Cauchy

in Cb, and by Theorem3 it converges uniformly.
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Next we ask how integrals and derivatives behave with respect to uniform con-

vergence. Integrals behave better than derivatives.

6 Theorem The uniform limit of Riemann integrable functions is Riemann inte-

grable, and the limit of the integrals is the integral of the limit,

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
unif lim
n→∞ fn(x) dx.

In other words, R, the set of Riemann integrable functions defined on [a, b], is a

closed subset of Cb and the integral functional f �→ ∫ ba f(x) dx is a continuous map

from R to R. This extends the regularity hierarchy to

Cb ⊃ R ⊃ C0 ⊃ C1 ⊃ · · · ⊃ C∞ ⊃ Cω.

Theorem6 gives the simplest condition under which the operations of taking limits

and integrals commute.

Proof Let fn ∈ R be given and assume that fn ⇒ f as n → ∞. By the Riemann-

Lebesgue Theorem, fn is bounded and there is a zero set Zn such that fn is continuous

at each x ∈ [a, b]�Zn. Theorem1 implies that f is continuous at each x ∈ [a, b]�>Zn,

while Theorem3 implies that f is bounded. Since >Zn is a zero set, the Riemann-

Lebesgue Theorem implies that f ∈ R. Finally∣∣∣∣∫ b

a
f(x) dx−

∫ b

a
fn(x) dx

∣∣∣∣ = ∣∣∣∣∫ b

a
f(x)− fn(x) dx

∣∣∣∣
≤
∫ b

a
|f(x)− fn(x)| dx ≤ d(f, fn)(b− a) → 0

as n → ∞. Hence the integral of the limit is the limit of the integrals.

7 Corollary If fn ∈ R and fn ⇒ f then the indefinite integrals converge uniformly,∫ x

a
fn(t) dt ⇒

∫ x

a
f(t) dt.

Proof As above,∣∣∣∣∫ x

a
f(t)dt−

∫ x

a
fn(t)dt

∣∣∣∣ ≤ d(fn, f)(x− a) ≤ d(fn, f)(b− a) → 0

when n → ∞.



Section 1 Uniform Convergence and C0[a, b] 219

8 Term by Term Integration Theorem A uniformly convergent series of inte-

grable functions
∑

fk can be integrated term-by-term in the sense that∫ b

a

∞∑
k=0

fk(x) dx =

∞∑
k=0

∫ b

a
fk(x) dx.

Proof The sequence of partial sums Fn converges uniformly to
∑

fk. Each Fn

belongs to R since it is the finite sum of members of R. According to Theorem6,

n∑
k=0

∫ b

a
fk(x) dx =

∫ b

a
Fn(x) dx →

∫ b

a

∞∑
k=0

fk(x) dx.

This shows that the series
∑∫ b

a fk(x) dx converges to
∫ b
a

∑
fk(x) dx.

9 Theorem The uniform limit of a sequence of differentiable functions is differen-

tiable provided that the sequence of derivatives also converges uniformly.

Proof We suppose that fn : [a, b] → R is differentiable for each n and that fn ⇒ f

as n → ∞. Also we assume that f ′
n ⇒ g for some function g. Then we show that f

is differentiable and in fact f ′ = g.

We first prove the theorem with a major loss of generality – we assume that each

f ′
n is continuous. Then f ′

n, g ∈ R and we can apply the Fundamental Theorem of

Calculus and Corollary 7 to write

fn(x) = fn(a) +

∫ x

a
f ′
n(t) dt ⇒ f(a) +

∫ x

a
g(t) dt.

Since fn ⇒ f we see that f(x) = f(a) +
∫ x
a g(t) dt and, again by the Fundamental

Theorem of Calculus, f ′ = g.

In the general case the proof is harder. Fix some x ∈ [a, b] and define

φn(t) =

⎧⎨⎩
fn(t)− fn(x)

t− x
if t �= x

f ′
n(x) if t = x

φ(t) =

⎧⎨⎩
f(t)− f(x)

t− x
if t �= x

g(x) if t = x.
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Each function φn is continuous since φn(t) converges to f ′
n(x) as t → x. Also it

is clear that φn converges pointwise to φ as n → ∞. We claim the convergence is

uniform. For any m,n the Mean Value Theorem applied to the function fm−fn gives

φm(t)− φn(t) =
(fm(t)− fn(t))− (fm(x)− fn(x))

t− x
= f ′

m(θ)− f ′
n(θ)

for some θ between t and x. Since f ′
n ⇒ g the difference f ′

m−f ′
n tends uniformly to 0 as

m,n → ∞. Thus (φn) is Cauchy in C0. Since C0 is complete, φn converges uniformly

to a limit function ψ, and ψ is continuous. As already remarked, the pointwise limit

of φn is φ, and so ψ = φ. Continuity of ψ = φ implies that g(x) = f ′(x).

10 Theorem A uniformly convergent series of differentiable functions can be differ-

entiated term-by-term, provided that the derivative series converges uniformly,( ∞∑
k=0

fk(x)

)′
=

∞∑
k=0

f ′
k(x).

Proof Apply Theorem9 to the sequence of partial sums.

Note that Theorem9 fails if we forget to assume the derivatives converge. For

example, consider the sequence of functions fn : [−1, 1] → R defined by

fn(x) =

√
x2 +

1

n
.

See Figure 91. The functions converge uniformly to f(x) = |x|, a nondifferentiable

function. The derivatives converge pointwise but not uniformly. Worse examples

are easy to imagine. In fact, a sequence of everywhere differentiable functions can

converge uniformly to a nowhere differentiable function. See Sections 4 and 7. It is one

of the miracles of the complex numbers that a uniform limit of complex differentiable

functions is complex differentiable, and automatically the sequence of derivatives

converges uniformly to a limit. Real and complex analysis diverge radically on this

point.

2 Power Series
As another application of the Weierstrass M -test we say a little more about the power

series
∑

ckx
k. A power series is a special type of series of functions, the functions
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Figure 91 The uniform limit of differentiable functions need not be

differentiable.

being constant multiples of powers of x. As explained in Section 3 of Chapter 3, its

radius of convergence is

R =
1

lim sup
k→∞

k
√|ck|

.

Its interval of convergence is (−R,R). If x ∈ (−R,R), the series converges and defines

a function f(x) =
∑

ckx
k, while if x �∈ [−R,R] the series diverges. More is true on

compact subintervals of (−R,R).

11 Theorem If r < R then the power series converges uniformly and absolutely on

the interval [−r, r].

Proof Choose β with r < β < R. For all large k, k
√|ck| < 1/β since β < R. Thus,

if |x| ≤ r then

|ckxk| ≤
(
r

β

)k
.

These are terms in a convergent geometric series and according to the M -test
∑

ckx
k

converges uniformly when x ∈ [−r, r].

12 Theorem A power series can be integrated and differentiated term-by-term on

its interval of convergence.
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For f(x) =
∑

ckx
k and |x| < R this means∫ x

0
f(t) dt =

∞∑
k=0

ck
k + 1

xk+1 and f ′(x) =
∞∑
k=1

kckx
k−1.

Proof The radius of convergence of the integral series is determined by the expo-

nential growth rate of its coefficients,

lim sup
k→∞

k

√∣∣∣ck−1

k

∣∣∣ = lim sup
k→∞

(|ck−1|1/(k−1))(k−1)/k

(
1

k

)1/k
.

Since (k− 1)/k → 1 and k−1/k → 1 as k → ∞, we see that the integral series has the

same radius of convergence R as the original series. According to Theorem8, term-

by-term integration is valid when the series converges uniformly, and by Theorem11,

the integral series does converge uniformly on every closed interval [−r, r] contained

in (−R,R).

A similar calculation for the derivative series shows that its radius of convergence

too is R. Term-by-term differentiation is valid provided the series and the derivative

series converge uniformly. Since the radius of convergence of the derivative series is

R, the derivative series does converge uniformly on every [−r, r] ⊂ (−R,R).

13 Theorem Analytic functions are smooth, i.e., Cω ⊂ C∞.

Proof An analytic function f is defined by a convergent power series. According to

Theorem12, the derivative of f is given by a convergent power series with the same

radius of convergence, so repeated differentiation is valid, and we see that f is indeed

smooth.

The general smooth function is not analytic, as is shown by the example

e(x) =
{

e−1/x if x > 0

0 if x ≤ 0

on page 149. Near x = 0, e(x) cannot be expressed as a convergent power series.

Power series provide a clean and unambiguous way to define functions, especially

trigonometric functions. The usual definitions of sine, cosine, etc. involve angles

and circular arc length, and these concepts seem less fundamental than the functions

being defined. To avoid circular reasoning, as it were, we declare that by definition

expx =

∞∑
k=0

xk

k!
sinx =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
cosx =

∞∑
k=0

(−1)kx2k

(2k)!
.
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We then must prove that these functions have the properties we know and love from

calculus. All three series are easily seen to have radius of convergence R = ∞.

Theorem12 justifies term-by-term differentiation, yielding the usual formulas,

exp′(x) = expx sin′(x) = cosx cos′(x) = − sinx.

The logarithm has already been defined as the indefinite integral
∫ x
1 1/t dt. We claim

that if |x| < 1 then log(1 + x) is given as the power series

log(1 + x) =

∞∑
k=1

(−1)k+1

k
xk.

To check this, we merely note that its derivative is the sum of a geometric series,

(log(1 + x))′ =
1

x+ 1
=

1

1− (−x)
=

∞∑
k=0

(−x)k =
∞∑
k=0

(−1)kxk.

The last is a power series with radius of convergence 1. Since term by term integration

of a power series inside its radius of convergence is legal, we integrate both sides of

the equation and get the series expression for log(1 + x) as claimed.

The functions ex and 1/(1+x2) both have perfectly smooth graphs, but the power

series for ex has radius of convergence ∞ while that of 1/(1 + x2) is 1. Why is this?

What goes “wrong” at radius 1? The function 1/(1+x2) doesn’t blow up or have bad

behavior at x = ±1 like log(1 + x) does. It’s because of C. The denominator 1 + x2

equals 0 when x = ±√−1. The bad behavior in C wipes out the good behavior in R.

3 Compactness and Equicontinuity in C0

The Heine-Borel theorem states that a closed and bounded set in Rm is compact.

On the other hand, closed and bounded sets in C0 are rarely compact. Consider, for

example, the closed unit ball

B = {f ∈ C0([0, 1],R) : ‖f‖ ≤ 1}.

To see that B is not compact we look again at the sequence fn(x) = xn. It lies in

B. Does it have a subsequence that converges (with respect to the metric d of C0)

to a limit in C0? No. For if fnk
converges to f in C0 then f(x) = lim

k→∞
fnk

(x). Thus

f(x) = 0 if x < 1 and f(1) = 1, but this function f does not belong to C0. The cause

of the problem is the fact that C0 is infinite-dimensional. In fact it can be shown
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that if V is a vector space with a norm then its closed unit ball is compact if and

only if the space is finite-dimensional. The proof is not especially hard.

Nevertheless, we want to have theorems that guarantee certain closed and bounded

subsets of C0 are compact. For we want to extract a convergent subsequence of func-

tions from a given sequence of functions. The simple condition that lets us go ahead

is equicontinuity. A sequence of functions (fn) in C0 is equicontinuous if

∀ε > 0 ∃ δ > 0 such that

|s− t| < δ and n ∈ N ⇒ |fn(s)− fn(t)| < ε.

The functions fn are equally continuous. The δ depends on ε but it does not depend

on n. Roughly speaking, the graphs of all the fn are similar. For total clarity, the

concept might better be labeled uniform equicontinuity, in contrast to pointwise

equicontinuity, which requires

∀ε > 0 and ∀x ∈ [a, b] ∃ δ > 0 such that

|x− t| < δ and n ∈ N ⇒ |fn(x)− fn(t)| < ε.

The definitions work equally well for sets of functions, not only sequences of functions.

The set E ⊂ C0 is equicontinuous if

∀ε > 0 ∃ δ > 0 such that

|s− t| < δ and f ∈ E ⇒ |f(s)− f(t)| < ε.

The crucial point is that δ does not depend on the particular f ∈ E. It is valid for all

f ∈ E simultaneously. To picture equicontinuity of a family E, imagine the graphs.

Their shapes are uniformly controlled. Note that any finite number of continuous

functions [a, b] → R forms an equicontinuous family so Figures 92 and 93 are only

suggestive.

The basic theorem about equicontinuity is the

14 Arzelà-Ascoli Theorem Every bounded equicontinuous sequence of functions

in C0([a, b],R) has a uniformly convergent subsequence.

Think of this as a compactness result. If (fn) is the sequence of equicontinuous

functions, the theorem amounts to asserting that the closure of the set {fn : n ∈ N}
is compact. Any compact metric space serves just as well as [a, b], and the target

space R can also be more general. See Section 8.
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Figure 92 Equicontinuity

Figure 93 Nonequicontinuity
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15 Lemma If (fk) is a subsequence of (gn) then for each k we have fk = gr for some

r ≥ k.

Proof By definition of what a subsequence is, fk = gnk
for some nk such that

1 ≤ n1 < n2 < · · · < nk. Hence r = nk ≥ k.

Proof of the Arzelà-Ascoli Theorem [a, b] has a countable dense subset D =

{d1, d2, . . .}. For instance we could take D = Q ∩ [a, b]. Boundedness of (fn) means

that for some constant M , all x ∈ [a, b], and all n ∈ N we have |fn(x)| ≤ M . Thus

(fn(d1)) is a bounded sequence of real numbers. Bolzano-Weierstrass implies that

some subsequence of it converges to a limit in R, say

f1,k(d1) → y1 as k → ∞.

The subsequence (f1,k) evaluated at the point d2 is also a bounded sequence in R,

and there exists a sub-subsequence (f2,k) such that f2,k(d2) converges to a limit in

R, say f2,k(d2) → y2 as k → ∞. The sub-subsequence evaluated at d1 still converges

to y1. Continuing in this way gives a nested family of subsequences (fm,k) such that

(fm,k) is a subsequence of (fm−1,k)

j ≤ m ⇒ fm,k(dj) → yj as k → ∞.

Now consider the diagonal subsequence (gm) = (fm,m). We claim that it converges

uniformly to a limit, which will complete the proof. First we show it converges

pointwise on D. Fix any j ∈ N and look at m � j. Lemma15 implies that fm,m =

fm−1,r1 for some r1 ≥ m. Applying the lemma again, we see that fm−1,r1 = fm−2,r2

for some r2 ≥ r1 ≥ m. Repetition gives

fm,m = fm−1,r1 = fm−2,r2 = · · · = fj,r

for some r = rm−j ≥ · · · ≥ r2 ≥ r1 ≥ m. Since r ≥ m this gives

gm(dj) = fm,m(dj) = fj,r(dj) → yj

as m → ∞.

We claim that gm(x) converges also at the other points x ∈ [a, b] and that the

convergence is uniform. It suffices to show that (gm) is a Cauchy sequence in C0.

Let ε > 0 be given. Equicontinuity gives a δ > 0 such that for all s, t ∈ [a, b] we

have

|s− t| < δ ⇒ |gm(s)− gm(t)| < ε

3
.
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Choose J large enough that every x ∈ [a, b] lies in the δ-neighborhood of some dj
with j ≤ J . Since D is dense and [a, b] is compact, this is possible. See Exercise 19.

Since {d1, . . . , dJ} is a finite set and gm(dj) converges for each dj , there is an N such

that for all �,m ≥ N and all j ≤ J ,

|gm(dj)− g�(dj)| < ε

3
.

If �,m ≥ N and x ∈ [a, b], choose dj with |dj − x| < δ and j ≤ J . Then

|gm(x)− g�(x)| ≤ |gm(x)− gm(dj)|+ |gm(dj)− g�(dj)|+ |g�(dj)− g�(x)|
≤ ε

3
+

ε

3
+

ε

3
= ε.

Hence (gm) is Cauchy in C0, it converges in C0, and the proof is complete.

Part of the preceding development can be isolated as the

16 Arzelà-Ascoli Propagation Theorem Pointwise convergence of an equicon-

tinuous sequence of functions on a dense subset of the domain propagates to uniform

convergence on the whole domain.

Proof This is the ε/3 part of the proof.

The example cited over and over again in the equicontinuity world is the following.

17 Corollary Assume that fn : [a, b] → R is a sequence of differentiable functions

whose derivatives are uniformly bounded. If for one point x0, the sequence (fn(x0)) is

bounded as n → ∞ then the sequence (fn) has a subsequence that converges uniformly

on the whole interval [a, b].

Proof Let M be a bound for the derivatives |f ′
n(x)|, valid for all n ∈ N and all

x ∈ [a, b]. Equicontinuity of (fn) follows from the Mean Value Theorem:

|s− t| < δ ⇒ |fn(s)− fn(t)| =
∣∣f ′

n(θ)
∣∣ |s− t| ≤ Mδ

for some θ between s and t. Thus, given ε > 0, the choice δ = ε/(M + 1) shows that

(fn) is equicontinuous.

Let C be a bound for |fn(x0)|, valid for all n ∈ N. Then

|fn(x)| ≤ |fn(x)− fn(x0)|+ |fn(x0)| ≤ M |x− x0|+ C

≤ M |b− a|+ C

shows that the sequence (fn) is bounded in C0. The Arzelà-Ascoli theorem then

supplies the uniformly convergent subsequence.
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Two other consequences of the same type are fundamental theorems in the fields

of ordinary differential equations and complex variables.

(a) A sequence of solutions to a continuous ordinary differential equation in Rm

has a subsequence that converges to a limit, and that limit is also a solution of

the ODE.

(b) A sequence of complex analytic functions that converges pointwise, converges

uniformly (on compact subsets of the domain of definition) and the limit is

complex analytic.

Finally, we give a topological interpretation of the Arzelà-Ascoli theorem.

18 Heine-Borel Theorem in a Function Space A subset E ⊂ C0 is compact if

and only if it is closed, bounded, and equicontinuous.

Proof Assume that E is compact. By Theorem2.65, it is closed and totally bounded.

This means that given ε > 0 there is a finite covering of E by neighborhoods in C0

having radius ε/3, say Nε/3(fk), with k = 1, . . . , n. Each fk is uniformly continuous

so there is a δ > 0 such that

|s− t| < δ ⇒ |fk(s)− fk(t)| < ε

3
.

If f ∈ E then for some k we have f ∈ Nε/3(fk), and |s− t| < δ implies

|f(s)− f(t)| ≤ |f(s)− fk(s)|+ |fk(s)− fk(t)|+ |fk(t)− f(t)|
<

ε

3
+

ε

3
+

ε

3
= ε

Thus E is equicontinuous.

Conversely, assume that E is closed, bounded, and equicontinuous. If (fn) is a

sequence in E then by the Arzelà-Ascoli theorem, some subsequence (fnk
) converges

uniformly to a limit. The limit lies in E since E is closed. Thus E is compact.

4 Uniform Approximation in C0

Given a continuous but nondifferentiable function f , we often want to make it

smoother by a small perturbation. We want to approximate f in C0 by a smooth

function g. The ultimately smooth function is a polynomial, and the first thing we

prove is a polynomial approximation result.

19 Weierstrass Approximation Theorem The set of polynomials is dense in

C0([a, b],R).



Section 4 Uniform Approximation in C0 229

Density means that for each f ∈ C0 and each ε > 0 there is a polynomial function

p(x) such that for all x ∈ [a, b],

|f(x)− p(x)| < ε.

There are several proofs of this theorem, and although they appear quite different

from each other, they share a common thread: The approximating function is built

from f by sampling the values of f and recombining them in some clever way. It is

no loss of generality to assume that the interval [a, b] is [0, 1]. We do so.

Proof #1 For each n ∈ N, consider the sum

pn(x) =

n∑
k=0

(
n

k

)
ckx

k(1− x)n−k,

where ck = f(k/n) and
(
n
k

)
is the binomial coefficient n!/k!(n − k)!. Clearly pn is a

polynomial. It is called a Bernstein polynomial. We claim that the nth Bernstein

polynomial converges uniformly to f as n → ∞. The proof relies on two formulas

about how the functions

rk(x) =

(
n

k

)
xk(1− x)n−k

whose graphs are shown in Figure 94 behave. They are

n∑
k=0

rk(x) = 1(2)

n∑
k=0

(k − nx)2rk(x) = nx(1− x).(3)

In terms of the functions rk we write

pn(x) =

n∑
k=0

ckrk(x) f(x) =

n∑
k=0

f(x)rk(x).

Then we divide the sum pn − f =
∑

(ck − f)rk into the terms where k/n is near x,

and other terms where k/n is far from x. More precisely, given ε > 0 we use uniform

continuity of f on [0, 1] to find δ > 0 such that |t− s| < δ implies |f(t)− f(s)| < ε/2.

Then we set

K1 = {k ∈ {0, . . . , n} :

∣∣∣∣kn − x

∣∣∣∣ < δ} and K2 = {0, . . . , n}�K1.
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Figure 94 The seven basic Bernstein polynomials of degree 6,(
6
k

)
xk(1− x)6−k, k = 0, . . . , 6

This gives

|pn(x)− f(x)| ≤
n∑

k=0

|ck − f(x)|rk(x)

=
∑
k∈K1

|ck − f(x)|rk(x) +
∑
k∈K2

|ck − f(x)|rk(x).

The factors |ck − f(x)| in the first sum are less than ε/2 since ck = f(k/n) and k/n

differs from x by less than δ. Since the sum of all the terms rk is 1 and the terms are

nonnegative, the first sum is less than ε/2. To estimate the second sum, use (3) to

write

nx(1− x) =
n∑

k=0

(k − nx)2rk(x) ≥
∑
k∈K2

(k − nx)2rk(x)

≥
∑
k∈K2

(nδ)2rk(x),
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since k ∈ K2 implies that (k − nx)2 ≥ (nδ)2. This implies that

∑
k∈K2

rk(x) ≤ nx(1− x)

(nδ)2
≤ 1

4nδ2

since maxx(1 − x) = 1/4 as x varies in [0, 1]. The factors |ck − f(x)| in the second

sum are at most 2M where M = ‖f‖. Thus the second sum is

∑
k∈K2

|ck − f(x)|rk(x) ≤ M

2nδ2
≤ ε

2

when n is large, completing the proof that |pn(x)− f(x)| < ε when n is large.

It remains to check the identities (2) and (3). The binomial coefficients satisfy

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k,(4)

which becomes (2) if we set y = 1−x. On the other hand, if we fix y and differentiate

(4) with respect to x once, and then again, we get

n(x+ y)n−1 =

n∑
k=0

(
n

k

)
kxk−1yn−k,(5)

n(n− 1)(x+ y)n−2 =

n∑
k=0

(
n

k

)
k(k − 1)xk−2yn−k.(6)

Note that the bottom term in (5) and the bottom two terms in (6) are 0. Multiplying

(5) by x and (6) by x2 and then setting y = 1− x in both equations gives

nx =
n∑

k=0

(
n

k

)
kxk(1− x)n−k =

n∑
k=0

krk(x),(7)

n(n− 1)x2 =
n∑

k=0

(
n

k

)
k(k − 1)xk(1− x)n−k =

n∑
k=0

k(k − 1)rk(x).(8)

The last sum is
∑

k2rk(x)−
∑

krk(x). Hence (7) and (8) become

n∑
k=0

k2rk(x) = n(n− 1)x2 +

n∑
k=0

krk(x) = n(n− 1)x2 + nx.(9)
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Using (2), (7), and (9) we get

n∑
k=0

(k − nx)2rk(x)

=

n∑
k=0

k2rk(x)− 2nx

n∑
k=0

krk(x) + (nx)2
n∑

k=0

rk(x)

= n(n− 1)x2 + nx− 2(nx)2 + (nx)2

= −nx2 + nx = nx(1− x),

as claimed in (3).

Proof #2 Let f ∈ C0([0, 1],R) be given and let g(x) = f(x)− (mx+ b) where

m =
f(1)− f(0)

1
and b = f(0).

Then g ∈ C0 and g(0) = 0 = g(1). If we can approximate g arbitrarily well by

polynomials, then the same is true of f since mx+ b is a polynomial. In other words

it is no loss of generality to assume that f(0) = f(1) = 0 in the first place. We do

so. Also, we extend f to all of R by defining f(x) = 0 for all x ∈ R� [0, 1]. Then we

consider a function

βn(t) = bn(1− t2)n − 1 ≤ t ≤ 1,

where the constant bn is chosen so that
∫ 1
−1 βn(t) dt = 1. As shown in Figure 95, βn

is a kind of polynomial bump function. For 0 ≤ x ≤ 1, set

Pn(x) =

∫ 1

−1
f(x+ t)βn(t) dt.

This is a weighted average of the values of f using the weight function βn. We claim

that Pn is a polynomial and Pn(x) ⇒ f(x) as n → ∞.

To check that Pn is a polynomial we use a change of variables, u = x+ t. Then,

for 0 ≤ u ≤ 1 we have

Pn(x) =

∫ x+1

x−1
f(u)βn(u− x) du =

∫ 1

0
f(u)βn(u− x) du

since f = 0 outside [0, 1]. The function βn(u−x) = bn(1−(u−x)2)n is a polynomial in

x whose coefficients are polynomials in u. The powers of x pull out past the integral

and we are left with these powers of x multiplied by numbers, namely, the integrals

of the polynomials in u times f(u). In other words, by merely inspecting the last

formula, it becomes clear that Pn(x) is a polynomial in x.
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Figure 95 The graph of the function β6(t) = 1.467(1− t2)6

To check that Pn ⇒ f as n → ∞, we need to estimate βn(t). We claim that if

δ > 0 then

(10) βn(t) ⇒ 0 as n → ∞ and δ ≤ |t| ≤ 1.

This is “clear” from Figure 95. Proceeding more rigorously and using the definition

of βn as βn(t) = bn(1− t2)n, we have

1 =

∫ 1

−1
βn(t) dt ≥

∫ 1/
√
n

−1/
√
n
bn(1− t2)n dt ≥ bn

2√
n
(1− 1

n
)n.

Since 1/e = lim
n→∞(1− 1/n)n, we see that for some constant c and all n,

bn ≤ c
√
n.

See also Exercise 31. Hence, if δ ≤ |t| ≤ 1 then

βn(t) = bn(1− t2)n ≤ c
√
n(1− δ2)n → 0 as n → ∞,

due to the fact that
√
n tends to ∞ more slowly than (1 − δ2)−n does as n → ∞.

This proves (10).

does
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From (10) we deduce that Pn ⇒ f as follows. Let ε > 0 be given. Uniform

continuity of f gives δ > 0 such that |t| < δ implies |f(x+ t)− f(x)| < ε/2. Since βn
has integral 1 on [−1, 1] we have

|Pn(x)− f(x)| =

∣∣∣∣∫ 1

−1
(f(x+ t)− f(x))βn(t) dt

∣∣∣∣
≤
∫ 1

−1
|f(x+ t)− f(x)|βn(t) dt

=

∫
|t|<δ

|f(x+ t)− f(x)|βn(t) dt+
∫
|t|≥δ

|f(x+ t)− f(x)|βn(t) dt.

The first integral is less than ε/2, while the second is at most 2M
∫
|t|≥δ βn(t) dt. By

(10), the second integral is less than ε/2 when n is large. Thus Pn ⇒ f as claimed.

Next we see how to extend this result to functions defined on a compact metric

space M instead of merely on an interval. A subset A of C0M = C0(M,R) is a

function algebra if it is closed under addition, scalar multiplication, and function

multiplication. That is, if f, g ∈ A and c is a constant then f + g, cf , and f · g belong

to A. For example, the set of polynomials is a function algebra. The function algebra

vanishes at a point p if f(p) = 0 for all f ∈ A. For example, the function algebra

of all polynomials with zero constant term vanishes at x = 0. The function algebra

separates points if for each pair of distinct points p1, p2 ∈ M there is a function

f ∈ A such that f(p1) �= f(p2). For example, the function algebra of all trigonometric

polynomials separates points of [0, 2π) and vanishes nowhere.

20 Stone-Weierstrass Theorem If M is a compact metric space and A is a func-

tion algebra in C0M that vanishes nowhere and separates points then A is dense in

C0M .

Although the Weierstrass Approximation Theorem is a special case of the Stone-

Weierstrass Theorem, the proof of the latter does not stand on its own; it depends

crucially on the former. We also need two lemmas.

21 Lemma If A vanishes nowhere and separates points then there exists f ∈ A with

specified values at any pair of distinct points.

Proof Given distinct points p1, p2 ∈ M , and given constants c1, c2, we seek a function

f ∈ A such that f(p1) = c1 and f(p2) = c2.
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Since A vanishes nowhere there exist g1, g2 ∈ A such that g1(p1) �= 0 �= g2(p2).

Then g = g21 + g22 belongs to A and vanishes at neither p1 nor p2. Since A separates

points there exists h ∈ A with different values at p1 and p2. Consider the matrix

H =

[
a ab

c cd

]
=

[
g(p1) g(p1)h(p1)

g(p2) g(p2)h(p2)

]
.

By construction a, c �= 0 and b �= d. Hence detH = acd− abc = ac(d− b) �= 0, H has

rank 2, and the linear equations

aξ + abη = c1

cξ + cdη = c2

have a solution (ξ, η). Then f = ξg + ηgh belongs to A and f(p1) = c1, f(p2) = c2.

22 Lemma The closure of a function algebra in C0M is a function algebra.

Proof Clear enough.

Proof of the Stone-Weierstrass Theorem Let A be a function algebra in C0M

that vanishes nowhere and separates points. We must show that A is dense in C0M .

Given F ∈ C0M and ε > 0, we must find G ∈ A such that for all x ∈ M we have

F (x)− ε < G(x) < F (x) + ε.(11)

First we observe that

f ∈ A ⇒ |f | ∈ A(12)

where A denotes the closure of A in C0M . Let ε > 0 be given. According to the

Weierstrass Approximation Theorem, there exists a polynomial p(y) such that

sup{|p(y)− |y|| : |y| ≤ ‖f‖} <
ε

2
(13)

After all, |y| is a continuous function defined on the interval [−‖f‖, ‖f‖]. The constant
term of p(y) is at most ε/2 since |p(0)−|0|| < ε/2. Let q(y) = p(y)− p(0). Then q(y)

is a polynomial with zero constant term and (13) becomes

|q(y)− |y|| < ε(14)

for all y ∈ [−‖f‖ , ‖f‖]. Write q(y) = a1y + a2y
2 + · · ·+ any

n and

g = a1f + a2f
2 + · · ·+ anf

n.
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(Here, fn denotes f · f · · · f .) Lemma22 states that A is an algebra, so g ∈ A.†
Besides, if x ∈ M and y = f(x) then

|g(x)− |f(x)|| = |q(y)− |y|| < ε.

Hence |f | ∈ A = A as claimed in (12).

Next we observe that if f, g belong to A, then max(f, g) and min(f, g) also belong

to A. For

max(f, g) =
f + g

2
+

|f − g|
2

min(f, g) =
f + g

2
− |f − g|

2
.

Repetition shows that the maximum and minimum of any finite number of functions

in A also belongs to A.

Now we return to (11). Let F ∈ C0M and ε > 0 be given. We are trying to find

G ∈ A whose graph lies in the ε-tube around the graph of F . Fix any distinct points

p, q ∈ M . According to Lemma21, we can find a function in A with specified values

at p, q, so there exists Hpq ∈ A that satisfies

Hpq(p) = F (p) and Hpq(q) = F (q).

Fix p and let q vary. Each q ∈ M has a neighborhood Uq such that

x ∈ Uq ⇒ F (x)− ε < Hpq(x).(15)

For Hpq(x) − F (x) + ε is a continuous function of x which is positive at x = q. See

Figure 96.

Compactness of M implies that finitely many of these neighborhoods Uq cover

M , say Uq1 , . . . , Uqn . Define

Gp(x) = max(Hpq1(x), . . . , Hpqn(x)).

Then Gp ∈ A and, as shown in Figure 97, for all x ∈ M we have

Gp(p) = F (p) and F (x)− ε < Gp(x).(16)

Continuity implies that each p has a neighborhood Vp such that

x ∈ Vp ⇒ Gp(x) < F (x) + ε.(17)
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Figure 96 For all x in a neighborhood of q we have Hpq(x) > F (x)− ε.

Figure 97 Gp is the maximum of Hpqi , i = 1, . . . , n.
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Figure 98 Gp(p) = F (p) and Gp > F − ε everywhere.

See Figure 98.

By compactness, finitely many of these neighborhoods cover M , say Vp1 , . . . , Vpm .

Set

G(x) = min(Gp1(x), . . . , Gpm(x)).

We know that G ∈ A and (16), (17) imply (11). See Figure 99.

23 Corollary Any 2π-periodic continuous function of x ∈ R can be uniformly ap-

proximated by a trigonometric polynomial

T (x) = a0 +

n∑
k=1

ak cos kx+

n∑
k=1

bk sin kx.

Proof Think of [0, 2π) parameterizing the circle S1 by x �→ (cosx, sinx). The circle

is compact, and 2π-periodic continuous functions on R become continuous functions

on S1. The trigonometric polynomials on S1 form an algebra T ⊂ C0S1 that vanishes

nowhere and separates points. The Stone-Weierstrass Theorem implies that T is dense

in C0S1.

†Since a function algebra need not contain constant functions, it was important that q has no

constant term. One should not expect that g = a0 + a1f + · · ·+ anf
n belongs to A.
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Figure 99 The graph of G lies in the ε-tube around the graph of F .

Here is a typical application of the Stone-Weierstrass Theorem: Consider a con-

tinuous vector field F : Δ → R2 where Δ is the closed unit disc in the plane, and

suppose that we want to approximate F by a vector field that vanishes (equals zero)

at most finitely often. A simple way to do so is to approximate F by a polynomial

vector field G. Real polynomials in two variables are finite sums

P (x, y) =
n∑

i,j=0

cijx
iyj

where the cij are constants. They form a function algebra A in C0(Δ,R) that sep-

arates points and vanishes nowhere. By the Stone-Weierstrass Theorem, A is dense

in C0, so we can approximate the components of F = (F1, F2) by polynomials

F1
•
= P F2

•
= Q.

(The symbol
•
= indicates “almost equal.”) The vector field (P,Q) then approximates

F . Changing the coefficients of P by a small amount ensures that P and Q have no

common polynomial factor and F vanishes at most finitely often.
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5 Contractions and ODEs
Fixed-point theorems are of great use in the applications of analysis, including the

basic theory of vector calculus such as the general implicit function theorem. If

f : M → M and for some p ∈ M we have f(p) = p then p is a fixed-point of f .

When must f have a fixed-point? This question has many answers, and the two most

famous are given in the next two theorems.

Let M be a metric space. A contraction of M is a mapping f : M → M such

that for some constant k < 1 and all x, y ∈ M we have

d(fx, fy) ≤ kd(x, y).

24 Banach Contraction Principle Suppose that f : M → M is a contraction and

the metric space M is complete. Then f has a unique fixed-point p and for any

x ∈ M , the iterate† fn(x) = f ◦ f ◦ · · · ◦ f(x) converges to p as n → ∞.

Brouwer Fixed-Point Theorem Suppose that f : Bm → Bm is continuous where

Bm is the closed unit ball in Rm. Then f has a fixed-point p ∈ Bm.

The proof of the first result is fairly easy, the second not. See Figure 100 to picture

a contraction and Section 10 of Chapter 5 for a proof of the Brouwer theorem.

Proof #1 of the Banach Contraction Principle Beautiful, simple, and dynam-

ical! See Figure 100. Choose any x0 ∈ M and define xn = fn(x0). We claim that for

all n ∈ N we have

d(xn, xn+1) ≤ knd(x0, x1).(18)

This is easy:

d(xn, xn+1) = d(f(xn−1), f(xn)) ≤ kd(xn−1, xn) ≤ k2d(xn−2, xn−1)

≤ . . . ≤ knd(x0, x1).

From this and a geometric series type of estimate, it follows that the sequence (xn)

is Cauchy. For let ε > 0 be given. Choose N large enough that

kN

1− k
d(x0, x1) < ε.(19)

†Note the abuse of notation. In the proof of the Stone-Weierstrass Theorem, fn(x) denotes the

nth power of the real number f(x), while here fn denotes the composition of f with itself n times.

Deal with it!
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Figure 100 f contracts M toward the fixed-point p.

Note that (19) needs the hypothesis k < 1. If N ≤ m ≤ n then (18) gives

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + . . .+ d(xn−1, xn)

≤ kmd(x0, x1) + km+1d(x0, x1) + . . .+ kn−1d(x0, x1)

= km(1 + k + . . .+ kn−m−1)d(x0, x1)

≤ kN
∞∑
�=0

k�d(x0, x1) =
kN

1− k
d(x0, x1) < ε.

Thus (xn) is Cauchy. Since M is complete, xn converges to some p ∈ M as n → ∞.

Let ε > 0 be given. For large n, the points xn and xn+1 lie in the ε-neighborhood

of p. Since f(xn) = xn+1, the map f moves xn a distance < 2ε, and since ε is

arbitrarily small, continuity of f implies f does not move p at all. It is a fixed-point

of f . Uniqueness of the fixed-point is immediate. After all, how can two points

simultaneously stay fixed and move closer together?

Proof #2 of the Banach Contraction Principle Choose any point x0 ∈ M and

choose r0 so large that f(Mr0(x0)) ⊂ Mr0(x0). Let B0 = Mr0(x0) and Bn =

fn(Bn−1). The diameter of Bn is at most kn diam(B0), and this tends to 0 as n → ∞.
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The sets Bn nest downward as n → ∞ and f sends Bn inside Bn+1. Since M is com-

plete, this implies that <Bn is a single point, say p, and f(p) = p.

Proof of Brouwer’s Theorem in Dimension One The closed unit 1-ball is the

interval [−1, 1] in R. If f : [−1, 1] → [−1, 1] is continuous then so is g(x) = x− f(x).

At the endpoints ±1, we have g(−1) ≤ 0 ≤ g(1). By the Intermediate Value Theorem,

there is a point p ∈ [−1, 1] such that g(p) = 0. That is, f(p) = p.

The proof in higher dimensions is harder. One proof is a consequence of the

general Stokes’ Theorem, and is given in Chapter 5. Another depends on algebraic

topology, a third on differential topology.

Ordinary Differential Equations

The qualitative theory of ordinary differential equations (ODEs) begins with the

basic existence/uniqueness theorem, Picard’s Theorem. Throughout, U is an open

subset of m-dimensional Euclidean space Rm.

A vector ODE on U is given as m simultaneous scalar equations

x′1 = f1(x1, x2, . . . , xm)

x′2 = f2(x1, x2, . . . , xm)

. . .

x′m = fm(x1, x2, . . . , xm)

dx1(t)

dt
= f1(x1(t), x2(t), . . . , xm(t))

dx2(t)

dt
= f2(x1(t), x2(t), . . . , xm(t))

. . .

dxm(t)

dt
= fm(x1(t), x2(t), . . . , xm(t))

hold identically and simultaneously. The functions x1(t), . . . , xm(t) are said to solve

the ODE with initial condition

(x1(0), x2(0), . . . , xm(0)).

where each fi is a function from U to R. One seeksm real-valued functions x 1(t), . . . ,

xm(t) such that
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The ODE can be expressed geometrically as follows. The m real-valued functions

fi can be combined into a vector function F (x) = (f1(x), . . . , fm(x)) where x =

(x1, . . . , xm). Thus F is a vector field on U , and we seek a trajectory of F , that

is, a curve γ : (a, b) → U such that a < 0 < b and for all t ∈ (a, b) we have

γ′(t) = F (γ(t)) and γ(0) = p.(20)

The components of γ are the functions xi(t) that solve the ODE and p is their initial

condition. I contend that this geometric view of an ODE as a vector field is the best

way to get intuition about it. See Figure 101.

Figure 101 γ is always tangent to the vector field F .

We think of the vector field F defining at each x ∈ U a vector F (x) whose foot

lies at x and to which γ must be tangent. The vector γ′(t) is (γ′1(t), . . . , γ′m(t)) where

γ1, . . . , γm are the components of γ. The trajectory γ(t) describes how a particle

travels with prescribed velocity F . At each time t, γ(t) is the position of the particle;

its velocity there is exactly the vector F at that point. Intuitively, trajectories should

exist because particles do move.

The contraction principle gives a way to find trajectories of vector fields, or what

is the same thing, to solve ODEs. We will assume that F satisfies a Lipschitz
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condition – there is a constant L such that for all points x, y ∈ U we have

|F (x)− F (y)| ≤ L|x− y|.

Here, | | refers to the Euclidean length of a vector. F, x, y are all vectors in Rm. It

follows that F is continuous. The Lipschitz condition is stronger than continuity, but

still fairly mild. Any differentiable vector field with a bounded derivative is Lipschitz.

25 Picard’s Theorem Given p ∈ U there exists an F -trajectory γ(t) in U through

p. This means that γ : (a, b) → U solves (20). Locally, γ is unique.

To prove Picard’s Theorem it is convenient to reexpress (20) as an integral equa-

tion; to do this we make a brief digression about vector-valued integrals. Let’s recall

four key facts about integrals of real-valued functions of a real variable, y = f(x),

a ≤ x ≤ b.

(a)
∫ b
a f(x) dx is approximated by Riemann sums R =

∑
f(tk)Δxk.

(b) Continuous functions are integrable.

(c) If f ′(x) exists and is continuous then
∫ b
a f ′(x) dx = f(b)− f(a).

(d)
∣∣∣∫ ba f(x) dx

∣∣∣ ≤ M(b− a) where M = sup |f(x)|.

The Riemann sum R in (a) has a = x0 ≤ · · · ≤ xk−1 ≤ tk ≤ xk ≤ · · · ≤ xn = b and

all the Δxk = xk − xk−1 are small.

Given a continuous vector-valued function of a real variable

f(x) = (f1(x), . . . , fm(x)),

a ≤ x ≤ b, we define its integral componentwise as the vector of integrals∫ b

a
f(x) dx =

(∫ b

a
f1(x) dx, . . . ,

∫ b

a
fm(x) dx

)
.

Corresponding to (a) - (d) are the following:

(a′)
∫ b
a f(x) dx is approximated by R = (R1, . . . , Rm), with Rj a Riemann sum for

fj .

(b′) Continuous vector-valued functions are integrable.

(c′) If f ′(x) exists and is continuous, then
∫ b
a f ′(x) dx = f(b)− f(a).

(d′)
∣∣∣∫ ba f(x) dx

∣∣∣ ≤ M(b− a) where M = sup |f(x)|.
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(a′), (b′), and (c′) are clear enough. To check (d′) we write

R =
∑

Rjej =
∑
j

∑
k

fj(tk)Δxkej

=
∑
k

∑
j

fj(tk)ejΔxk =
∑
k

f(tk)Δxk

where e1, . . . , em is the standard vector basis for Rm. Thus,

|R| ≤
∑
k

|f(tk)|Δxk ≤
∑
k

MΔxk = M(b− a).

By (a′), R approximates the integral, which implies (d′). (Note that a weaker inequal-

ity with M replaced by
√
mM follows immediately from (d). This weaker inequality

would suffice for most of what we do but it is inelegant.)

Now consider the following integral version of (20),

γ(t) = p+

∫ t

0
F (γ(s)) ds.(21)

A solution of (21) is by definition any continuous curve γ : (a, b) → U for which

(21) holds identically in t ∈ (a, b). By (b′) any solution of (21) is automatically

differentiable and its derivative is F (γ(t)). That is, every solution of (21) solves (20).

The converse is also clear, so solving (20) is equivalent to solving (21) for a continuous

function γ(t).

Proof of Picard’s Theorem Since F is continuous, there exist a compact neigh-

borhood N = N r(p) ⊂ U and a constant M such that |F (x)| ≤ M for all x ∈ N .

Choose τ > 0 such that

τM ≤ r and τL < 1.(22)

Consider the set C of all continuous functions γ, σ : [−τ, τ ] → N . With respect to

the metric

d(γ, σ) = sup{|γ(t)− σ(t)| : t ∈ [−τ, τ ]}
the set C is a complete metric space. Given γ ∈ C, define a new curve Φ(γ) as

Φ(γ)(t) = p+

∫ t

0
F (γ(s)) ds.

Solving (21) is the same as finding γ such that Φ(γ) = γ. That is, we seek a fixed

point of Φ.
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We just need to show that Φ is a contraction of C. Does Φ send C into itself?

Given γ ∈ C we see that Φ(γ)(t) is a continuous (in fact differentiable) vector-valued

function of t and that by (22),

|Φ(γ)(t)− p| =
∣∣∣∣∫ t

0
F (γ(s)) ds

∣∣∣∣ ≤ τM ≤ r.

Therefore, Φ does send C into itself. Φ contracts C because

d(Φ(γ),Φ(σ)) = sup
t

∣∣∣∣∫ t

0
F (γ(s))− F (σ(s)) ds

∣∣∣∣
≤ τ sup

s
|F (γ(s))− F (σ(s))|

≤ τ sup
s

L|γ(s)− σ(s)| ≤ τLd(γ, σ)

and τL < 1 by (22). Therefore Φ has a fixed-point γ, and Φ(γ) = γ implies that γ(t)

solves (21), which implies that γ is differentiable and solves (20).

Any other solution σ(t) of (20) defined on the interval [−τ, τ ] also solves (21) and

is a fixed-point of Φ, Φ(σ) = σ. Since a contraction mapping has a unique fixed-point,

γ = σ, which is what local uniqueness means.

The F -trajectories define a flow in the following way: To avoid the possibility that

trajectories cross the boundary of U (they “escape from U”) or become unbounded in

finite time (they “escape to infinity”) we assume that U is all of Rm. Then trajectories

can be defined for all time t ∈ R. Let γ(t, p) denote the trajectory through p. Imagine

all points p ∈ Rm moving in unison along their trajectories as t increases. They are

leaves on a river, motes in a breeze. The point p1 = γ(t1, p) at which p arrives after

time t1 moves according to γ(t, p1). Before p arrives at p1, however, p1 has already

gone elsewhere. This is expressed by the flow equation

γ(t, p1) = γ(t+ t1, p).

See Figure 102.

The flow equation is true because as functions of t both sides of the equation are

F -trajectories through p1, and the F -trajectory through a point is locally unique. It is

revealing to rewrite the flow equation with different notation. Setting ϕt(p) = γ(t, p)

gives

ϕt+s(p) = ϕt(ϕs(p)) for all t, s ∈ R.

ϕt is called the t-advance map. It specifies where each point moves after time t.

See Figure 103. The flow equation states that t �→ ϕt is a group homomorphism from
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Figure 102 The time needed to flow from from p to p2 is the sum of the

times needed to flow from p to p1 and from p1 to p2.

Figure 103 The t-advance map shows how a set A flows to a set ϕt(A).
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R into the group of motions of Rm. In fact each ϕt is a homeomorphism of Rm onto

itself and its inverse is ϕ−t. For ϕ−t ◦ ϕt = ϕ0 and ϕ0 is the time-zero map where

nothing moves at all, ϕ0 = identity map.

6* Analytic Functions
Recall from Chapter 3 that a function f : (a, b) → R is analytic if it can be expressed

locally as a power series. For each x ∈ (a, b) there exists a convergent power series∑
ckh

k such that for all x+ h near x we have

f(x+ h) =

∞∑
k=0

ckh
k.

As we have shown previously, every analytic function is smooth but not every smooth

function is analytic. In this section we give a necessary and sufficient condition that

a smooth function be analytic. It involves the speed with which the rth derivative

grows as r → ∞.

Let f : (a, b) → R be smooth. The Taylor series for f at x ∈ (a, b) is

∞∑
k=0

f (k)(x)

k!
hk.

Let I = [x − σ, x + σ] be a subinterval of (a, b), σ > 0, and denote by Mr the

maximum of |f (r)(t)| for t ∈ I. The derivative growth rate of f on I is

α = lim sup
r→∞

r

√
Mr

r!
.

Clearly, r
√

|f (r)(x)|/r! ≤ r
√

Mr/r!, so the radius of convergence

R =
1

lim sup
r→∞

r

√∣∣f (r)(x)
∣∣

r!

of the Taylor series at x satisfies
1

α
≤ R.

In particular, if α is finite the radius of convergence of the Taylor series is positive.
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26 Theorem If ασ < 1 then the Taylor series converges uniformly to f on the

interval I.

Proof Choose δ > 0 such that (α + δ)σ < 1. The Taylor remainder formula from

Chapter 3, applied to the (r − 1)st-order remainder, gives

f(x+ h)−
r−1∑
k=0

f (k)(x)

k!
hk =

f (r)(θ)

r!
hr

for some θ between x and x+ h. Thus, for r large we have∣∣∣∣∣f(x+ h)−
r−1∑
k=0

f (k)(x)

k!
hk

∣∣∣∣∣ ≤ Mr

r!
σr =

((
Mr

r!

)1/r
σ

)r

≤ ((α+ δ)σ)r.

Since (α+ δ)σ < 1, the Taylor series converges uniformly to f(x+ h) on I.

27 Theorem If f is expressed as a convergent power series f(x+h) =
∑

ckh
k with

radius of convergence R > σ then f has bounded derivative growth rate on I.

The proof of Theorem27 uses two estimates about the growth rate of factorials.

If you know Stirling’s formula they are easy, but we prove them directly.

lim
r→∞

r

√
rr

r!
= e(23)

0 < λ < 1 ⇒ lim sup
r→∞

r

√√√√ ∞∑
k=r

(
k

r

)
λk < ∞.(24)

Taking logarithms, applying the integral test, and ignoring terms that tend to

zero as r → ∞ gives

1

r
(log rr − log r!) = log r − 1

r
(log r + log(r − 1) + · · ·+ log 1)

∼ log r − 1

r

∫ r

1
log x dx = log r − 1

r
(x log x− x)

∣∣∣∣r
1

= 1− 1

r
,

which tends to 1 as r → ∞. This proves (23).
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To prove (24) we write λ = e−μ for μ > 0, and reason similarly:

∞∑
k=r

(
k

r

)
λk =

∞∑
k=r

k(k − 1)(k − 2) . . . (k − r + 1)

r!
e−kμ

≤ 1

r!

∞∑
k=r

kre−kμ ∼ 1

r!

∫ ∞

r
xre−μx dx

=
−1

r!
e−μx

(
xr

μ
+

rxr−1

μ2
+

r(r − 1)xr−2

μ3
+ · · ·+ r!

μr+1

)∣∣∣∣∞
r

≤ 1

r!
e−μr(r + 1)rr

(
1

min(1, μ)

)r+1

.

According to (23) the rth root of this quantity tends to e1−μ/min(1, μ) as r → ∞,

completing the proof of (24).

Proof of Theorem 27 By assumption the power series
∑

ckh
k has radius of con-

vergence R and σ < R. Since 1/R is the lim sup of k
√|ck| as k → ∞, there is a

number λ < 1 such that for all large k we have |ckσk| ≤ λk. Differentiating the series

term by term with |h| ≤ σ gives

|f (r)(x+ h)| ≤
∞∑
k=r

k(k − 1)(k − 2) . . . (k − r + 1)|ckhk−r|

≤ r!

σr

∞∑
k=r

(
k

r

)
|ckσk| ≤ r!

σr

∞∑
k=r

(
k

r

)
λk

for r large. Thus,

Mr = sup
|h|≤σ

|f (r)(x+ h)| ≤ r!

σr

∞∑
k=r

(
k

r

)
λk.

According to (24),

α = lim sup
r→∞

r

√
Mr

r!
≤ 1

σ
lim sup
r→∞

r

√√√√ ∞∑
k=r

(
k

r

)
λk < ∞,

and f has bounded derivative growth rate on I.

From Theorems 26 and 27 we deduce the main result of this section.

28 Analyticity Theorem A smooth function is analytic if and only if it has locally

bounded derivative growth rate.
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Proof Assume that f : (a, b) → R is smooth and has locally bounded derivative

growth rate. Then x ∈ (a, b) has a neighborhood N on which the derivative growth

rate α is finite. Choose σ > 0 such that I = [x − σ, x + σ] ⊂ N and ασ < 1. We

infer from Theorem26 that the Taylor series for f at x converges uniformly to f on

I. Hence f is analytic.

Conversely, assume that f is analytic and let x ∈ (a, b) be given. There is a power

series
∑

ckh
k that converges to f(x+h) for all h in some interval (−R,R) with R > 0.

Choose σ with 0 < σ < R. We infer from Theorem27 that f has bounded derivative

growth rate on I.

29 Corollary A smooth function is analytic if its derivatives are uniformly bounded.

An example of such a function is f(x) = sinx.

Proof If |f (r)(θ)| ≤ M for all r and θ then the derivative growth rate of f is bounded.

In fact, α = 0 and R = ∞.

30 Taylor’s Theorem If f(x) =
∑

ckx
k and the power series has radius of conver-

gence R then f is analytic on (−R,R).

Proof The function f is smooth, and by Theorem27 it has bounded derivative

growth rate on each compact interval I ⊂ (−R,R). Hence it is analytic.

Taylor’s Theorem states that not only can f be expanded as a convergent power

series at x = 0, but also at any other point x0 ∈ (−R,R). Other proofs of Taylor’s

theorem rely more heavily on series manipulations and Mertens’ theorem (Exercise 73

in Chapter 3).

The concept of analyticity extends immediately to complex functions. A function

f : D → C is complex analytic if D is an open subset of C and for each z ∈ D

there is a power series ∑
ckζ

k

such that for all z + ζ near z,

f(z + ζ) =

∞∑
k=0

ckζ
k.

The coefficients ck are complex and so is the variable ζ. Convergence occurs on a

disc of radius R. This lets us define ez, log z, sin z, cos z for the complex number z
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by setting

ez =
∞∑
k=0

zk

k!
log(1 + z) =

∞∑
k=1

(−1)k+1zk

k
when |z| < 1

sin z =

∞∑
k=0

(−1)kz2k+1

(2k + 1)!
cos z =

∞∑
k=0

(−1)kz2k

(2k)!
.

It is enlightening and reassuring to derive formulas such as

eiθ = cos θ + i sin θ

directly from these definitions. (Just plug in z = iθ and use the equations i2 =

−1, i3 = −i, i4 = 1, etc.) A key formula to check is ez+w = ezew. One proof involves

a manipulation of product series; a second merely uses analyticity. Another formula

is log(ez) = z.

There are many natural results about real analytic functions that can be proved

by direct power series means; e.g., the sum, product, reciprocal, composite, and

inverse function of analytic functions are analytic. Direct proofs, like those for the

Analyticity Theorem above, involve major series manipulations. The use of complex

variables leads to greatly simplified proofs of these real variable theorems, thanks to

the following fact.

Real analyticity propagates to complex analyticity and

complex analyticity is equivalent to complex differentiability.†

For it is relatively easy to check that the composition, etc., of complex differentiable

functions is complex differentiable.

The analyticity concept extends even beyond C. You may already have seen such

an extension when you studied the vector linear ODE

x′ = Ax

in calculus. A is a given m × m matrix and the unknown solution x = x(t) is a

vector function of t, on which an initial condition x(0) = x0 is usually imposed. A

†A function f : D → C is complex differentiable or holomorphic if D is an open subset of C

and for each z ∈ D, the limit of
Δf

Δz
=

f(z +Δz)− f(z)

Δz

exists as Δz → 0 in C. The limit, if it exists, is a complex number.
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vector ODE is equivalent to m coupled, scalar, linear ODEs. The solution x(t) can

be expressed as

x(t) = etAx0

where

etA = lim
n→∞(I + tA+

1

2!
(tA)2 + · · ·+ 1

n!
(tA)n) =

∞∑
k=0

tk

k!
Ak.

I is the m×m identity matrix. View this series as a power series with kth coefficient

tk/k! and variable A. (A is a matrix variable!) The limit exists in the space of all

m×m matrices, and its product with the constant vector x0 does indeed give a vector

function of t that solves the original linear ODE.

The previous series defines the exponential of a matrix as eA =
∑

Ak/k!. You

might ask yourself – is there such a thing as the logarithm of a matrix? A function that

assigns to a matrix its matrix logarithm? A power series that expresses the matrix

logarithm? What about other analytic functions? Is there such a thing as the sine

of a matrix? What about inverting a matrix? Is there a power series that expresses

matrix inversion? Are formulas such as logA2 = 2 logA true? These questions are

explored in nonlinear functional analysis.

A terminological point on which to insist is that the word “analytic” be defined as

“locally power series expressible.” In the complex case, some mathematicians define

complex analyticity as complex differentiability, and although complex differentiabil-

ity turns out to be equivalent to local expressibility as a complex power series, this is

a very special feature of C. In fact it is responsible for every distinction between real

and complex analysis. For cross-theory consistency, then, one should use the word

“analytic” to mean local power series expressible, and use “differentiable” to mean

differentiable. Why confound the two ideas?

7* Nowhere Differentiable Continuous Functions

Although many continuous functions, such as |x|, 3
√
x, and x sin(1/x) fail to be dif-

ferentiable at a few points, it is quite surprising that there can exist a function which

is everywhere continuous but nowhere differentiable.

31 Theorem There exists a continuous function f : R → R that has a derivative at

no point whatsoever.
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Proof The construction is due to Weierstrass. The letters k,m, n denote integers.

Start with a sawtooth function σ0 : R → R defined as

σ0(x) =

{
x− 2n if 2n ≤ x ≤ 2n+ 1

2n+ 2− x if 2n+ 1 ≤ x ≤ 2n+ 2.

σ0 is periodic with period 2; if t = x + 2m then σ0(t) = σ0(x). The compressed

sawtooth function

σk(x) =

(
3

4

)k
σ0(4

kx)

has period πk = 2/4k. If t = x+mπk then σk(t) = σk(x). See Figure 104.

0

0

2 4 6

1 3 52 4 6

Figure 104 The graphs of the sawtooth function and two compressed

sawtooth functions
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According to the M -test, the series
∑

σk(x) converges uniformly to a limit f , and

f(x) =

∞∑
k=0

σk(x)

is continuous. We claim that f is nowhere differentiable. Fix an arbitrary point x,

and set δn = 1/2 · 4n. We will show that

Δf

Δx
=

f(x± δn)− f(x)

δn

does not converge to a limit as δn → 0, and thus that f ′(x) does not exist. The

quotient is

Δf

Δx
=

∞∑
k=0

σk(x± δn)− σk(x)

δn
.

There are three types of terms in the series, k > n, k = n, and k < n. If k > n then

σk(x± δn)− σk(x) = 0. For δn is an integer multiple of the period of σk,

δn =
1

2 · 4n = 4k−(n+1) · 2

4k
= 4k−(n+1) · πk.

Thus the infinite series expression for Δf/Δx reduces to a sum of n+ 1 terms

Δf

Δx
=

σn(x± δn)− σn(x)

δn
+

n−1∑
k=0

σk(x± δk)− σk(x)

δk
.

The function σn is monotone on either [x− δn, x] or [x, x+ δn], since it is monotone

on intervals of length 4−n and the contiguous interval [x − δn, x, x + δn] at x is of

length 4−n. The slope of σn is ±3n. Thus, either∣∣∣∣σn(x+ δn)− σn(x)

δn

∣∣∣∣ = 3n or

∣∣∣∣σn(x− δn)− σn(x)

δn

∣∣∣∣ = 3n.

The terms with k < n are crudely estimated from the slope of σk being ±3k:∣∣∣∣σk(x± δk)− σk(x)

δk

∣∣∣∣ ≤ 3k.

Thus ∣∣∣∣Δf

Δx

∣∣∣∣ ≥ 3n − (3n−1 + · · ·+ 1) = 3n − 3n − 1

3− 1
=

1

2
(3n + 1),

which tends to ∞ as δn → 0, so f ′(x) does not exist.
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By simply writing down a sawtooth series as above, Weierstrass showed that

there exists a nowhere differentiable continuous function. Yet more amazing is the

fact that most continuous functions (in a reasonable sense defined below) are nowhere

differentiable. If you could pick a continuous function at random, it would be nowhere

differentiable.

Recall that the set D ⊂ M is dense in M if D meets every nonempty open subset

W of M , D∩W �= ∅. The intersection of two dense sets need not be dense; it can be

empty, as is the case with Q and Qc in R. On the other hand if U, V are open-dense

sets in M then U ∩ V is open-dense in M . For if W is any nonempty open subset of

M then U ∩W is a nonempty open subset of M , and by denseness of V , we see that

V meets U ∩W ; i.e., U ∩ V ∩W is nonempty and U ∩ V meets W .

Moral Open dense sets do a good job of being dense.

The countable intersection G = <Gn of open-dense sets is called a thick (or

residual†) subset of M , due to the following result, which we will apply in the

complete metric space C0([a, b],R). Extending our vocabulary in a natural way we

say that the complement of a thick set is thin (or meager). A subset H of M is thin

if and only if it is a countable union of nowhere dense closed sets, H = >Hn. Clearly,

thickness and thinness are topological properties. A thin set is the topological analog

of a zero set (a set whose outer measure is zero).

32 Baire’s Theorem Every thick subset of a complete metric space M is dense in

M . A nonempty, complete metric space is not thin. That is, if M is the union of

countably many closed sets then at least one has nonempty interior.

If all points in a thick subset of M satisfy some condition then the condition is

said to be generic. We also say that “most” points of M obey the condition. As a

consequence of Baire’s theorem and the Weierstrass Approximation Theorem we will

prove

33 Theorem The generic f ∈ C0 = C0([a, b],R) is differentiable at no point of [a, b],

nor does it even have a left or right derivative at any x ∈ [a, b], nor is it monotone

on any subinterval of [a, b].

Using Lebesgue’s monotone differentiation theorem from Chapter 6 (monotonicity

implies differentiability almost everywhere), one can see that the second assertion

follows from the first, but below we give a direct proof.

†“Residual” is an unfortunate choice of words. It connotes smallness, when it should connote just

the opposite.
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Before getting into the proofs of Baire’s theorem and Theorem33, we further

discuss thickness, thinness, and genericity. The empty set is always thin and the full

space M is always thick in itself. A single open-dense subset is thick and a single

closed nowhere dense subset is thin. R�Z is a thick subset of R and the Cantor set is

a thin subset of R. Likewise R is a thin subset of R2. The generic point of R does not

lie in the Cantor set. The generic point of R2 does not lie on the x-axis. Although

R�Z is a thick subset of R it is not a thick subset of R2. The set Q is a thin subset

of R. It is the countable union of its points, each of which is a closed nowhere dense

set. Qc is a thick subset of R. The generic real number is irrational. In the same

vein:

(a) The generic square matrix has determinant �= 0.

(b) The generic linear transformation Rm → Rm is an isomorphism.

(c) The generic linear transformation Rm → Rm−k is onto.

(d) The generic linear transformation Rm → Rm+k is one-to-one.

(e) The generic pair of lines in R3 are skew (nonparallel and disjoint).

(f) The generic plane in R3 meets the three coordinate axes in three distinct points.

(g) The generic nth-degree polynomial has n distinct roots.

In an incomplete metric space such as Q, thickness and thinness have no bite –

every subset of Q, even the empty set, is thick in Q.

Proof of Baire’s Theorem If M = ∅, the proof is trivial, so we assume M �= ∅.
Let G = <Gn be a thick subset of M , each Gn being open-dense in M . Let p0 ∈ M

and ε > 0 be given. Choose a sequence of points pn ∈ M and radii rn > 0 such that

rn < 1/n and

M2r1(p1) ⊂ Mε(p0)

M2r2(p2) ⊂ Mr1(p1) ∩G1

· · ·
M2rn(pn) ⊂ Mrn−1(pn−1) ∩G1 ∩ · · · ∩Gn−1.

See Figure 105. Then

Mε(p0) ⊃ M r1(p1) ⊃ M r2(p2) ⊃ . . . .

The diameters of these closed sets tend to 0 as n → ∞. Thus (pn) is a Cauchy

sequence and it converges to some p ∈ M by completeness. The point p belongs to

each set M rn(pn) and therefore it belongs to each Gn. Thus p ∈ G ∩Mε(p0) and G

is dense in M .
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Figure 105 The closed neighborhoods M rn(pn) nest down to a point.

To check that M is not thin, we take complements. Suppose that M = >Kn and

Kn is closed. If each Kn has empty interior then each Gn = Kc
n is open-dense and

G = <Gn = (>Kn)
c = ∅,

a contradiction to density of G.

34 Corollary No subset of a complete nonempty metric space is both thick and thin.

Proof If S is both a thick and thin subset of M then M� S is also both thick and

thin. The intersection of two thick subsets of M is thick, so ∅ = S ∩ (M� S) is a

thick subset of M . By Baire’s Theorem, this empty set is dense in M , so M is empty,

contrary to the hypothesis.

Proof of Theorem 33 For n ∈ N define

Rn = {f ∈ C0 : ∀x ∈ [a, b− 1/n] ∃h > 0 such that

∣∣∣∣Δf

h

∣∣∣∣ > n}

Ln = {f ∈ C0 : ∀x ∈ [a+ 1/n, b] ∃h < 0 such that

∣∣∣∣Δf

h

∣∣∣∣ > n}

Gn = {f ∈ C0 : f restricted to any interval of length 1/n is nonmonotone},
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where Δf = f(x+ h)− f(x). We claim that each of these sets is open-dense in C0.

To check denseness it is enough to prove that the closures of Rn, Ln, and Gn

contain the set P of polynomials. For by the Weierstrass Approximation Theorem P
is dense in C0. (A set whose closure contains a dense set is dense itself.)

Fix n, fix a P ∈ P, and let ε > 0 be given. Consider a sawtooth function σ which

has period < 1/n, size < ε, and

min
x

{|slopex(σ)|} > n+max
x

{|slopex(P )|}

Since the slopes of σ are far greater than those of P , the slopes of f = P +σ alternate

in sign with period < 1/2n. At any x ∈ [a, b−1/n], f has a rightward slope of either

n or −n. Thus f ∈ Rn. Likewise f ∈ Ln and f ∈ Gn, so the three sets are dense in

C0.

Next we prove Rn is open. Let f ∈ Rn be given. For each x ∈ [a, b− 1/n] there

is an h = h(x) > 0 such that ∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ > n.

Since f is continuous, there is a neighborhood Tx of x in [a, b] and a constant ν =

ν(x) > 0 such that this same h yields∣∣∣∣f(t+ h)− f(t)

h

∣∣∣∣ > n+ ν

for all t ∈ Tx. Since [a, b− 1/n] is compact, finitely many of these neighborhoods Tx

cover it, say Tx1 , . . . , Txm . Continuity of f implies that for all t ∈ T xi we have∣∣∣∣f(t+ hi)− f(t)

hi

∣∣∣∣ ≥ n+ νi,(25)

where hi = h(xi) and νi = ν(xi). These m inequalities for points t in the m sets Txi

remain nearly valid if f is replaced by a function g with d(f, g) small enough. Then

(25) becomes ∣∣∣∣g(t+ hi)− g(t)

hi

∣∣∣∣ > n,(26)

which means that g ∈ Rn and Rn is open in C0. Similarly Ln is open in C0.

Checking that Gn is open is easier. If (fk) is a sequence of functions in Gc
n and

fk ⇒ f then we must show that f ∈ Gc
n. Each fk is monotone on some interval Ik
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of length 1/n. There is a subsequence of these intervals that converges to a limit

interval I. Its length is 1/n and by uniform convergence, f is monotone on I. Hence

Gc
n is closed and Gn is open, which completes the proof that each set Rn, Ln, Gn is

open-dense in C0.

Finally, if f belongs to the thick set

∞
<
n=1

Rn ∩ Ln ∩Gn

then for each x ∈ [a, b] there are sequences h±n �= 0 such that h−n < 0 < h+n and∣∣∣∣f(x+ h−n )− f(x)

h−n

∣∣∣∣ > n

∣∣∣∣f(x+ h+n )− f(x)

h+n

∣∣∣∣ > n.

The numerator of these fractions is at most 2‖f‖, so h±n → 0 as n → ∞. Thus f is

not differentiable at x, nor does it even have a left or right derivative at x. Also, f

is nonmonotone on every interval of length 1/n. Since every interval J contains an

interval of length 1/n when n is large enough, f is nonmonotone on J .

Further generic properties of continuous functions have been studied, and you

might read about them in the books A Primer of Real Functions by Ralph Boas,

Differentiation of Real Functions by Andrew Bruckner, or A Second Course in Real

Functions by van Rooij and Schikhof.

8* Spaces of Unbounded Functions
When we contemplate equicontinuity, how important is it that the functions we deal

with are bounded, or have domain [a, b] and target R? To some extent we can replace

[a, b] with a metric space X and R with a complete metric space Y . Let F denote

the set of all functions f : X → Y . Recall from Exercise 2.116 that the metric dY on

Y gives rise to a bounded metric

ρ(y, y′) =
dY (y, y

′)
1 + dY (y, y′)

,

where y, y′ ∈ Y . Note that ρ < 1. Convergence and Cauchyness with respect to ρ and

dY are equivalent. Thus completeness of Y with respect to dY implies completeness

with respect to ρ. In the same way we give F the metric

d(f, g) = sup
x∈X

dY (fx, gx)

1 + dY (fx, gx)
.
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A function f ∈ F is bounded with respect to dY if and only if for any constant

function c we have supx dY (f(x), c) < ∞; i.e., d(f, c) < 1. Unbounded functions have

d(f, c) = 1.

35 Theorem In the space F equipped with the metric d,

(a) Uniform convergence of (fn) is equivalent to d-convergence.

(b) Completeness of Y implies completeness of F.
(c) The set Fb of bounded functions is closed in F.
(d) The set C0(X,Y ) of continuous functions is closed in F.

Proof (a) f = unif lim
n→∞ fn means that dY (fn(x), f(x)) ⇒ 0, which means that

d(fn, f) → 0.

(b) If (fn) is Cauchy in F and Y is complete then, just as in Section 1, f(x) =

lim
n→∞ fn(x) exists for each x ∈ X. Cauchyness with respect to the metric d implies

uniform convergence and thus d(fn, f) → 0.

(c) If fn ∈ Fb and d(fn, f) → 0 then supx dY (fn(x), f(x)) → 0. Since fn is

bounded, so is f .

(d) The proof that C0 is closed in F is the same as in Section 1.

The Arzelà-Ascoli theorem is trickier. A family E ⊂ F is uniformly equicon-

tinuous if for each ε > 0 there is a δ > 0 such that f ∈ E and dX(x, t) < δ imply

dY(f(x), f(t)) < ε. If the δ depends on x but not on f ∈ E then E is pointwise

equicontinuous.

36 Theorem Pointwise equicontinuity implies uniform equicontinuity if X is com-

pact.

Proof Suppose not. Then there exists ε > 0 such that for each δ = 1/n we have

points xn, tn ∈ X and functions fn ∈ E with dX(xn, tn) < 1/n and dY (fn(xn), fn(tn)) ≥
ε. By compactness of X we may assume that xn → x0. Then tn → x0, which leads

to a contradiction of pointwise equicontinuity at x0.

37 Theorem If the sequence of functions fn : X → Y is uniformly equicontinuous,

X is compact, and for each x ∈ X, the sequence (fn(x)) lies in a compact subset of

Y , then (fn) has a uniformly convergent subsequence.

Proof Being compact, X has a countable dense subset D. Then the proof of the

Arzelà Ascoli Theorem in Section 3 becomes a proof of Theorem37.
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The space X is σ-compact if it is a countable union of compact sets, X = >Xi.

For example Z,Q,R and Rm are σ-compact, while any uncountable set equipped with

the discrete metric is not σ-compact.

38 Theorem If X is σ-compact and if (fn) is a sequence of pointwise equicontinuous

functions such that for each x ∈ X, the sequence (fn(x)) lies in a compact subset of

Y , then (fn) has a subsequence that converges uniformly to a limit on each compact

subset of X.

Proof Express X as >Xi with Xi compact. By Theorem36 (fn|Xi) is uniformly

equicontinuous. By Theorem37 there is a subsequence f1,n that converges uniformly

on X1, and it has a sub-subsequence f2,n that converges uniformly on X2, and so

on. A diagonal subsequence (gm) converges uniformly on each Xi. Thus (gm) con-

verges pointwise. If A ⊂ X is compact, then (gm|A) is uniformly equicontinuous and

pointwise convergent. By the proof of the Arzelà Ascoli propagation theorem, (gm|A)
converges uniformly.

39 Corollary If (fn) is a sequence of pointwise equicontinuous functions R → R,

and for some x0 ∈ R, (fn(x0)) is bounded then (fn) has a subsequence that converges

uniformly on every compact subset of R.

Proof Let [a, b] be any interval containing x0. By Theorem36, the restrictions of fn
to [a, b] are uniformly equicontinuous, and there is a δ > 0 such that if t, s ∈ [a, b]

then |t−s| < δ implies that |fn(t)−fn(s)| < 1. Each point x ∈ [a, b] can be reached in

≤ N steps of length < δ, starting at x0, if N > (b−a)/δ. Thus |fn(x)| ≤ |fn(x0)|+N ,

and (fn(x)) is bounded for each x ∈ R. A bounded subset of R has compact closure

and Theorem38 gives the corollary.
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Exercises

In these exercises, C0 = C0([a, b],R) is the space of continuous real-valued func-
tions defined on the closed interval [a, b]. It is equipped with the sup norm, ‖f‖ =
sup{|f(x)| : x ∈ [a, b]}.

1. Let M,N be metric spaces.

(a) Formulate the concepts of pointwise convergence and uniform convergence
for sequences of functions fn : M → N .

(b) For which metric spaces are the concepts equivalent?

2. Suppose that fn ⇒ f where f and fn are functions from the metric space
M to the metric space N . (Assume nothing about the metric spaces such
as compactness, completeness, etc.) If each fn is continuous prove that f is
continuous. [Hint: Review the proof of Theorem1.]

3. Let fn : [a, b] → R be a sequence of piecewise continuous functions, each of
which is continuous at the point x0 ∈ [a, b]. Assume that fn ⇒ f as n → ∞.

(a) Prove that f is continuous at x0. [Hint: Review the proof of Theorem1.]

(b) Prove or disprove that f is piecewise continuous.

4. (a) If fn : R → R is uniformly continuous for each n ∈ N and if fn ⇒ f as
n → ∞, prove or disprove that f is uniformly continuous.

(b) What happens for functions from one metric space to another instead of
R to R?

5. Suppose that fn : [a, b] → R and fn ⇒ f as n → ∞. Which of the following
discontinuity properties (see Exercise 3.36) of the functions fn carries over to
the limit function? (Prove or give a counterexample.)

(a) No discontinuities.

(b) At most ten discontinuities.

(c) At least ten discontinuities.

(d) Finitely many discontinuities.

(e) Countably many discontinuities, all of jump type.

(f) No jump discontinuities.

(g) No oscillating discontinuities.

**6. (a) Prove that C0 and R have equal cardinality. [Clearly there are at least
as many functions as there are real numbers, for C0 includes the constant
functions. The issue is to show that there are no more continuous functions
than there are real numbers.]

(b) Is the same true if we replace [a, b] with R or a separable metric space?

(c) In the same vein, prove that the collection T of open subsets of R and R

itself have equal cardinality.

(d) What about more general metric spaces in place of R?
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7. Consider a sequence of functions fn in C0. The graph Gn of fn is a compact
subset of R2.

(a) Prove that (fn) converges uniformly as n → ∞ if and only if the sequence
(Gn) in K(R2) converges to the graph of a function f ∈ C0. (The space
K was discussed in Exercise 2.147.)

(b) Formulate equicontinuity in terms of graphs.

8. Is the sequence of functions fn : R → R defined by

fn(x) = cos(n+ x) + log(1 +
1√
n+ 2

sin2(nnx))

equicontinuous? Prove or disprove.

9. If f : R → R is continuous and the sequence fn(x) = f(nx) is equicontinuous,
what can be said about f?

10. Give an example to show that a sequence of functions may be uniformly contin-
uous, pointwise equicontinuous, but not uniformly equicontinuous, when their
domain M is noncompact.

11. If every sequence of pointwise equicontinuous functions M → R is uniformly
equicontinuous, does this imply that M is compact?

12. Prove that if E ⊂ C0
b (M,N) is equicontinuous then so is its closure.

13. Suppose that (fn) is a sequence of functions R → R and for each compact subset
K ⊂ R, the restricted sequence (fn|K) is pointwise bounded and pointwise
equicontinuous.

(a) Does it follow that there is a subsequence of (fn) that converges pointwise
to a continuous limit function R → R?

(b) What about uniform convergence?

14. Recall from Exercise 2.78 that a metric space M is chain connected if for each
ε > 0 and each p, q ∈ M there is a chain p = p0, . . . , pn = q in M such that

d(pk−1, pk) < ε for 1 ≤ k ≤ n.

A family F of functions f : M → R is bounded at p ∈ M if the set {f(p) : f ∈ F}
is bounded in R.
Show that M is chain connected if and only if pointwise boundedness of an
equicontinuous family at one point of M implies pointwise boundedness at
every point of M .

15. A continuous, strictly increasing function μ : (0,∞) → (0,∞) is a modulus of
continuity if μ(s) → 0 as s → 0. A function f : [a, b] → R has modulus of
continuity μ if |f(s)− f(t)| ≤ μ(|s− t|) for all s, t ∈ [a, b].

(a) Prove that a function is uniformly continuous if and only if it has a modulus
of continuity.

(b) Prove that a family of functions is equicontinuous if and only if its members
have a common modulus of continuity.
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16. Consider the modulus of continuity μ(s) = Ls where L is a positive constant.

(a) What is the relation between Cμ and the set of Lipschitz functions with
Lipschitz constant ≤ L?

(b) Replace [a, b] with R and answer the same question.

(c) Replace [a, b] with N and answer the same question.

(d) Formulate and prove a generalization of (a).

17. Consider a modulus of continuity μ(s) = Hsα where 0 < α ≤ 1 and 0 < H < ∞.
A function with this modulus of continuity is said to be α-Hölder, with α-
Hölder constant H. See also Exercise 3.2.

(a) Prove that the set Cα(H) of all continuous functions defined on [a, b] which
are α-Hölder and have α-Hölder constant ≤ H is equicontinuous.

(b) Replace [a, b] with (a, b). Is the same thing true?

(c) Replace [a, b] with R. Is it true?

(d) What about Q?

(e) What about N?

18. Suppose that (fn) is an equicontinuous sequence in C0 and p ∈ [a, b] is given.

(a) If (fn(p)) is a bounded sequence of real numbers, prove that (fn) is uni-
formly bounded.

(b) Reformulate the Arzelà-Ascoli Theorem with the weaker boundedness hy-
pothesis in (a).

(c) Can [a, b] be replaced with (a, b)?, Q?, R?, N?

(d) What is the correct generalization?

19. If M is compact and A is dense in M , prove that for each δ > 0 there is a finite
subset {a1, . . . , ak} ⊂ A which is δ-dense in M in the sense that each x ∈ M
lies within distance δ of at least one of the points a1, . . . , ak.

*20. Given constants α, β > 0 define

fα,β(x) = xα sin(xβ)

for x > 0.

(a) For which pairs α, β is fα,β uniformly continuous?

(b) For which sets of (α, β) in (0,∞)2 is the family equicontinuous?

[Hint: Draw picture of the graphs when α ≥ 2 or β ≥ 2. How about α > 1 or
β > 1?]

21. Suppose that E ⊂ C0 is equicontinuous and bounded.

(a) Prove that sup{f(x) : f ∈ E} is a continuous function of x.

(b) Show that (a) fails without equicontinuity.

(c) Show that this continuous-sup property does not imply equicontinuity.

(d) Assume that the continuous-sup property is true for each subset F ⊂ E.
Is E equicontinuous? Give a proof or counterexample.
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22. Give an example of a sequence of smooth equicontinuous functions fn : [a, b] →
R whose derivatives are not uniformly bounded.

23. Let M be a compact metric space, and let (in) be a sequence of isometries
in : M → M .

(a) Prove that there exists a subsequence ink
that converges to an isometry i

as k → ∞.

(b) Infer that the space of self-isometries of M is compact.

(c) Does the inverse isometry i−1
nk

converge to i−1? (Proof or counterexample.)

(d) Infer that the group of orthogonal 3 × 3 matrices is compact. [Hint: Is
it true that each orthogonal 3 × 3 matrix defines an isometry of the unit
2-sphere to itself?]

(e) How about the group of m×m orthogonal matrices?

*24. Suppose that a sequence of continuous functions fn : [a, b] → R converges
monotonically down to a continuous function f . (That is, for each x ∈ [a, b] we
have f1(x) ≥ f2(x) ≥ f3(x) ≥ . . . and fn(x) → f(x) as n → ∞.)

(a) Prove that the convergence is uniform.

(b) What if the sequence is increasing instead of decreasing?

(c) What if you replace [a, b] with R?

(d) What if you replace [a, b] with a compact metric space or Rm?

25. Suppose that f : M → M is a contraction, but M is not necessarily complete.

(a) Prove that f is uniformly continuous.

(b) Why does (a) imply that f extends uniquely to a continuous map f̂ : M̂ →
M̂ , where M̂ is the completion of M?

(c) Is f̂ a contraction?

26. Give an example of a contraction of an incomplete metric space that has no
fixed-point.

27. Suppose that f : M → M and for all x, y ∈ M , if x �= y then d(fx, fy) < d(x, y).
Such an f is a weak contraction.

(a) Is a weak contraction a contraction? (Proof or counterexample.)

(b) If M is compact is a weak contraction a contraction? (Proof or counterex-
ample.)

(c) If M is compact, prove that a weak contraction has a unique fixed-point.

28. Suppose that f : R → R is differentiable and its derivative satisfies |f ′(x)| < 1
for all x ∈ R.

(a) Is f a contraction?

(b) A weak one?

(c) Does it have a fixed-point?

29. Give an example to show that the fixed-point in Brouwer’s Theorem need not
be unique.

continuous
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30. Give an example of a continuous map of a compact, nonempty, path-connected
metric space into itself that has no fixed-point.

31. On page 233 it is shown that if bn
∫ 1
−1(1− t2)n dt = 1 then for some constant c,

and for all n ∈ N, bn ≤ c
√
n. What is the best (i.e., smallest) value of c that

you can prove works? (A calculator might be useful here.)

32. LetM be a compact metric space, and let CLip be the set of continuous functions
f : M → R that obey a Lipschitz condition: For some L and all p, q ∈ M we
have

|fp− fq| ≤ Ld(p, q).

*(a) Prove that CLip is dense in C0(M,R). [Hint: Stone-Weierstrass.]

***(b) If M = [a, b] and R is replaced by some other complete, path-connected
metric space, is the result true or false?

***(c) If M is a general compact metric space and Y is a complete metric space,
is CLip(M,Y ) dense in C0(M,Y )? (Would M equal to the Cantor set
make a good test case?)

33. Consider the ODE x′ = x on R. Show that its solution with initial condition
x0 is t �→ etx0. Interpret e

t+s = etes in terms of the flow property.

34. Consider the ODE y′ = 2
√|y| where y ∈ R.

(a) Show that there are many solutions to this ODE, all with the same initial
condition y(0) = 0. Not only does y(t) = 0 solve the ODE, but also
y(t) = t2 does for t ≥ 0.

(b) Find and graph other solutions such as y(t) = 0 for t ≤ c and y(t) = (t−c)2

for t ≥ c > 0.

(c) Does the existence of these nonunique solutions to the ODE contradict
Picard’s Theorem? Explain.

*(d) Find all solutions with initial condition y(0) = 0.

35. Consider the ODE x′ = x2 on R. Find the solution of the ODE with initial
condition x0. Are the solutions to this ODE defined for all time or do they
escape to infinity in finite time?

36. Suppose that the ODE x′ = f(x) on R is bounded, |f(x)| ≤ M for all x.

(a) Prove that no solution of the ODE escapes to infinity in finite time.

(b) Prove the same thing if f satisfies a Lipschitz condition, or more generally,
if there are constants C,K such that |f(x)| ≤ C|x|+K for all x.

(c) Repeat (a) and (b) with Rm in place of R.

(d) Prove that if f : Rm → Rm is uniformly continuous then the condition
stated in (b) is true. Infer that solutions of uniformly continuous ODEs
defined on Rm do not escape to infinity in finite time.

**37. (a) Prove Borel’s Lemma, which states that given any sequence whatsoever
of real numbers (ar), there is a smooth function f : R → R such that
f (r)(0) = ar. [Hint: Try f =

∑
βk(x)akx

k/k! where βk is a well-chosen
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bump function.]

(b) Infer that there are many Taylor series with radius of convergence R = 0.

(c) Construct a smooth function whose Taylor series at every x has radius of
convergence R = 0. [Hint: Try

∑
βk(x)e(x+ qk) where {q1, q2, . . .} = Q.]

*38. Suppose that T ⊂ (a, b) clusters at some point of (a, b) and that f, g : (a, b) → R

are analytic. Assume that for all t ∈ T we havef(t) = g(t).

(a) Prove that f = g everywhere in (a, b).

(b) What if f and g are only C∞?

(c) What if T is an infinite set but its only cluster points are a and b?

**(d) Find a necessary and sufficient condition for a subset Z ⊂ (a, b) to be
the zero locus of an analytic function f defined on (a, b), Z = {x ∈
(a, b) : f(x) = 0}. [Hint: Think Taylor. The result in (a) is known as
the Identity Theorem. It states that if an equality between analytic
functions is known to hold for points of T then it is an “identity,” an
equality that holds everywhere.]

39. Let M be any metric space with metric d. Fix a point p ∈ M and for each
q ∈ M define the function fq(x) = d(q, x)− d(p, x).

(a) Prove that fq is a bounded, continuous function of x ∈ M , and that the
map q �→ fq sends M isometrically onto a subset M0 of C0

b (M,R).

(b) Since C0
b (M,R) is complete, infer that an isometric copy of M is dense

in a complete metric space, namely the closure of M0, and hence that we
have a second proof of the Completion Theorem2.80.

40. As explained in Section 8, a metric space M is σ-compact if it is the countable
union of compact subsets, M = >Mi.

(a) Why is it equivalent to require that M is the monotone union of compact
subsets,

M = >↑ Mi

i.e., M1 ⊂ M2 ⊂ . . .?

(b) Prove that a σ-compact metric space is separable.

(c) Prove that Z,Q,R,Rm are σ-compact

*(d) Prove that C0 is not σ-compact. [Hint: Think Baire.]

*(e) If M = >↑ int(Mi) and each Mi is compact, M is σ∗-compact. Prove that
M is σ∗-compact if and only if it is separable and locally compact. Infer
that Z,R, and Rm are σ∗-compact but Q is not.

(f) Assume that M is σ∗-compact, M = >↑ int(Mi), with each Mi compact.
Prove that this monotone union “engulfs” all compacts in M , in the sense
that if A ⊂ M is compact, then for some i, A ⊂ Mi.

(g) If M = >↑ Mi and each Mi is compact show by example that this engulfing
property may fail, even when M itself is compact.

**(h) Prove or disprove that a complete σ-compact metric space is σ∗-compact.
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41. (a) Give an example of a function f : [0, 1] × [0, 1] → R such that for each
fixed x, the function y �→ f(x, y) is a continuous function of y, and for
each fixed y, the function x �→ f(x, y) is a continuous function of x, but f
is not continuous.

(b) Suppose in addition that the set of functions

E = {x �→ f(x, y) : y ∈ [0, 1]}

is equicontinuous. Prove that f is continuous.

42. Prove that R cannot be expressed as the countable union of Cantor sets.

43. What is the joke in the following picture?
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More Prelim Problems
1. Let f and fn, n ∈ N, be functions from R to R. Assume that fn(xn) → f(x) as

n → ∞ and xn → x. Show that f is continuous. (Note: The functions fn are
not assumed to be continuous.)

2. Suppose that fn ∈ C0 and for each x ∈ [a, b],

f1(x) ≥ f2(x) ≥ . . . ,

and lim
n→∞ fn(x) = 0. Is the sequence equicontinuous? Give a proof or coun-

terexample. [Hint: Does fn(x) converge uniformly to 0, or does it not?]

3. Let E be the set of all functions u : [0, 1] → R such that u(0) = 0 and u satisfies
a Lipschitz condition with Lipschitz constant 1. Define φ : E → R according to
the formula

φ(u) =

∫ 1

0
(u(x)2 − u(x)) dx.

Prove that there exists a function u ∈ E at which φ(u) attains an absolute
maximum.

4. Let (gn) be a sequence of twice-differentiable functions defined on [0, 1], and
assume that for all n, gn(0) = g′n(0). Suppose also that for all n ∈ N and all
x ∈ [0, 1], |g′n(x)| ≤ 1. Prove that there is a subsequence of (gn) converging
uniformly on [0, 1].

5. Let (an) be a sequence of nonzero real numbers. Prove that the sequence of
functions

fn(x) =
1

an
sin(anx) + cos(x+ an)

has a subsequence converging to a continuous function.

6. Suppose that f : R → R is differentiable, f(0) = 0, and f ′(x) > f(x) for all
x ∈ R. Prove that f(x) > 0 for all x > 0.

7. Suppose that f : [a, b] → R and the limits of f(x) from the left and the right
exist at all points of [a, b]. Prove that f is Riemann integrable.

8. Let h : [0, 1) → R be a uniformly continuous function where [0, 1) is the half-
open interval. Prove that there is a unique continuous map g : [0, 1] → R such
that g(x) = h(x) for all x ∈ [0, 1).

9. Assume that f : R → R is uniformly continuous. Prove that there are constants
A,B such that |f(x)| ≤ A+B|x| for all x ∈ R.

10. Suppose that f(x) is defined on [−1, 1] and that its third derivative exists and
is continuous. (That is, f is of class C3.) Prove that the series

∞∑
n=0

(
n(f(1/n)− f(−1/n))− 2f ′(0)

)
converges.
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11. Let A ⊂ Rm be compact, x ∈ A. Let (xn) be a sequence in A such that every
convergent subsequence of (xn) converges to x.

(a) Prove that the sequence (xn) converges.

(b) Give an example to show if A is not compact, the result in (a) is not
necessarily true.

12. Let f : [0, 1] → R be continuously differentiable, with f(0) = 0. Prove that

‖f‖2 ≤
∫ 1

0
(f ′(x))2dx

where ‖f‖ = sup{|f(t)| : 0 ≤ t ≤ 1}.
13. Let fn : R → R be differentiable functions, n = 1, 2, . . ., with fn(0) = 0 and

|f ′
n(x)| ≤ 2 for all n, x. Suppose that

lim
n→∞ fn(x) = g(x)

for all x. Prove that g is continuous.

14. Let X be a nonempty connected set of real numbers. If every element of X is
rational, prove that X has only one element.

15. Let k ≥ 0 be an integer and define a sequence of maps fn : R → R as

fn(x) =
xk

x2 + n

n = 1, 2, . . .. For which values of k does the sequence converge uniformly on R?
On every bounded subset of R?

16. Let f : [0, 1] → R be Riemann integrable over [b, 1] for every b such that
0 < b ≤ 1.

(a) If f is bounded, prove that f is Riemann integrable over [0, 1].

(b) What if f is not bounded?

17. (a) Let S and T be connected subsets of the plane R2 having a point in
common. Prove that S ∪ T is connected.

(b) Let {Sα} be a family of connected subsets of R2 all containing the origin.
Prove that >Sα is connected.

18. Let f : R → R be continuous. Suppose that R contains a countably infinite set
S such that ∫ q

p
f(x) dx = 0

if p and q are not in S. Prove that f is identically zero.

19. Let f : R → R satisfy f(x) ≤ f(y) for x ≤ y. Prove that the set where f is not
continuous is finite or countably infinite.
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20. Let (gn) be a sequence of Riemann integrable functions from [0,1] into R such
that |gn(x)| ≤ 1 for all n, x. Define

Gn(x) =

∫ x

0
gn(t) dt.

Prove that a subsequence of (Gn) converges uniformly.

21. Prove that every compact metric space has a countable dense subset.

22. Show that for any continuous function f : [0, 1] → R and for any ε > 0 there is
a function of the form

g(x) =
n∑

k=0

Ckx
k

for some n ∈ N, and |g(x)− f(x)| < ε for all x in [0, 1].

23. Give an example of a function f : R → R having all three of the following
properties:

(a) f(x) = 0 for all x < 0 and x > 2.

(b) f ′(1) = 1.

(c) f has derivatives of all orders.

24. (a) Give an example of a differentiable function f : R → R whose derivative
is not continuous.

(b) Let f be as in (a). If f ′(0) < 2 < f ′(1) prove that f ′(x) = 2 for some
x ∈ [0, 1].

25. Let U ⊂ Rm be an open set. Suppose that the map h : U → Rm is a homeo-
morphism from U onto Rm which is uniformly continuous. Prove that U = Rm.

26. Let (fn) be a sequence of continuous maps [0, 1] → R such that∫ 1

0
(fn(y))

2 dy ≤ 5

for all n. Define gn : [0, 1] → R by

gn(x) =

∫ 1

0

√
x+ y fn(y) dy

(a) Find a constant K ≥ 0 such that |gn(x)| ≤ K for all n.

(b) Prove that a subsequence of the sequence (gn) converges uniformly.

27. Consider the following properties of a map f : Rm → R.

(a) f is continuous.

(b) The graph of f is connected in Rm × R.

Prove or disprove the implications (a) ⇒ (b), (b) ⇒ (a).

28. Let (Pn) be a sequence of real polynomials of degree ≤ 10. Suppose that

lim
n→∞Pn(x) = 0
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for all x ∈ [0, 1]. Prove that Pn(x) ⇒ 0, 0 ≤ x ≤ 1. What can you say about
Pn(x) for 4 ≤ x ≤ 5?

29. Give an example of a subset of R having uncountably many connected compo-
nents. Can such a subset be open? Closed? Does your answer change if R2

replaces R?

30. For each (a, b, c) ∈ R3 consider the series

∞∑
n=3

an

nb(log n)c
.

Determine the values of a, b, and c for which the series converges absolutely,
converges conditionally, diverges.

31. Let X be a compact metric space and f : X → X an isometry. (That is,
d(f(x), f(y)) = d(x, y) for all x, y ∈ X.) Prove that f(X) = X.

32. Prove or disprove: Q is the countable intersection of open subsets of R.

33. Let f : R → R be continuous and∫ ∞

−∞
|f(x)| dx < ∞.

Show that there is a sequence (xn) in R such that xn → ∞, xnf(xn) → 0, and
xnf(−xn) → 0 as n → ∞.

34. Let f : [0, 1] → R be a continuous function. Evaluate the following limits (with
proof):

(a) lim
n→∞

∫ 1

0
xnf(x) dx (b) lim

n→∞n

∫ 1

0
xnf(x) dx.

35. Let K be an uncountable subset of Rm. Prove that there is a sequence of
distinct points in K which converges to some point of K.

36. Prove or give a counterexample: Every connected locally pathwise-connected
set in Rm is pathwise-connected.

37. Let (fn) be a sequence of continuous functions [0, 1] → R such that fn(x) → 0
for each x ∈ [0, 1]. Suppose that∣∣∣∣∫ 1

0
fn(x) dx

∣∣∣∣ ≤ K

for all n where K is a constant. Does
∫ 1
0 fn(x) dx converge to 0 as n → ∞?

Prove or give a counterexample.

38. Let E be a closed, bounded, and nonempty subset of Rm and let f : E → E be
a function satisfying |f(x)− f(y)| < |x− y| for all x, y ∈ E, x �= y. Prove that
there is one and only one point x0 ∈ E such that f(x0) = x0.
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39. Let f : [0, 2π] → R be a continuous function such that∫ 2π

0
f(x) sin(nx) dx = 0

for all integers n ≥ 1. Prove that f is identically constant.

40. Let f1, f2, . . . be continuous real-valued functions on [0, 1] such that for each
x ∈ [0, 1], f1(x) ≥ f2(x) ≥ . . .. Assume that for each x, fn(x) converges to 0 as
n → ∞. Does fn converge uniformly to 0? Give a proof or counterexample.

41. Let f : [0,∞) → [0,∞) be a monotonically decreasing function with∫ ∞

0
f(x) dx < ∞.

Prove that lim
x→∞xf(x) = 0.

42. Suppose that F : Rm → Rm is continuous and satisfies

|F (x)− F (y)| ≥ λ|x− y|

for all x, y ∈ Rm and some constant λ > 0. Prove that F is one-to-one, is onto,
and has a continuous inverse.

43. Show that [0, 1] cannot be written as a countably infinite union of disjoint closed
subintervals.

44. Prove that a continuous function f : R → R which sends open sets to open sets
must be monotonic.

45. Let f : [0,∞) → R be uniformly continuous and assume that

lim
b→∞

∫ b

0
f(x) dx

exists (as a finite limit). Prove that lim
x→∞ f(x) = 0.

46. Prove or supply a counterexample: If f and g are continuously differentiable
functions defined on the interval 0 < x < 1 which satisfy the conditions

lim
x→0

f(x) = 0 = lim
x→0

g(x) and lim
x→0

f(x)

g(x)
= c

and if g and g′ never vanish, then lim
x→0

f ′(x)
g′(x)

= c. (This is a converse of

L’Hôpital’s rule.)

47. Prove or provide a counterexample: If the function f from R to R has both a
left and a right limit at each point of R, then the set of discontinuities is at
most countable.
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48. Prove or supply a counterexample: If f is a nondecreasing real-valued function
on [0, 1] then there is a sequence fn, n = 1, 2, . . . , of continuous functions on
[0, 1] such that for each x in [0, 1], lim

n→∞ fn(x) = f(x).

49. Show that if f is a homeomorphism of [0, 1] onto itself then there is a sequence
of polynomials Pn(x), n = 1, 2, . . . , such that Pn → f uniformly on [0, 1] and
each Pn is a homeomorphism of [0, 1] onto itself. [Hint: First assume that f is
C1.]

50. Let f be a C2 function on the real line. Assume that f is bounded with bounded
second derivative. Let A = supx |f(x)| and B = supx |f ′′(x)|. Prove that

sup
x

|f ′(x)| ≤ 2
√
AB.

51. Let f be continuous on R and let

fn(x) =
1

n

n−1∑
k=0

f

(
x+

k

n

)
.

Prove that fn(x) converges uniformly to a limit on every finite interval [a, b].

52. Let f be a real-valued continuous function on the compact interval [a, b]. Given
ε > 0, show that there is a polynomial p such that

p(a) = f(a), p′(a) = 0, and |p(x)− f(x)| < ε

for all x ∈ [a, b].

53. A function f : [0, 1] → R is said to be upper semicontinuous if, given x ∈
[0, 1] and ε > 0, there exists a δ > 0 such that |y − x| < δ implies that
f(y) < f(x) + ε. Prove that an upper semicontinuous function on [0, 1] is
bounded above and attains its maximum value at some point p ∈ [0, 1].

54. Let f(x), 0 ≤ x ≤ 1, be a continuous real function with continuous derivative
f ′(x). Let M be the supremum of |f ′(x)|, 0 ≤ x ≤ 1. Prove the following: For
n = 1, 2, . . . , ∣∣∣∣∣ 1n

n−1∑
k=0

f

(
k

n

)
−
∫ 1

0
f(x) dx

∣∣∣∣∣ ≤ M

2n
.

55. Let K be a compact subset of Rm and let (Bj) be a sequence of open balls
which cover K. Prove that there is an ε > 0 such that each ε-ball centered at
a point of K is contained in at least one of the balls Bj .

56. Let f be a continuous real-valued function on [0,∞) such that

lim
x→∞

(
f(x) +

∫ x

0
f(t) dt

)
exists (and is finite). Prove that limx→∞ f(x) = 0.
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57. A standard theorem asserts that a continuous real-valued function on a com-
pact set is bounded. Prove the converse: If K is a subset of Rm and if every
continuous real-valued function defined on K is bounded, then K is compact.

58. Let F be a uniformly bounded equicontinuous family of real-valued functions
defined on the metric space X. Prove that the function

g(x) = sup{f(x) : f ∈ F}
is continuous.

59. Suppose that (fn) is a sequence of nondecreasing functions which map the unit
interval into itself. Suppose that lim

n→∞ fn(x) = f(x) pointwise and that f is a

continuous function. Prove that fn(x) → f(x) uniformly as n → ∞. Note that
the functions fn are not necessarily continuous.

60. Does there exist a continuous real-valued function f(x), 0 ≤ x ≤ 1, such that∫ 1

0
xf(x) dx = 1 and

∫ 1

0
xnf(x) dx = 0

for all n = 0, 2, 3, 4, 5, . . .? Give a proof or counterexample.

61. Let f be a continuous, strictly increasing function from [0,∞) onto [0,∞) and
let g = f−1 (the inverse, not the reciprocal). Prove that∫ a

0
f(x) dx+

∫ b

0
g(y) dy ≥ ab

for all positive numbers a, b, and determine the condition for equality.

62. Let f be a function [0, 1] → R whose graph {(x, f(x)) : x ∈ [0, 1]} is a closed
subset of the unit square. Prove that f is continuous.

63. Let (an) be a sequence of positive numbers such that
∑

an converges. Prove
that there exists a sequence of numbers cn → ∞ as n → ∞ such that

∑
cnan

converges.

64. Let f(x, y) be a continuous real-valued function defined on the unit square
[0, 1]× [0, 1]. Prove that g(x) = max{f(x, y) : y ∈ [0, 1]} is continuous.

65. Let the function f from [0, 1] to [0, 1] have the following properties. It is of
class C1, f(0) = 0 = f(1), and f ′ is nonincreasing (i.e., f is concave). Prove
that the arclength of the graph of f does not exceed 3.

66. Let A be the set of all positive integers that do not contain the digit 9 in their
decimal expansions. Prove that ∑

a∈A

1

a
< ∞.

That is, A defines a convergent subseries of the harmonic series.



5
Multivariable Calculus

This chapter presents the natural geometric theory of calculus in n dimensions.

1 Linear Algebra

It will be taken for granted that you are familiar with the basic concepts of linear

algebra – vector spaces, linear transformations, matrices, determinants, and dimen-

sion. In particular, you should be aware of the fact that an m × n matrix A with

entries aij is more than just a static array of mn numbers. It is dynamic. It can act.

It defines a linear transformation TA : Rn → Rm that sends n-space to m-space

according to the formula

TA(v) =

m∑
i=1

n∑
j=1

aijvjei

where v =
∑

vjej ∈ Rn and e1, . . . , en is the standard basis of Rn. (Equally, e1, . . . , em
is the standard basis of Rm.)

The set M =M(m,n) of all m×n matrices with real entries aij is a vector space.

Its vectors are matrices. You add two matrices by adding the corresponding entries,

A+B = C where aij + bij = cij . Similarly, if λ ∈ R is a scalar then λA is the matrix

with entries λaij . The dimension of the vector space M is mn, as can be seen by

expressing each A as
∑

aijEij where Eij is the matrix whose entries are 0, except for

the (ij)th entry which is 1. Thus, as vector spaces, M = Rmn.

© Springer International Publishing Switzerland 2015
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The set L = L(Rn,Rm) of linear transformations T : Rn → Rm is also a vector

space. You combine linear transformations as functions, U = T +S being defined by

U(v) = T (v)+S(v), and λT being defined by (λT )(v) = λT (v). The vectors in L are

linear transformations. The mapping A �→ TA is an isomorphism T : M → L. The

matrix A is said to represent the linear transformation TA : Rn → Rm. As a rule of

thumb, think with linear transformations and compute with matrices.

Corresponding to composition of linear transformations is the product of matrices.

If A is an m× k matrix and B is a k× n matrix then the product matrix P = AB is

the m× n matrix whose (ij)th entry is

pij = ai1b1j + · · ·+ aikbkj =
k∑

r=1

airbrj .

1 Theorem TA ◦ TB = TAB.

Proof For each pair of basis vectors er ∈ Rk and ej ∈ Rn we have

TA(er) =

m∑
i=1

airei TB(ej) =

k∑
r=1

brjer.

Thus for each basis vector ej we have

(TA ◦ TB)(ej) = TA

(
k∑

r=1

brjer

)
=

k∑
r=1

brjTA(er) =

k∑
r=1

brj

m∑
i=1

airei

=

k∑
r=1

m∑
i=1

brjairei =

m∑
i=1

k∑
r=1

airbrjei

=

m∑
i=1

pijei = TAB(ej).

Two linear transformations that are equal on a basis are equal.

Theorem1 expresses the pleasing fact that matrix multiplication corresponds nat-

urally to composition of linear transformations. See also Exercise 6.

As explained in Chapter 1, a norm on a vector space V is a function | | : V → R

that satisfies three properties:

(a) For all v ∈ V we have |v| ≥ 0; and |v| = 0 if and only if v = 0.

(b) |λv| = |λ| |v|.
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(c) |v + w| ≤ |v|+ |w|.
(Note the abuse of notation in (b); |λ| is the magnitude of the scalar λ and |v| is the
norm of the vector v.) Norms are used to make vector estimates, and vector estimates

underlie multivariable calculus.

A vector space with a norm is a normed space. Its norm gives rise to a metric

as

d(v, v′) = |v − v′|.
Thus a normed space is a special kind of metric space.

If V,W are normed spaces then the operator norm of a linear transformation

T : V → W is

‖T‖ = sup

{ |Tv|W
|v|V : v �= 0

}
.

The operator norm of T is the maximum stretch that T imparts to vectors in V .

The subscript on the norm indicates the space in question, which for simplicity is

often suppressed.†

The composition of linear transformations obeys the norm inequality

‖T ◦ S‖ ≤ ‖T‖ ‖S‖

where S : U → V and T : V → W . Thinking in terms of stretch, the inequality is

clear: S stretches a vector u ∈ U by at most ‖S‖, and T stretches S(u) by at most

‖T‖. The net effect on u is a stretch of at most ‖T‖ ‖S‖.
2 Theorem Let T : V → W be a linear transformation from one normed space to

another. The following are equivalent:

(a) ‖T‖ < ∞.

(b) T is uniformly continuous.

(c) T is continuous.

(d) T is continuous at the origin.

Proof Assume (a), ‖T‖ < ∞. For all v, v′ ∈ V , linearity of T implies that

|Tv − Tv′| ≤ ‖T‖ ∣∣v − v′
∣∣ ,

which gives (b), uniform continuity. Clearly (b) implies (c) implies (d).

†If ‖T‖ is finite then T is said to be a bounded linear transformation. Unfortunately, this

terminology conflicts with T being bounded as a mapping from the metric space V to the metric space

W . The only linear transformation that is bounded in the latter sense is the zero transformation.
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Assume (d) and take ε = 1. There is a δ > 0 such that if u ∈ V and |u| < δ then

|Tu| < 1.

For any nonzero v ∈ V , set u = λv where λ = δ/2|v|. Then |u| = δ/2 < δ and

|Tv|
|v| =

|Tu|
|u| <

1

|u| =
2

δ

which implies ‖T‖ < 2/δ and verifies (a).

3 Theorem Every linear transformation T : Rn → W is continuous and every iso-

morphism T : Rn → W is a homeomorphism.

Proof The norm on Rn is the Euclidean norm. If v = (v1, . . . , vn) ∈ Rn then

|v| =
√

v21 + . . .+ v2n.

Let | |W denote the norm on W and let M = max{|T (e1)|W , . . . , |T (en)|W }. For

v =
∑

vjej ∈ Rn we have |vj | ≤ |v| and

|Tv|W ≤
n∑

j=1

|T (vjej)|W =

n∑
j=1

|vj ||T (ej)|W ≤ n|v|M

which implies that ‖T‖ ≤ nM < ∞. Theorem2 implies that T is continuous.

Assume that T : Rn → W is an isomorphism. We have just shown that T is

continuous, but what about T−1? Continuity of T implies that the T -image of the

unit sphere is compact. Injectivity implies that O /∈ T (Sn−1). Since O and T (Sn−1)

are disjoint compact sets in the metric space W , there is a constant c > 0 such that

for all u ∈ Sn−1 we have dW (Tu,O) = |Tu| ≥ c. For each nonzero v ∈ Rn we write

v = λu where λ = |v| and u = v/ |v| is a unit vector. Linearity of T implies Tv = λTu

which gives |Tv| ≥ c |v|, i.e.,
|v| ≤ |Tv|

c
.

For each w ∈ W let v = T−1(w). Then w = Tv and

∣∣T−1(w)
∣∣ = |v| ≤ |Tv|

c
=

1

c
|w|

gives
∥∥T−1
∥∥ ≤ 1/c < ∞, and by Theorem2 we get continuity of T−1. A bicontinuous

bijection is a homeomorphism.
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T (Sn−1)

≥ c

O

W

Figure 106 The minimum distance from T (Sn−1) to the origin is ≥ c.

Geometrically speaking, the inequality |Tv| ≥ c |v| means that T shrinks each

vector in Rn by a factor no smaller than c, so it follows that T−1 expands each vector

in W by a factor no greater than 1/c. The largest c with the property |Tv| ≥ c |v|
for all v is the conorm of T . See Figure 106 and Exercise 4.

4 Corollary In the world of finite-dimensional normed spaces, all linear transforma-

tions are continuous and all isomorphisms are homeomorphisms. In particular, if a

finite-dimensional vector space is equipped with two different norms then the identity

map is a homeomorphism between the two normed spaces. In particular T : M → L
is a homeomorphism.

Proof Let V be an n-dimensional normed space and let T : V → W be a linear

transformation. As you know from linear algebra, there is an isomorphism H :

Rn → V . Theorem3 implies that H is a homeomorphism. Therefore H−1 is a

homeomorphism. Since T ◦H is a linear transformation from Rn toW it is continuous.

Thus

T = (T ◦H) ◦H−1

is the composition of continuous maps so it is continuous.

Suppose that T : V → W is an isomorphism and V is finite-dimensional. Then

W is finite-dimensional and T−1 : W → V is a linear transformation. Since every

linear transformation from a finite-dimensional normed space to a normed space is

continuous, T and T−1 are both continuous, so T is a homeomorphism.
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Let a finite-dimensional vector space V be equipped with norms | |1 and | |2.
Since the identity map is an isomorphism V1 → V2 it is a homeomorphism. The same

applies to the isomorphism T that assigns to a matrix A the corresponding linear

transformation TA.

2 Derivatives
A function of a real variable y = f(x) has a derivative f ′(x) at x when

(1) lim
h→0

f(x+ h)− f(x)

h
= f ′(x).

If, however, x is a vector variable, (1) makes no sense. For what does it mean to

divide by the vector increment h? Equivalent to (1) is the condition

f(x+ h) = f(x) + f ′(x)h+R(h) ⇒ lim
h→0

R(h)

|h| = 0,

which is easy to recast in vector terms.

Definition Let f : U → Rm be given where U is an open subset of Rn. The function

f is differentiable at p ∈ U with derivative (Df)p = T if T : Rn → Rm is a linear

transformation and

(2) f(p+ v) = f(p) + T (v) +R(v) ⇒ lim
|v|→0

R(v)

|v| = 0.

We say that the Taylor remainder R is sublinear because it tends to 0 faster than

|v|.
When n = m = 1, the multidimensional definition reduces to the standard one.

This is because a linear transformation R → R is just multiplication by some real

number, in this case multiplication by f ′(x).

Here is how to visualize Df . Take m = n = 2. The mapping f : U → R2 distorts

shapes nonlinearly; its derivative describes the linear part of the distortion. Circles

are sent by f to wobbly ovals, but they become ellipses under (Df)p. Lines are sent

by f to curves, but they become straight lines under (Df)p. See Figure 107 and also

AppendixA.

This way of looking at differentiability is conceptually simple. Near p, f is the

sum of three terms: A constant term q = fp, a linear term (Df)pv, and a sublinear
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f

(Df)p

q

Figure 107 (Df)p is the linear part of f at p.

remainder term R(v). Keep in mind what kind of an object the derivative is. It is

not a number. It is not a vector. No, if it exists then (Df)p is a linear transformation

from the domain space to the target space.

5 Theorem If f is differentiable at p then it unambiguously determines (Df)p ac-

cording to the limit formula, valid for all u ∈ Rn,

(3) (Df)p(u) = lim
t→0

f(p+ tu)− f(p)

t
.

Proof Let T be a linear transformation that satisfies (2). Fix any u ∈ Rn and take

v = tu. Then

f(p+ tu)− f(p)

t
=

T (tu) +R(tu)

t
= T (u) +

R(tu)

t |u| |u|.

The last term converges to zero as t → 0, which verifies (3). Limits, when they exist,

are unambiguous and therefore if T ′ is a second linear transformation that satisfies

(2) then T (u) = T ′(u) so T = T ′.

6 Theorem Differentiability implies continuity.

Proof Differentiability at p implies that

|f(p+ v)− f(p)| = |(Df)pv +R(v)| ≤ ‖(Df)p‖ |v|+ |R(v)| → 0

as p+ v → p.
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Df is the total derivative or Fréchet derivative. In contrast, the ijth partial

derivative of f at p is the limit, if it exists,

∂fi(p)

∂xj
= lim

t→0

fi(p+ tej)− fi(p)

t
.

7 Corollary If the total derivative exists then the partial derivatives exist and they

are the entries of the matrix that represents the total derivative.

Proof Substitute in (3) the vector u = ej and take the ith component of both sides

of the resulting equation.

As is shown in Exercise 15, the mere existence of partial derivatives does not imply

differentiability. The simplest sufficient condition beyond the existence of the partials

– and the simplest way to recognize differentiability – is given in the next theorem.

8 Theorem If the partial derivatives of f : U → Rm exist and are continuous then

f is differentiable.

Proof Let A be the matrix of partials at p, A = [∂fi(p)/∂xj ], and let T : Rn → Rm

be the linear transformation that A represents. We claim that (Df)p = T . We must

show that the Taylor remainder

R(v) = f(p+ v)− f(p)−Av

is sublinear. Draw a path σ = [σ1, . . . , σn] from p to q = p + v that consists of n

segments parallel to the components of v. Thus v =
∑

vjej and

σj(t) = pj−1 + tvjej 0 ≤ t ≤ 1

is a segment from pj−1 = p+
∑

k<j vkek to pj = pj−1 + vjej . See Figure 108.

By the one-dimensional chain rule and mean value theorem applied to the differ-

entiable real-valued function g(t) = fi ◦ σj(t) of one variable, there exists tij ∈ (0, 1)

such that

fi(pj)− fi(pj−1) = g(1)− g(0) = g′(tij) =
∂fi(pij)

∂xj
vj ,

where pij = σj(tij). Telescoping fi(p+ v)− fi(p) along σ gives

Ri(v) = fi(p+ v)− fi(p)− (Av)i

=

n∑
j=1

(
fi(pj)− fi(pj−1)− ∂fi(p)

∂xj
vj

)

=

n∑
j=1

{
∂fi(pij)

∂xj
− ∂fi(p)

∂xj

}
vj .
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Figure 108 The segmented path σ from p to q

Continuity of the partials implies that the terms inside the curly brackets tend to 0

as |v| → 0. Thus R is sublinear and f is differentiable at p.

Next we state and prove the basic rules of multivariable differentiation.

9 Theorem Let f and g be differentiable. Then

(a) D(f + cg) = Df + cDg.

(b) D(constant) = 0 and D(T (x)) = T .

(c) D(g ◦ f) = Dg ◦Df . (Chain Rule)

(d) D(f • g) = Df • g + f •Dg. (Leibniz Rule)

There is a fifth rule that concerns the derivative of the nonlinear inversion operator

Inv : T �→ T−1. It is a glorified version of the formula

dx−1

dx
= −x−2,

and is discussed in Exercises 32 - 36.

Proof (a) Write the Taylor estimates for f and g and combine them to get the Taylor

estimate for f + cg.

f(p+ v) = f(p) + (Df)p(v) +Rf

g(p+ v) = g(p) + (Dg)p(v) +Rg

(f + cg)(p+ v) = (f + cg)(p) + ((Df)p + c(Dg)p)(v) +Rf + cRg.

Since Rf + cRg is sublinear, (Df)p + c(Dg)p is the derivative of f + cg at p.
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(b) If f : Rn → Rm is constant, f(x) = c for all x ∈ Rn, and if O : Rn → Rm

denotes the zero transformation then the Taylor remainder R(v) = f(p+ v)− f(p)−
O(v) is identically zero. Hence D(constant)p = O.

T : Rn → Rm is a linear transformation. If f(x) = T (x) for all x then substituting

T itself in the Taylor expression gives the Taylor remainder R(v) = f(p+ v)− f(p)−
T (v), which is identically zero. Hence (DT )p = T .

Note that when n = m = 1, a linear function is of the form f(x) = ax, and the

previous formula just states that (ax)′ = a.

(c) Tacitly, we assume that the composite g ◦ f(x) = g(f(x)) makes sense as x

varies in a neighborhood of p ∈ U . The notation Dg ◦Df refers to the composite of

linear transformations and is written out as

D(g ◦ f)p = (Dg)q ◦ (Df)p

where q = f(p). The Chain Rule states that the derivative of a composite is the

composite of the derivatives. Such a beautiful and natural formula must be true. See

also AppendixA. Here is a proof.

It is convenient to write the remainder R(v) = f(p+v)−f(p)−T (v) in a different

form, defining the scalar function e(v) by

e(v) =

⎧⎪⎨⎪⎩
|R(v)|
|v| if v �= 0

0 if v = 0.

Sublinearity is equivalent to lim
v→0

e(v) = 0. Think of e as an “error factor.”

The Taylor expressions for f at p and g at q = f(p) are

f(p+ v) = f(p) +Av +Rf

g(q + w) = g(q) +Bw +Rg

where A = (Df)p and B = (Dg)q as matrices. The composite is expressed as

g ◦ f(p+ v) = g(q +Av +Rf (v)) = g(q) +BAv +BRf (v) +Rg(w)

where w = Av + Rf (v). It remains to show that the remainder terms are sublinear

with respect to v. First

|BRf (v)| ≤ ‖B‖ |Rf (v)|
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is sublinear. Second,

|w| = |Av +Rf (v)| ≤ ‖A‖ |v|+ ef (v)|v|.

Therefore,

|Rg(w)| ≤ eg(w) |w| ≤ eg(w)(‖A‖+ ef (v)) |v|.
Since eg(w) → 0 as w → 0 and since v → 0 implies that w does tend to 0, we see that

Rg(w) is sublinear with respect to v. It follows that (D(g ◦ f))p = BA as claimed.

(d) To prove the Leibniz Product Rule, we must explain the notation v • w. In

R there is only one product, the usual multiplication of real numbers. In higher-

dimensional vector spaces, however, there are many products and the general way to

discuss products is in terms of bilinear maps.

A map β : V × W → Z is bilinear if V,W,Z are vector spaces and for each

fixed v ∈ V the map β(v, . ) : W → Z is linear, while for each fixed w ∈ W the map

β( . , w) : V → Z is linear. Examples are

(i) Ordinary real multiplication (x, y) �→ xy is a bilinear map R× R → R.

(ii) The dot product is a bilinear map Rn × Rn → R.

(iii) The matrix product is a bilinear map M(m× k)×M(k × n) →M(m× n).

The precise statement of (d) is that if β : Rk × R� → Rm is bilinear while f :

U → Rk and g : U → R� are differentiable at p then the map x �→ β(f(x), g(x)) is

differentiable at p and

(Dβ(f, g))p(v) = β((Df)p(v), g(p)) + β(f(p), (Dg)p(v)).

Just as a linear transformation between finite-dimensional vector spaces has a finite

operator norm, the same is true for bilinear maps:

‖β‖ = sup{|β(v, w)||v| |w| : v, w �= 0} < ∞.

To check this we view β as a linear map Tβ : Rk → L(R�,Rm). According to

Theorems 2 and 3, a linear transformation from one finite dimensional normed space

to another is continuous and has finite operator norm. Thus the operator norm Tβ

is finite. That is,

‖Tβ‖ = max

{‖Tβ(v)‖
|v| : v �= 0

}
< ∞.

But ‖Tβ(v)‖ = max{|β(v, w)| / |w| : w �= 0}, which implies that ‖β‖ < ∞.
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Returning to the proof of the Leibniz Rule, we write out the Taylor estimates for

f and g and plug them into β. If we use the notation A = (Df)p and B = (Dg)p,

then bilinearity implies

β(f(p+ v), g(p+ v)) = β(f(p) +Av +Rf , g(p) +Bv +Rg)

= β(f(p), g(p)) + β(Av, g(p)) + β(f(p), Bv)

+β(f(p), Rg) + β(Av, Bv +Rg) + β(Rf , g(p) +Bv +Rg).

The last three terms are sublinear. For

|β(f(p), Rg)| ≤ ‖β‖ |f(p)| |Rg|
|β(Av, Bv +Rg)| ≤ ‖β‖ ‖A‖ |v| |Bv +Rg|

|β(Rf , g(p) +Bv +Rg)| ≤ ‖β‖ |Rf | |g(p) +Bv +Rg|

Therefore β(f, g) is differentiable and Dβ(f, g) = β(Df, g) + β(f,Dg) as claimed.

Here are some applications of these differentiation rules:

10 Theorem A function f : U → Rm is differentiable at p ∈ U if and only if

each of its components fi is differentiable at p. Furthermore, the derivative of its ith

component is the ith component of the derivative.

Proof Assume that f is differentiable at p and express the ith component of f as

fi = πif where πi : R
m → R is the projection that sends a vector w = (w1, . . . , wm)

to wi. Since πi is linear it is differentiable. By the Chain Rule, fi is differentiable at

p and

(Dfi)p = (Dπi) ◦ (Df)p = πi ◦ (Df)p.

The proof of the converse is equally natural.

Theorem10 implies there is little loss of generality in assuming m = 1, i.e., that

our functions are real-valued. Multidimensionality of the domain, not the target, is

what distinguishes multivariable calculus from one-variable calculus.

11 Mean Value Theorem If f : U → Rm is differentiable on U and the segment

[p, q] is contained in U then

|f(q)− f(p)| ≤ M |q − p|

where M = sup{‖(Df)x‖ : x ∈ U}.
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Proof Fix any unit vector u ∈ Rm. The function

g(t) = 〈u, f(p+ t(q − p))〉

is differentiable and we can calculate its derivative. By the one-dimensional Mean

Value Theorem this gives some θ ∈ (0, 1) such that g(1)− g(0) = g′(θ). That is,

〈u, f(q)− f(p)〉 = g′(θ) = 〈u, (Df)p+θ(q−p)(q − p)〉 ≤ M |q − p|.

A vector whose dot product with every unit vector is no larger than M |q − p| has
norm ≤ M |q − p|.

Remark The one-dimensional Mean Value Theorem is an equality

f(q)− f(p) = f ′(θ)(q − p)

and you might expect the same to be true for a vector-valued function if we replace

f ′(θ) by (Df)θ. Not so. See Exercise 17. The closest we can come to an equality

form of the multidimensional Mean Value Theorem is the following.

12 C1 Mean Value Theorem If f : U → Rm is of class C1 (its derivative exists

and is continuous) and if the segment [p, q] is contained in U then

(4) f(q)− f(p) = T (q − p)

where T is the average derivative of f on the segment,

T =

∫ 1

0
(Df)p+t(q−p) dt.

Conversely, if there is a continuous family of linear maps Tpq ∈ L for which (4) holds

then f is of class C1 and (Df)p = Tpp.

Proof The integrand takes values in the normed space L(Rn,Rm) and is a continuous

function of t. The integral is the limit of Riemann sums
∑
k

(Df)p+tk(q−p)Δtk,

which lie in L. Since the integral is an element of L it has a right to act on the vector

q − p. Alternatively, if you integrate each entry of the matrix that represents Df

along the segment then the resulting matrix represents T . Fix an index i and apply

the Fundamental Theorem of Calculus to the C1 real-valued function of one variable

g(t) = fi ◦ σ(t)

Rm
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where σ(t) = p+ t(q − p) parameterizes [p, q]. This gives

fi(q)− fi(p) = g(1)− g(0) =

∫ 1

0
g′(t) dt

=

∫ 1

0

n∑
j=1

∂fi(σ(t))

∂xj
(qj − pj) dt

=

n∑
j=1

∫ 1

0

∂fi(σ(t))

∂xi
dt (qj − pj),

which is the ith component of T (q − p).

To check the converse, we assume that (4) holds for a continuous family of linear

maps Tpq. Take q = p+ v. The first-order Taylor remainder at p is

R(v) = f(p+ v)− f(p)− Tpp(v) = (Tpq − Tpp)(v),

which is sublinear with respect to v. Therefore (Df)p = Tpp.

13 Corollary Assume that U is connected. If f : U → Rm is differentiable and for

each point x ∈ U we have (Df)x = 0 then f is constant.

Proof The enjoyable open and closed argument is left to you as Exercise 20.

We conclude this section with another useful rule – differentiation past the

integral. See also Exercise 23.

14 Theorem Assume that f : [a, b]× (c, d) → R is continuous and that ∂f(x, y)/∂y

exists and is continuous. Then

F (y) =

∫ b

a
f(x, y) dx

is of class C1 and

(5)
dF

dy
=

∫ b

a

∂f(x, y)

∂y
dx.

Proof By the C1 Mean Value Theorem, if h is small then

F (y + h)− F (y)

h
=

1

h

∫ b

a

(∫ 1

0

∂f(x, y + th)

∂y
dt

)
h dx.

The inner integral is the partial derivative of f with respect to y averaged along the

segment from y to y+h. Continuity implies that this average converges to ∂f(x, y)/∂y

as h → 0, which verifies (5). Continuity of dF/dy follows from continuity of ∂f/∂y.

See Exercise 22.
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3 Higher Derivatives
In this section we define higher-order multivariable derivatives. We do so in the same

spirit as in the previous section – the second derivative will be the derivative of the

first derivative, viewed naturally. Assume that f : U → Rm is differentiable on U .

The derivative (Df)x exists at each x ∈ U and the map x �→ (Df)x defines a function

Df : U → L(Rn, Rm).

The derivative Df is the same sort of thing that f is, namely a function from an

open subset of a vector space into another vector space. In the case of Df the target

vector space is not Rm but rather the mn-dimensional space L. If Df is differentiable

at p ∈ U then by definition

(D(Df))p = (D2f)p = the second derivative of f at p

and f is second-differentiable at p. The second derivative at p is a linear map

from Rn into L. For each v ∈ Rn, (D2f)p(v) belongs to L and therefore is a linear

transformation Rn → Rm so (D2f)p(v)(w) is bilinear and we write it as

(D2f)p(v, w).

(Recall that bilinearity is linearity in each variable separately.)

Third and higher derivatives are defined in the same way. If f is second-differen-

tiable on U then x �→ (D2f)x defines a map

D2f : U → L2

where L2 is the vector space of bilinear maps Rn×Rn → Rm. If D2f is differentiable

at p then f is third-differentiable there, and its third derivative is the trilinear map

(D3f)p = (D(D2f))p. And so on.

Just as for first derivatives, the relation between the second derivative and the

second partial derivatives calls for thought. Express f : U → Rm in component form

as f(x) = (f1(x), . . . , fm(x)) where x varies in U .

15 Theorem If (D2f)p exists then (D2fk)p exists, the second partials at p exist, and

(D2fk)p(ei, ej) =
∂2fk(p)

∂xi∂xj
.

Conversely, existence of the second partials implies existence of (D2f)p, provided that

the second partials exist at all points x ∈ U near p and are continuous at p.
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Proof Assume that (D2f)p exists. Then x �→ (Df)x is differentiable at x = p and

the same is true of the matrix

Mx =

⎡⎢⎢⎢⎣
∂f1
∂x1

· · · ∂f1
∂xn

· · · · · · · · ·
∂fm
∂x1

· · · ∂fm
∂xn

⎤⎥⎥⎥⎦
that represents it; x �→ Mx is differentiable at x = p. For according to Theorem10, a

vector function is differentiable if and only if its components are differentiable, and

then the derivative of the kth component is the kth component of the derivative. A

matrix is a special type of vector. Its components are its entries. Thus the entries

of Mx are differentiable at x = p and the second partials exist. Furthermore, the kth

row of Mx is a differentiable vector function of x at x = p and

(D(Dfk))p(ei)(ej) = (D2fk)p(ei, ej) = lim
t→0

(Dfk)p+tei(ej)− (Dfk)p(ej)

t
.

The first derivatives appearing in this fraction are the jth partials of fk at p+ tei and

at p. Thus ∂2fk(p)/∂xi∂xj = (D2fk)p(ei, ej) as claimed.

Conversely, assume that the second partials exist at all x near p and are continuous

at p. Then the entries of Mx have partials that exist at all points q near p, and are

continuous at p. Theorem8 implies that x �→ Mx is differentiable at x = p; i.e., f is

second-differentiable at p.

The most important and surprising property of second derivatives is symmetry.

16 Theorem If (D2f)p exists then it is symmetric: For all v, w ∈ Rn we have

(D2f)p(v, w) = (D2f)p(w, v).

Proof We will assume that f is real-valued (i.e., m = 1) because the symmetry

assertion concerns the arguments of f rather than its values. For a variable t ∈ [0, 1]

we draw the parallelogram P determined by the vectors tv, tw and label the vertices

with ±1 as in Figure 109.

The quantity

Δ = Δ(t, v, w) = f(p+ tv + tw)− f(p+ tv)− f(p+ tw) + f(p)

is the signed sum of f at the vertices of P . Clearly Δ is symmetric with respect to

v, w,

Δ(t, v, w) = Δ(t, w, v).
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Figure 109 The parallelogram P has signed vertices.

We claim that

(6) (D2f)p(v, w) = lim
t→0

Δ(t, v, w)

t2
,

from which symmetry of D2f follows.

Fix t, v, w and write Δ = g(1)− g(0) where

g(s) = f(p+ tv + stw)− f(p+ stw).

Since f is differentiable, so is g. By the one-dimensional Mean Value Theorem there

exists θ ∈ (0, 1) with Δ = g′(θ). By the Chain Rule g′(θ) can be written in terms of

Df and we get

Δ = g′(θ) = (Df)p+tv+θtw(tw)− (Df)p+θtw(tw).

Taylor’s estimate applied to the differentiable function u �→ (Df)u at u = p gives

(Df)p+x = (Df)p + (D2f)p(x, . ) +R(x, . )

where R(x, . ) ∈ L(Rn,Rm) is sublinear with respect to x. Writing out this estimate

for (Df)p+x first with x = tv + θtw and then with x = θtw gives

Δ

t2
=

1

t

{[
(Df)p(w) + (D2f)p(tv + θtw,w) +R(tv + θtw,w)

]
− [(Df)p(w) + (D2f)p(θtw,w) +R(θtw,w)]

}
= (D2f)p(v, w) +

R(tv + θtw,w)

t
− R(θtw,w)

t
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Bilinearity was used to combine the two second derivative terms. Sublinearity of

R(x,w) with respect to x implies that the last two terms tend to 0 as t → 0, which

completes the proof of (6). Since (D2f)p is the limit of a symmetric (although

nonlinear) function of v, w it too is symmetric.

Remark The fact that D2f can be expressed directly as a limit of values of f is

itself interesting. It should remind you of its one-dimensional counterpart,

f ′′(x) = lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
.

17 Corollary Corresponding mixed second partials of a second-differentiable func-

tion are equal,
∂2fk(p)

∂xi∂xj
=

∂2fk(p)

∂xj∂xi
.

Proof The equalities

∂2fk(p)

∂xi∂xj
= (D2fk)p(ei, ej) = (D2fk)p(ej , ei) =

∂2fk(p)

∂xj∂xi

follow from Theorem15 and the symmetry of D2f .

The mere existence of the second-order partials does not imply second order

differentiability, nor does it imply equality of corresponding mixed second partials.

See Exercise 24.

18 Corollary The rth derivative, if it exists, is symmetric: Permutation of the vec-

tors v1, . . . , vr does not affect the value of (Drf)p(v1, . . . , vr). Corresponding mixed

higher-order partials are equal.

Proof The induction argument is left to you as Exercise 29.

In my opinion Theorem16 is quite natural even though its proof is tricky. It

proceeds from a pointwise hypothesis to a pointwise conclusion – whenever the second

derivative exists it is symmetric. No assumption is made about continuity of partials.

It is possible that f is second-differentiable at p and nowhere else. See Exercise 25.

All the same, it remains standard to prove equality of mixed partials under stronger

hypotheses, namely, that D2f is continuous. See Exercise 27.

We conclude this section with a brief discussion of the rules of higher-order dif-

ferentiation. It is simple to check that the rth derivative of f + cg is Drf + cDrg.
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Also, if β is k-linear and k < r then f(x) = β(x, . . . , x) has Drf = 0. On the other

hand, if k = r then (Drf)p = r! Symm(β) where Symm(β) is the symmetrization of

β. See Exercise 28.

The Chain Rule for rth derivatives is a bit complicated. The difficulties arise from

the fact that x appears in two places in the expression for the first-order Chain Rule,

(D(g ◦ f))x = (Dg)f(x) ◦ (Df)x, and so, differentiating this product produces

(D2g)f(x) ◦ (Df)2x + (Dg)f(x) ◦ (D2f)x.

(The meaning of (Df)2x needs clarification.) Differentiating again produces four

terms, two of which combine. The general formula is

(Dr(g ◦ f))x =

r∑
k=1

∑
μ

(Dkg)f(x) ◦ (Dμf)x

where the sum on μ is taken as μ runs through all partitions of {1, . . . , r} into k

disjoint subsets. See Exercise 41.

The higher-order Leibniz rule is left for you as Exercise 42.

Smoothness Classes

A map f : U → Rm is of class Cr if it is rth-order differentiable at each p ∈ U and

its derivatives depend continuously on p. (Since differentiability implies continuity,

all the derivatives of order less than r are automatically continuous. Only the rth

derivative is in question.) If f is of class Cr for all r then it is smooth or of class

C∞. According to the differentiation rules, these smoothness classes are closed under

the operations of linear combination, product, and composition. We discuss next how

they are closed under limits.

Let (fk) be a sequence of Cr functions fk : U → Rm. The sequence is

(a) Uniformly Cr convergent if for some Cr function f : U → Rm we have

fk ⇒ f Dfk ⇒ Df . . . Drfk ⇒ Drf

as k → ∞.

(b) Uniformly Cr Cauchy if for each ε > 0 there is an N such that for all

k, � ≥ N and all x ∈ U we have

|fk(x)− f�(x)| < ε ‖(Dfk)x − (Df�)x‖ < ε . . . ‖(Drfk)x − (Drf�)x‖ < ε.
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19 Theorem Uniform Cr convergence and Cauchyness are equivalent.

Proof Convergence always implies the Cauchy condition. As for the converse, first

assume that r = 1. We know that fk converges uniformly to a continuous function f

and the derivative sequence converges uniformly to a continuous limit

Dfk ⇒ G.

We claim that Df = G. Fix p ∈ U and consider points q in a small convex neigh-

borhood of p. The C1 Mean Value Theorem and uniform convergence imply that as

k → ∞ we have

fk(q)− fk(p) =

∫ 1

0
(Dfk)p+t(q−p) dt (q − p)

� �

f(q)− f(p) =

∫ 1

0
G(p+ t(q − p)) dt (q − p).

This integral of G is a continuous function of q that reduces to G(p) when p = q. By

the converse part of the C1 Mean Value Theorem, f is differentiable and Df = G.

Therefore f is C1 and fk converges C1 uniformly to f as k → ∞, completing the

proof when r = 1.

Now suppose that r ≥ 2. The maps Dfk : U → L form a uniformly Cr−1 Cauchy

sequence. The limit, by induction, is Cr−1 uniform; i.e., as k → ∞ we have

Ds(Dfk) ⇒ DsG

for all s ≤ r − 1. Hence fk converges Cr uniformly to f as k → ∞, completing the

induction.

The Cr norm of a Cr function f : U → Rm is

‖f‖r = max{sup
x∈U

|f(x)|, . . . , sup
x∈U

‖(Drf)x‖}.

The set of functions with ‖f‖r < ∞ is denoted Cr(U,Rm).

20 Corollary ‖ ‖r makes Cr(U,Rm) a Banach space – a complete normed vector

space.

Proof The norm properties are easy to check; completeness follows from Theo-

rem19.
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21 CrM -test If
∑

Mk is a convergent series of constants and if ‖fk‖r ≤ Mk for all

k then the series of functions
∑

fk converges in Cr(U,Rm) to a function f . Term-by-

term differentiation of order ≤ r is valid, i.e., for all s ≤ r we have Dsf =
∑

k D
sfk.

Proof Obvious from the preceding corollary.

4 Implicit and Inverse Functions
Let f : U → Rm be given, where U is an open subset of Rn × Rm. Fix attention on

a point (x0, y0) ∈ U and write f(x0, y0) = z0. Our goal is to solve the equation

(7) f(x, y) = z0

near (x0, y0). More precisely, we hope to show that the set of points (x, y) near

(x0, y0) at which f(x, y) = z0, the so-called z0-locus of f , is the graph of a function

y = g(x). If so, g is the implicit function defined by (7). See Figure 110.

Figure 110 Near (x0, y0) the z0-locus of f is the graph of a function

y = g(x).

Under various hypotheses we will show that g exists, is unique, and is differen-

tiable. The main assumption, which we make throughout this section, is that

the m×m matrix B =

[
∂fi(x0, y0)

∂yj

]
is invertible.

Equivalently the linear transformation that B represents is an isomorphism Rm →
Rm.
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22 Implicit Function Theorem If the function f above is Cr, 1 ≤ r ≤ ∞, then

near (x0, y0), the z0-locus of f is the graph of a unique function y = g(x). Besides,

g is Cr.

Proof Without loss of generality we suppose that (x0, y0) is the origin in Rn × Rm

and z0 = 0 in Rm. The Taylor expression for f is

f(x, y) = Ax+By +R

where A is the m× n matrix

A =

[
∂fi(x0, y0)

∂xj

]
and R is sublinear. Solving f(x, y) = 0 for y = gx is equivalent to solving

(8) y = −B−1(Ax+R(x, y)).

In the unlikely event that R does not depend on y, (8) is an explicit formula for

gx and the implicit function is an explicit function. In general, the idea is that the

remainder R depends so weakly on y that we can switch it to the left-hand side of

(8), absorbing it in the y-term.

Solving (8) for y as a function of x is the same as finding a fixed-point of

Kx : y �→ −B−1(Ax+R(x, y)),

so we hope to show that Kx contracts. The remainder R is a C1 function, and

(DR)(0,0) = 0. Therefore if r is small and |x|, |y| ≤ r then

‖B−1‖
∥∥∥∥∂R(x, y)

∂y

∥∥∥∥ ≤ 1

2
.

By the Mean Value Theorem this implies that

|Kx(y1)−Kx(y2)| ≤ ∥∥B−1
∥∥ |R(x, y1)−R(x, y2)|

≤ ∥∥B−1
∥∥ ∥∥∥∥∂R∂y

∥∥∥∥ |y1 − y2| ≤ 1

2
|y1 − y2|

for |x|, |y1|, |y2| ≤ r. Due to continuity at the origin, if |x| ≤ τ � r then

|Kx(0)| ≤ r

2
.

Thus, for each x ∈ X, Kx contracts Y into itself where X is the τ -neighborhood of 0

in Rn and Y is the closure of the r-neighborhood of 0 in Rm. See Figure 111.
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Figure 111 Kx contracts Y into itself.

By the Contraction Mapping Principle, Kx has a unique fixed point g(x) in Y .

This implies that near the origin, the zero locus of f is the graph of a function

y = g(x).

It remains to check that g is Cr. First we show that g obeys a Lipschitz condition

at 0. We have

|gx| = |Kx(gx)−Kx(0) +Kx(0)| ≤ Lip(Kx) |gx− 0|+ |Kx(0)|
≤ |gx|

2
+ |B−1(Ax+R(x, 0))| ≤ |gx|

2
+ 2L|x|

where L =
∥∥B−1

∥∥ (‖A‖+1) and |x| is small. Thus g satisfies the Lipschitz condition

|gx| ≤ 4L|x|.

In particular g is continuous at x = 0.

Note the trick here. The term |gx| appears on both sides of the inequality but

since its coefficient on the r.h.s. is smaller than that on the l.h.s., they combine to

give a nontrivial inequality.

By the Chain Rule, the derivative of g at the origin, if it does exist, must satisfy

A+B(Dg)0 = 0, so we aim to show that (Dg)0 = −B−1A. Since gx is a fixed-point

of Kx we have gx = −B−1A(x+R) and the Taylor estimate for g at the origin is

∣∣g(x)− g(0)− (−B−1Ax)
∣∣ =

∣∣B−1R(x, gx)
∣∣ ≤ ∥∥B−1

∥∥ |R(x, gx)|
≤ ∥∥B−1

∥∥ e(x, gx)(|x|+ |gx|)
≤ ∥∥B−1

∥∥ e(x, gx)(1 + 4L)|x|

L =
∥∥∥∥B−1

∥∥∥∥ (‖A‖+1)
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where e(x, y) → 0 as (x, y) → (0, 0). Since gx → 0 as x → 0, the error factor e(x, gx)

does tend to 0 as x → 0, the remainder is sublinear with respect to x, and g is

differentiable at 0 with (Dg)0 = −B−1A.

All facts proved at the origin hold equally at points (x, y) on the zero locus near

the origin. For the origin is nothing special. Thus, g is differentiable at x and

(Dg)x = −B−1
x ◦Ax where

Ax =
∂f(x, gx)

∂x
=

[
∂fi
∂xj

]

(x,gx)

Bx =
∂f(x, gx)

∂y
=

[
∂fi
∂yj

]

(x,gx)

.

Since gx is continuous (being differentiable) and f is C1, Ax and Bx are continuous

functions of x. According to Cramer’s Rule for finding the inverse of a matrix, the

entries of B−1
x are explicit, algebraic functions of the entries of Bx, and therefore they

depend continuously on x. Therefore g is C1.

To complete the proof that g is Cr we apply induction. For 2 ≤ r < ∞, assume

the theorem is true for r−1. When f is Cr this implies that g is Cr−1. Because they

are composites of Cr−1 functions, Ax and Bx are Cr−1. Because the entries of B−1
x

depend algebraically on the entries of Bx, B
−1
x is also Cr−1. Therefore (Dg)x is Cr−1

and g is Cr. If f is C∞, we have just shown that g is Cr for all finite r and thus g is

C∞.

Exercises 35 and 36 discuss the properties of matrix inversion avoiding Cramer’s

Rule and finite dimensionality.

Next we are going to deduce the Inverse Function Theorem from the Implicit

Function Theorem. A fair question is: Since they turn out to be equivalent theorems,

why not do it the other way around? Well, in my own experience the Implicit Function

Theorem is more basic and flexible. I have at times needed forms of the Implicit

Function Theorem with weaker differentiability hypotheses respecting x than y and

they do not follow from the Inverse Function Theorem. For example, if we merely

assume that B = ∂f(x0, y0)/∂y is invertible, that ∂f(x, y)/∂x is a continuous function

of (x, y), and that f is continuous (or Lipschitz) then the local implicit function of f

is continuous (or Lipschitz). It is not necessary to assume that f is of class C1.

Just as a homeomorphism is a continuous bijection whose inverse is continuous,

so a Cr diffeomorphism is a Cr bijection whose inverse is Cr, 1 ≤ r ≤ ∞. The

inverse being Cr is not automatic. The example to remember is f(x) = x3. It is

a smooth homeomorphism R → R but is not a diffeomorphism because its inverse

fails to be differentiable at the origin. Since differentiability implies continuity, every

diffeomorphism is a homeomorphism.

Ax =
∂f(x, gx)

∂x
=

[
∂fiff

∂xj

]

(x,gx)

Bx =
∂f(x, gx)

∂y
=

[
∂fiff

∂yjy

]

(x,gx)

.

smooth homeomorphism R → R

ils to be differentiable at the originff
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Diffeomorphisms are to Cr things as isomorphisms are to algebraic things. The

sphere and ellipsoid are diffeomorphic under a diffeomorphism R3 → R3 but the

sphere and the surface of the cube are only homeomorphic, not diffeomorphic.

23 Inverse Function Theorem If the derivative of f is invertible then f is a local

diffeomorphism.

Proof Invertibility of a matrix implies the matrix is square, so m = n. Then we

have f : U → Rm, where U is an open subset of Rm, and at some p ∈ U , (Df)p is

assumed to be invertible. We assume f is Cr, 1 ≤ r ≤ ∞, and set

F (x, y) = f(x)− y q = f(p)

for (x, y) ∈ U×Rm. Clearly F is Cr, F (p, q) = 0, and the derivative of F with respect

to x at (p, q) is (Df)p. We claim that f is a diffeomorphism from a neighborhood of

p to a neighborhood of q.

Since (Df)p is an isomorphism we can apply the Implicit Function Theorem (with

x and y interchanged!) to find neighborhoods Up of p and Vq of q and a Cr implicit

function h : Vq → Up uniquely defined by the equation

F (hy, y) = f(hy)− y = 0.

This means that h is a “local right inverse” for f in the sense that f ◦ h = id |Vq .

Since F (p, q) = 0, uniqueness implies p = hq, and (Df)p ◦ (Dh)q = I implies (Dh)q
is invertible.

We claim that h is also a “local left inverse” for f , and hence that f is a local

diffeomorphism. We can apply the same analysis with h in place of f since it is Cr,

it sends q to p, and its derivative at q is invertible. Consequently h has a unique local

right inverse, say g. It satisfies h ◦ g = id locally and we get

f = f ◦ (h ◦ g) = (f ◦ h) ◦ g = g.

Thus h ◦ f = h ◦ g = id shows that h is a local left inverse for f and we have h = f−1

on a neighborhood of q.

5* The Rank Theorem
The rank of a linear transformation T : Rn → Rm is the dimension of its range. In

terms of matrices, the rank is the size of the largest minor with nonzero determinant.

We claim that f is a diffeomorphism from a neighborhood offfff

p to a neighborhood of q.
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If T is onto then its rank is m. If it is one-to-one then its rank is n. A standard

formula in linear algebra states that

rankT + nullity T = n

where nullity is the dimension of the kernel of T . A differentiable function f : U → Rm

has constant rank k if for all p ∈ U the rank of (Df)p is k.

An important property of rank is that if T has rank k and ‖S − T‖ is small then

S has rank ≥ k. The rank of T can increase under a small perturbation of T but it

cannot decrease. Thus, if f is C1 and (Df)p has rank k then automatically (Df)x
has rank ≥ k for all x near p. See Exercise 43.

The Rank Theorem describes maps of constant rank. It says that locally they

are just like linear projections. To formalize this we say that maps f : A → B and

g : C → D are equivalent (for want of a better word) if there are bijections α : A → C

and β : B → D such that g = β ◦ f ◦ α−1. An elegant way to express this equation

is a commutative diagram

Commutativity means that for each a ∈ A we have β(f(a)) = g(α(a)). Following the

maps around the rectangle clockwise from A to D gives the same result as following

them around it counterclockwise. The α, β are “changes of variable.” If f, g are

Cr and α, β are Cr diffeomorphisms, 1 ≤ r ≤ ∞, then f and g are said to be Cr

equivalent, and we write f ≈r g. As C
r maps, f and g are indistinguishable.

24 Lemma Cr equivalence is an equivalence relation and it has no effect on rank.

Proof Since diffeomorphisms form a group, ≈r is an equivalence relation. Also, if

g = β ◦ f ◦ α−1 then the chain rule implies

Dg = Dβ ◦Df ◦Dα−1.

Since Dβ and Dα−1 are isomorphisms, Df and Dg have equal rank.
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The linear projection P : Rn → Rm

P (x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0)

has rank k. It projects Rn onto the k-dimensional subspace Rk × 0 ⊂ Rm. (We

assume that k ≤ n,m.) The m× n matrix of P is[
Ik×k 0

0 0

]
.

25 Rank Theorem Locally, a Cr constant-rank-k map is Cr equivalent to a linear

projection onto a k-dimensional subspace.

As an example, think of the radial projection π : R3� {0} → S2, where π(v) =

v/ |v|. It has constant rank 2, and is locally indistinguishable from linear projection

of R3 to the (x, y)-plane.

Proof Let f : U → Rm have constant rank k and let p ∈ U be given. We will show

that on a neighborhood of p we have f ≈r P .

Step 1. Define translations of Rn and Rm by

τ : Rn → Rn τ ′ : Rm → Rm

z �→ z + p z′ �→ z′ − fp.

The translations are diffeomorphisms of Rn and Rm and they show that f is Cr

equivalent to τ ′ ◦ f ◦ τ , a Cr map that sends 0 to 0 and has constant rank k. Thus,

it is no loss of generality to assume in the first place that p is the origin in Rn and

fp is the origin in Rm. We do so.

Step 2. Let T : Rn → Rn be an isomorphism that sends 0×Rn−k onto the kernel

of (Df)0. Since the kernel has dimension n−k, there is such a T . Let T ′ : Rm → Rm

be an isomorphism that sends the image of (Df)0 onto Rk× 0. Since (Df)0 has rank

k, there is such a T ′. Then f ≈r T ′ ◦ f ◦ T . This map sends the origin in Rn to the

origin in Rm, while its derivative at the origin has kernel 0×Rn−k and range Rk × 0.

Thus it is no loss of generality to assume in the first place that f has these properties.

We do so.

Step 3. Write

(x, y) ∈ Rk × Rn−k f(x, y) = (fX(x, y), fY (x, y)) ∈ Rk × Rm−k.
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We are going to find a g ≈r f such that

g(x, 0) = (x, 0).

The matrix of (Df)0 is [
A 0

0 0

]
where A is k × k and invertible. By the Inverse Function Theorem the map

σ : x �→ fX(x, 0)

is a diffeomorphism σ : X → X ′ where X and X ′ are small neighborhoods of the

origin in Rk and fX denotes the first k components of f . For x′ ∈ X ′, set

h(x′) = fY (σ
−1(x′), 0).

This makes h a Cr map X ′ → Rm−k, and

h(σ(x)) = fY (x, 0)

where fY denotes the final m − k components of f . The image of X × 0 under f is

the graph of h. For

f(X × 0) = {f(x, 0) : x ∈ X} = {(fX(x, 0), fY (x, 0)) : x ∈ X}
= {(fX(σ−1(x′), 0), fY (σ−1(x′), 0)) : x′ ∈ X ′}
= {(x′, h(x′)) : x′ ∈ X ′}.

See Figure 112.

Figure 112 The f -image of X × 0 is the graph of h.
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If (x′, y′) ∈ X ′ × Rm−k then we define

ψ(x′, y′) = (σ−1(x′), y′ − h(x′)).

Since ψ is the composite of Cr diffeomorphisms,

(x′, y′) �→ (x′, y′ − h(x′)) �→ (σ−1(x′), y′ − h(x′)),

it too is a Cr diffeomorphism. (Alternatively, you could compute the derivative of ψ at

the origin and apply the Inverse Function Theorem.) We observe that g = ψ ◦f ≈r f

satisfies

g(x, 0) = ψ ◦ (fX(x, 0), fY (x, 0))

= (σ−1 ◦ fX(x, 0), fY (x, 0)− h(fX(x, 0))) = (x, 0).

Thus it is no loss of generality to assume in the first place that f(x, 0) = (x, 0). We do

so. (This means that f sends the k-plane Rk×0 ⊂ Rn into the k-plane Rk×0 ⊂ Rm.)

Step 4. Finally, we find a local diffeomorphism ϕ in the neighborhood of 0 in Rn

so that f ◦ ϕ is the projection map P (x, y) = (x, 0).

Define F (ξ, x, y) = fX(ξ, y)− x. It is a map from Rk × Rk × Rn−k into Rk. The

equation

F (ξ, x, y) = 0

defines ξ = ξ(x, y) implicitly in a neighborhood of the origin. For at the origin the

derivative of F with respect to ξ is the invertible matrix Ik×k. Thus ξ is a Cr map

from Rn into Rk and ξ(0, 0) = 0. We claim that

ϕ(x, y) = (ξ(x, y), y)

is a local diffeomorphism of Rn and G = f ◦ ϕ is P .

The derivative of ξ(x, y) with respect to x at the origin can be calculated from the

Chain Rule (this was done in general for implicit functions) and since F (ξ, x, y) ≡ 0

we have

0 =
dF (ξ(x, y), x, y)

dx
=

∂F

∂ξ

∂ξ

∂x
+

∂F

∂x
= Ik×k

∂ξ

∂x
− Ik×k.

That is, at the origin ∂ξ/∂x is the identity matrix. Thus,

(Dϕ)0 =

[
Ik×k ∗
0 I(n−k)×(n−k)

]
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which is invertible no matter what ∗ is. Clearly ϕ(0) = 0. By the Inverse Function

Theorem, ϕ is a local Cr diffeomorphism on a neighborhood of the origin and G is

Cr equivalent to f . By Lemma24, G has constant rank k.

We have

G(x, y) = f ◦ ϕ(x, y) = f(ξ(x, y), y)

= (fX(ξ, y), fY (ξ, y)) = (x, GY (x, y)).

Therefore GX(x, y) = x and

DG =

⎡⎣ Ik×k 0

∗ ∂GY

∂y

⎤⎦ .
At last we use the constant-rank hypothesis. (Until now, it has been enough that

Df has rank ≥ k.) The only way that a matrix of this form can have rank k is that

∂GY

∂y
≡ 0.

See Exercise 43. By Corollary 13 to the Mean Value Theorem this implies that in a

neighborhood of the origin, GY is independent of y. Thus

GY (x, y) = GY (x, 0) = fY (ξ(x, 0), 0),

which is 0 because (by Step 3) fY = 0 on Rk × 0. The upshot is that G ≈r f

and G(x, y) = (x, 0); i.e., G = P . See also Exercise 31. By Lemma24, steps 1-4

concatenate to give a Cr equivalence between the original constant-rank map f and

the linear projection P .

In the following three corollaries U is an open subset of Rn.

26 Corollary If f : U → Rm has rank k at p then it is locally Cr equivalent to a

map of the form G(x, y) = (x, g(x, y)) where g : Rn → Rm−k is Cr and x ∈ Rk.

Proof This was shown in the proof of the Rank Theorem before we used the as-

sumption that f has constant-rank k.

27 Corollary If f : U → R is Cr and (Df)p has rank 1 then in a neighborhood of

p the level sets {x ∈ U : f(x) = c} form a stack of Cr nonlinear discs of dimension

n− 1.
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Figure 113 Near a rank-one point, the level sets of f : U → R are

diffeomorphic to a stack of (n− 1)-dimensional planes.

Proof Near p the rank can not decrease, so f has constant rank 1 near p. The level

sets of a projection Rn → R form a stack of (n− 1)-dimensional planes and the level

sets of f are the images of these planes under the equivalence diffeomorphism in the

Rank Theorem. See Figure 113.

28 Corollary If f : U → Rm has rank n at p then locally the image of U under f is

a diffeomorphic copy of the n-dimensional disc.

Proof Near p the rank can not decrease, so f has constant rank n near p. The Rank

Theorem says that f is locally Cr equivalent to x �→ (x, 0). (Since k = n, the y-

coordinates are absent.) Thus the local image of U is diffeomorphic to a neighborhood

of 0 in Rn × 0 which is an n-dimensional disc.

The geometric meaning of the diffeomorphisms ψ and ϕ is illustrated in the Fig-

ures 114 and 115.
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Figure 114 f has constant rank 1.
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Figure 115 f has constant rank 2.
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6* Lagrange Multipliers

In sophomore calculus you learn how to maximize a function f(x, y, z) subject to

a “constraint” or “side condition” g(x, y, z) = constant by the Lagrange multiplier

method. Namely, the maximum can occur only at a point p where the gradient of f

is a scalar multiple of the gradient of g,

gradp f = λ gradp g.

The factor λ is the Lagrange multiplier. The goal of this section is a natural, math-

ematically complete explanation of the Lagrange multiplier method which amounts

to gazing at the right picture.

First, the natural hypotheses are

(a) f and g are C1 real-valued functions defined on some region U ⊂ R3.

(b) For some constant c, the set S = gpre(c) is compact, nonempty, and gradq g �= 0

for all q ∈ S.

The conclusion is

(c) The restriction of f to the set S, f |S , has a maximum, say M , and if p ∈ S has

f(p) = M then there is a λ such that gradp f = λ gradp g.

The method is utilized as follows. You are given† f and g, and you are asked to

find a point p ∈ S at which f |S is maximum. Compactness implies that a maximum

point exists. Your job is to find it. You first locate all points q ∈ S at which the

gradients of f and g are linearly dependent; i.e., one gradient is a scalar multiple of

the other. They are “candidates” for the maximum point. You then evaluate f at

each candidate and the one with the largest f -value is the maximum. Done.

Of course you can find the minimum the same way. It too will be among the

candidates, and it will have the smallest f -value. In fact, the candidates are exactly

the critical points of f |S , the points x ∈ S such that

fy − fx

|y − x| → 0

as y ∈ S tends to x.

†Sometimes you are merely given f and S. Then you must think up an appropriate g such that

(b) is true.
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Now we explain why the Lagrange multiplier method works. Recall that the

gradient of a function h(x, y, z) at p ∈ U is the vector

gradp h =

(
∂h(p)

∂x
,
∂h(p)

∂y
,
∂h(p)

∂z

)
∈ R3.

Assume hypotheses (a), (b) and that f |S attains its maximum value M at p ∈ S. We

must prove (c) – the gradient of f at p is a scalar multiple of the gradient of g at p.

If gradp f = 0 then gradp f = 0 · gradp g, which verifies (c) degenerately. Thus it is

fair to assume that gradp f �= 0.

By the Rank Theorem, in the neighborhood of a point at which the gradient of

f is nonzero, the f -level surfaces are like a stack of pancakes. (The pancakes are

infinitely thin and may be somewhat curved. Alternatively, you can picture the level

surfaces as layers of an onion skin or as a pile of transparency foils.)

To arrive at a contradiction, assume that gradp f is not a scalar multiple of gradp g.

The angle between the gradients is nonzero. Gaze at the f -level surfaces f = M ± ε

for ε small. The way these f -level surfaces meet the g-level surface S is shown in

Figure 116.

The surface S is a knife blade that slices through the f -pancakes. The knife

blade is perpendicular to grad g, while the pancakes are perpendicular to grad f .

There is a positive angle between these gradient vectors, so the knife is not tangent

to the pancakes. Rather, S slices transversely through each f -level surface near p,

and S ∩ {f = M + ε} is a curve that passes near p. The value of f on this curve is

M+ε, which contradicts the assumption that f |S attains a maximum at p. Therefore

gradp f is, after all, a scalar multiple of gradp g and the proof of (c) is complete.

There is a higher-dimensional version of the Lagrange multiplier method. A C1

function f : U → R is defined on an open set U ⊂ Rn, and it is constrained to a

compact “surface” S ⊂ U defined by k simultaneous equations

g1(x1, . . . , xn) = c1
. . .

gk(x1, . . . , xn) = ck.

We assume the functions gi are C1 and their gradients are linearly independent.

The higher-dimensional Lagrange multiplier method asserts that if f |S achieves a

maximum at p then gradp f is a linear combination of gradp g1, . . . , gradp gk. In

contrast to Protter and Morrey’s presentation on pages 369-372 of their book, A
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Figure 116 S cuts through all the f -level surfaces near p.

First Course in Real Analysis, the proof is utterly simple: It amounts to examining

the situation in the right coordinate system at p.

It is no loss of generality to assume that p is the origin in Rn and that c1, . . . , ck,

f(p) are zero. Also, we can assume that gradp f �= 0, since otherwise it is already a

trivial linear combination of the gradients of the gi. Then choose vectors wk+2, . . . , wn

so that

grad0 g1, . . . , grad0 gk, grad0 f, wk+2, . . . , wn

is a vector basis of Rn. For k + 2 ≤ i ≤ n define

hi(x) = 〈wi, x〉.
The map x �→ F (x) = (g1(x), . . . , gk(x), f(x), hk+2(x), . . . , hn(x)) is a local diffeo-

morphism of Rn to itself since the derivative of F at the origin is the n×n matrix of

linearly independent column vectors

(DF )0 = [ grad0 g1 . . . grad0 gk grad0 f wk+2 . . . wn] .

Think of the functions yi = Fi(x) as new coordinates on a neighborhood of the

origin in Rn. With respect to these coordinates, the surface S is the coordinate plane
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0×Rn−k on which the coordinates y1, . . . , yk are zero and f is the (k+1)st coordinate

function yk+1. This coordinate function obviously does not attain a maximum on the

coordinate plane 0× Rn−k, so f |S attains no maximum at p.

7 Multiple Integrals
In this section we generalize to n variables the one-variable Riemann integration the-

ory appearing in Chapter 3. For simplicity, we assume throughout that the function

f we integrate is real-valued, as contrasted to vector-valued, and at first we assume

that f is a function of only two variables.

Consider a rectangle R = [a, b]× [c, d] in R2. Partitions P and Q of [a, b] and [c, d]

P : a = x0 < x1 < . . . < xm = b Q : c = y0 < y1 < . . . < yn = d

give rise to a “grid” G = P ×Q of rectangles

Rij = Ii × Jj

where Ii = [xi−1, xi] and Jj = [yj−1, yj ]. Let Δxi = xi − xi−1, Δyj = yj − yj−1, and

denote the area of Rij as

|Rij | = ΔxiΔyj .

Let S be a choice of sample points (sij , tij) ∈ Rij . See Figure 117.

Given f : R → R, the corresponding Riemann sum is

R(f,G, S) =

m∑
i=1

n∑
j=1

f(sij , tij)|Rij |.

If there is a number to which the Riemann sums converge as the mesh of the grid

(the diameter of the largest rectangle) tends to zero then f is Riemann integrable

and that number is the Riemann integral∫
R
f = lim

meshG→0
R(f,G, S).

The lower and upper sums of a bounded function f with respect to the grid G

are

L(f,G) =
∑

mij |Rij | U(f,G) =
∑

Mij |Rij |
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Figure 117 A grid and a sample point

where mij and Mij are the infimum and supremum of f(s, t) as (s, t) varies over Rij .

The lower integral is the supremum of the lower sums and the upper integral is the

infimum of the upper sums.

The proofs of the following facts are conceptually identical to the one-dimensional

versions explained in Chapter 3:

(a) If f is Riemann integrable then it is bounded.

(b) The set of Riemann integrable functions R → R is a vector space R = R(R)

and integration is a linear map R→ R.

(c) The constant function f = k is integrable and its integral is k|R|.
(d) If f, g ∈ R and f ≤ g then ∫

R
f ≤
∫
R
g.

(e) Every lower sum is less than or equal to every upper sum, and consequently

the lower integral is no greater than the upper integral,∫
R

f ≤
∫
R
f.

(f) For a bounded function, Riemann integrability is equivalent to the equality of
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the lower and upper integrals, and integrability implies equality of the lower,

upper, and Riemann integrals.

The Riemann-Lebesgue Theorem is another result that generalizes naturally to

multiple integrals. It states that a bounded function is Riemann integrable if and

only if its discontinuities form a zero set.

First of all, Z ⊂ R2 is a zero set if for each ε > 0 there is a countable covering

of Z by open rectangles S� whose total area is less than ε:∑
�

|S�| < ε.

By the ε/2� construction, a countable union of zero sets is a zero set.

As in dimension 1, we express the discontinuity set of our function f : R → R as

the union

D = >
k∈N

Dk,

where Dk is the set of points z ∈ R at which the oscillation is ≥ 1/k. (See Exer-

cise 3.19.) That is,

oscz f = lim
r→0

diam (f(Rr(z))) ≥ 1/k

where Rr(z) is the r-neighborhood of z in R. The set Dk is compact.

Assume that f : R → R is Riemann integrable. It is bounded and its upper and

lower integrals are equal. Fix k ∈ N. Given ε > 0, there exists δ > 0 such that if G

is a grid with mesh < δ then

U(f,G)− L(f,G) < ε.

Fix such a grid G. Each Rij in the grid that contains in its interior a point of Dk has

Mij − mij ≥ 1/k, where mij and Mij are the infimum and supremum of f on Rij .

The other points of Dk lie in the zero set of gridlines xi × [c, d] and [a, b]× yj . Since

U − L < ε, the total area of these rectangles with oscillation ≥ 1/k does not exceed

kε. Since k is fixed and ε is arbitrary, Dk is a zero set. Taking k = 1, 2, . . . shows

that the discontinuity set D = >Dk is a zero set.

Conversely, assume that f is bounded and D is a zero set. Fix any k ∈ N. Each

z ∈ R�Dk has a neighborhood W = Wz such that

sup{f(w) : w ∈ W} − inf{f(w) : w ∈ W} < 1/k.
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Since Dk is a zero set, it can be covered by countably many open rectangles S� of

small total area, say ∑
|S�| < σ.

Let V be the covering of R by the neighborhoods W with small oscillation, and the

rectangles S�. Since R is compact, V has a positive Lebesgue number λ. Take a grid

with mesh < λ. This breaks the sum

U − L =
∑

(Mij −mij)|Rij |

into two parts – the sum of those terms for which Rij is contained in a neighborhood

W with small oscillation, plus a sum of terms for which Rij is contained in one of

the rectangles S�. The latter sum is less than 2Mσ, while the former is less than

|R|/k. Thus, when k is large and σ is small, U − L is small, which implies Riemann

integrability. To summarize,

The Riemann-Lebesgue Theorem remains valid

for functions of several variables.

Now we come to the first place that multiple integration has something new to say.

Suppose that f : R → R is bounded and define the lower and upper slice integrals

F (y) =

∫ b

a

f(x, y) dx F (y) =

∫ b

a
f(x, y) dx.

For each fixed y ∈ [c, d], these are the lower and upper integrals of the single-variable

function fy : [a, b] → R defined by fy(x) = f(x, y). They are the integrals of f(x, y)

on the horizontal line y = const. See Figure 118.

29 Fubini’s Theorem If f is Riemann integrable then so are F and F . Moreover,

∫

R
f =

∫ d

c
F dy =

∫ d

c
F dy.

Since F ≤ F and the integral of their difference is zero, it follows from the one-

dimensional Riemann-Lebesgue Theorem that there exists a linear zero set Y ⊂ [c, d]

such that if y �∈ Y then F (y) = F (y). That is, the integral of f(x, y) with respect

to x exists for almost all y and we get the more common way to write the Fubini

formula ∫∫

R
f dxdy =

∫ d

c

[∫ b

a
f(x, y) dx

]
dy.

line
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Figure 118 Fubini’s Theorem is like sliced bread.

There is, however, an ambiguity in this formula. What is the value of the integrand∫ b
a f(x, y) dx when y ∈ Y ? For such a y, F (y) < F (y) and the integral of f(x, y) with

respect to x does not exist. The answer is that we can choose any value between F (y)

and F (y). The integral with respect to y will be unaffected. See also Exercise 47.

Proof of Fubini’s Theorem If G = P ×Q partitions [a, b]× [c, d] we claim that

(9) L(f,G) ≤ L(F ,Q)

Fix any partition interval Jj ⊂ [c, d]. If y ∈ Jj then

mij = inf{f(s, t) : (s, t) ∈ Rij} ≤ inf{f(s, y) : s ∈ Ii} = mi(fy).

Thus, for all y ∈ Jj we have

m∑
i=1

mijΔxi ≤
m∑
i=1

mi(fy)Δxi = L(fy, P ) ≤ F (y).

Since mj(F ) = inf{F (y) : y ∈ Jj}, it follows that
m∑
i=1

mijΔxi ≤ mj(F ).

for all y ∈ JjJJ we have

Since mj(F ) = inf{F (y) : y ∈ JjJJ },
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Therefore

L(f,G) =
n∑

j=1

m∑
i=1

mijΔxiΔyj ≤
n∑

j=1

mj(F )Δyj = L(F , Q)

which gives (9). Analogously, U(F ,Q) ≤ U(f,G). Thus

L(f,G) ≤ L(F ,Q) ≤ U(F ,Q) ≤ U(f,G).

Since f is integrable, the outer terms of this inequality differ by arbitrarily little when

the mesh of G is small. Taking infima and suprema over all grids G = P ×Q gives

∫

R
f = sup

G
L(f,G) ≤ sup

Q
L(F ,Q) ≤ inf

Q
U(F ,Q)

≤ inf
G

U(f,G) =

∫

R
f.

The resulting equality of these five quantities implies that F is integrable and its

integral on [c, d] equals that of f on R. The integral of F is handled the same way.

30 Corollary If f is Riemann integrable then the order of integration – first x then

y or vice versa – is irrelevant to the value of the iterated integral,

∫ d

c

[∫ b

a
f(x, y) dx

]
dy =

∫ b

a

[∫ d

c
f(x, y) dy

]
dx.

Proof Both iterated integrals equal the integral of f over R.

A geometric consequence of Fubini’s Theorem concerns the calculation of the area

of plane regions by a slice method. Corresponding slice methods are valid in higher

dimensions too.

31 Cavalieri’s Principle The area of a region S ⊂ R is the integral with respect to

x of the length of its vertical slices,

area(S) =

∫ b

a
length(Sx) dx,

provided that the boundary of S is a zero set.

Proof Deriving Cavalieri’s Principle from Fubini’s Theorem is mainly a matter of

definition. For we define the length of a subset of R and the area of a subset of R2 to

≤



See Figure 119.

Figure 119 ϕ is a change of variables.

If S is a bounded subset of R2, its area (or Jordan content) is by definition the

integral of its characteristic function χS , if the integral exists. When the integral does

exist we say that S is Riemann measurable. See also AppendixD of Chapter 6.

According to the Riemann-Lebesgue Theorem, S is Riemann measurable if and only

if its boundary is a zero set. For χS is discontinuous at z if and only if z is a boundary

point of S. See Exercise 44. The characteristic function of a rectangle R is Riemann
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be the integrals of their characteristic functions. The requirement that ∂S is a zero

set is made so that χS is Riemann integrable. It is met if S has a smooth, or piecewise

smooth, boundary. See AppendixB for a delightful discussion of the historical origin

of Cavalieri’s Principle, and see Chapter 6 for the more general geometric definition

of length and area in terms of outer measure.

The second new aspect of multiple integration concerns the change of variables

formula. It is the higher-dimensional version of integration by substitution. We will

suppose that ϕ : U → W is a C1 diffeomorphism between open subsets of R2, that

R ⊂ U , and that a Riemann integrable function f : W → R is given. The Jacobian

of ϕ at z ∈ U is the determinant of the derivative,

Jacz ϕ = det(Dϕ)z.

32 Change of Variables Formula Under the preceding assumptions we have

∫

R
f ◦ ϕ · | Jacϕ| =

∫

ϕR
f.

∫

ϕ

∫∫

R
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integrable and its integral is |R|, so we are justified in using the same notation for

area of a general set S, namely,

|S| = area(S) =

∫
χS .

33 Proposition If T : R2 → R2 is an isomorphism then for every Riemann mea-

surable set S ⊂ R2, T (S) is Riemann measurable and

|T (S)| = | detT ||S|.

Proposition 33 is a version of the Change of Variables Formula in which ϕ = T ,

R = S, and f = 1. It remains true in Rn and is called the Volume Multiplier

Formula. It leads to a definition of the determinant of a linear transformation

Rn → Rn as a volume multiplier.

Proof As is shown in linear algebra, the matrix A that represents T is a product of

elementary matrices

A = E1 · · ·Ek.

Each elementary 2× 2 matrix is one of the following types:
[

λ 0

0 1

] [
1 0

0 λ

] [
0 1

1 0

] [
1 σ

0 1

]

where λ > 0. The first three matrices represent isomorphisms whose effect on I2 is

obvious: I2 is converted to the rectangles λI × I, I × λI, and I2. In each case the

area agrees with the magnitude of the determinant. The fourth matrix is a shear

matrix. Its isomorphism converts I2 to the parallelogram

Π = {(x, y) ∈ R2 : σy ≤ x ≤ 1 + σy and 0 ≤ y ≤ 1}.
Π is Riemann measurable since its boundary is a zero set. By Fubini’s Theorem, we

get

|Π| =
∫

χΠ =

∫ 1

0

[∫ x=1+σy

x=σy
1 dx

]
dy = 1 = detE.

Exactly the same thinking shows that for any rectangle R, not merely the unit square,

(10) |E(R)| = | detE||R|.
We claim that (10) implies that for any Riemann measurable set S, E(S) is Riemann

measurable and

(11) |E(S)| = | detE||S|.

and is called the Volume Multiplier

Formula.
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Let ε > 0 be given. Choose a grid G on R ⊃ S with mesh so small that the

rectangles R of G satisfy

(12) |S| − ε ≤
∑
R⊂S

|R| ≤
∑

R∩S 	=∅
|R| ≤ |S|+ ε.

The interiors of the inner rectangles – those with R ⊂ S – are disjoint, and therefore

for each z ∈ R2 we have ∑
R⊂S

χintR(z) ≤ χS(z).

The same is true after we apply E, namely∑
R⊂S

χint(E(R))(z) ≤ χE(S)(z).

Linearity and monotonicity of the integral, and Riemann measurability of the sets

E(R) imply that

(13)
∑
R⊂S

|E(R)| =
∑
R⊂S

∫
χint(E(R)) =

∑
R⊂S

∫
χint(E(R)) ≤

∫
χE(S).

Similarly,

χE(S)(z) ≤
∑

R∩S 	=∅
χE(R)(z)

which implies that

(14)

∫
χE(S) ≤

∑
R∩S 	=∅

∫
χE(R) =

∑
R∩S 	=∅

∫
χE(R) =

∑
R∩S 	=∅

|E(R)|.

By (10) and (12), (13) and (14) become

| detE|(|S| − ε) ≤ | detE|
∑
R⊂S

|R|

≤
∫

χE(S) ≤
∫

χE(S) ≤ | detE|
∑

R∩S 	=∅
|R|

≤ | detE|(|S|+ ε).

Since these upper and lower integrals do not depend on ε and ε is arbitrarily small,

they equal the common value | detE| |S|, which completes the proof of (11).

The determinant of a matrix product is the product of the determinants. Since

the matrix of T is the product of elementary matrices, E1 · · ·Ek, (11) implies that if

S is Riemann measurable then so is T (S) and

|T (S)| = |E1 · · ·Ek(S)|
= | detE1| · · · | detEk||S| = | detT ||S|.
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We isolate two facts in preparation for the proof of the Change of Variables

Formula. We use the maximum coordinate norm on R2 and the associated operator

norm on its linear transformations. With respect to this norm on R2, the closed

r-neighborhood of p is a square Sr(p) of side length 2r and center p. We write Sr

when p = (0, 0).

34 Lemma Suppose that ψ : U → R2 is C1, 0 ∈ U , ψ(0) = 0, and for all u ∈ U we

have ‖(Dψ)u − Id‖ ≤ σ. If Sr ⊂ U then

Sr(1−σ) ⊂ ψ(Sr) ⊂ Sr(1+σ).

Proof We have ψ(u) = u+ρ(u) where the remainder ρ is C1, ρ(0) = 0, and ‖Dρ‖ ≤
σ. If |u| ≤ r this implies |ψ(u)| ≤ r(1+σ), so ψ(Sr) ⊂ Sr(1+σ) as claimed. The other

half of the assertion is a quantitative version of the Inverse Function Theorem.

For each v ∈ Sr(1−σ) we claim there is a unique u ∈ Sr such that v = ψ(u), and

hence Sr(1−σ) ⊂ ψ(Sr). Define Kv : Sr → R2 by

Kv(u) = v − ρ(u).

It contracts Sr into itself. For |v| ≤ r(1− σ) and |u| ≤ r imply

|Kv(u)| ≤ r(1− σ) + σr = r,

while |v| ≤ r(1− σ) and |u| , |u′| ≤ r imply

∣∣Kv(u)−Kv(u
′)
∣∣ =

∣∣ρ(u′)− ρ(u)
∣∣ ≤ σ

∣∣u− u′
∣∣

by the Mean Value Theorem. The contraction Kv has a unique fixed point u. It

satisfies u = Kv(u) = v − ρ(u), so ψ(u) = u+ ρ(u) = v.

35 Lemma The Lipschitz image of a zero set is a zero set.

Proof Suppose that Z is a zero set and h : Z → R2 satisfies a Lipschitz condition

|h(z)− h(z′)| ≤ L|z − z′|.

Given ε > 0, there is a countable covering of Z by squares Sk such that

∑
k

|Sk| < ε.

We use the maximum coordinate norm on R2 and the associated operator

norm on its linear transformations. With respect to this norm on R2, the closed2

r-neighborhood of p is a square SrSS (p) of side length 2r and center p. We write SrSS

when p = (0, 0).

34 Lemma Suppose that ψ : U → R2 is C1, 0 ∈ U , ψ(0) = 0, and for all u ∈ U we

have ‖(Dψ)u Id‖ ≤ σ. If SrSS ⊂ U thenhave ‖(Dψ) − Id‖ ≤ σ If S ⊂ U then

SrSS (1−σ) ⊂ ψ(SrSS ) ⊂ SrSS (1+σ).

Proof We have ψ(u) = u+ρ(u) where the remainder ρ is C1, ρ(0) = 0, and ‖Dρ‖ ≤
σ. If |u| ≤ r this implies |ψ(u)| ≤ r(1+σ), so ψ(SrSS ) ⊂ SrSS (1+σ) as claimed. The otherσ If |u| ≤ r this implies |ψ(u)| ≤ r(1+σ) so ψ(S ) ⊂ S (1+ ) as claimed The other

half of the assertion is a quantitative version of the Inverse Function Theorem.half of the assertion is a quantitative version of the Inverse Function Theorem

For each v ∈ SrSS (1−σ) we claim there is a unique u ∈ SrSS such that v = ψ(u), and

hence SrSS (1−σ) ⊂ ψ(SrSS ). Define KvKK : SrSS → R by
( )

nce S (1 ) ⊂ ψ(S ) Define K : S → R2 by

KvKK (u) = v − ρ(u).

It contracts SrSS into itself. For |v| ≤ r(1− σ) and |u| ≤ r imply

|KvKK (u)| ≤ r(1− σ) + σr = r,

while |v| ≤ r(1− σ) and |u| , |u′| ≤ r imply

∣∣∣∣KvKK (u)−KvKK (u′)
∣∣∣∣ =

∣∣∣∣ρ(u′)− ρ(u)
∣∣∣∣ ≤ σ

∣∣∣∣u− u′
∣∣∣∣

fixed point u. Itby the Mean Vallue Theorem. The contraction KvKK has a unique fi

satisfies u = KvKK (u) = v − ρ(u), so ψ(u) = u+ ρ(u) = v.) ( ) ( ) ( )

35 Lemma The Lipschitz image of a zero set is a zero set.

Proof Suppose that Z is a zero set and h : Z → R2 satisfies a Lipschitz condition

|h(z)− h(z′)| ≤ L|z − z′|.

Given ε > 0, there is a countable covering of Z by squares Sk such that

∑
|Sk| < ε.

k
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See Exercise 45. Each set Sk ∩ Z has diameter ≤ diamSk and therefore h(Z ∩ Sk)

has diameter ≤ L diamSk. As such it is contained in a square S′
k of edge length

L diamSk. The squares S′
k cover h(Z) and

∑
k

|S′
k| ≤ L2

∑
k

(diamSk)
2 = 2L2

∑
k

|Sk| ≤ 2L2ε.

Therefore h(Z) is a zero set.

Proof of the Change of Variables Formula Recall what our the assumptions are:

ϕ : U → W is a C1 diffeomorphism, f : W → R is Riemann integrable, R is a rect-

angle in U , and it is asserted that

(15)

∫

R
f ◦ ϕ · | Jacϕ| =

∫

ϕR
f.

Let D′ be the set of discontinuity points of f . It is a zero set. Then

D = ϕ−1(D′)

is the set of discontinuity points of f ◦ ϕ. The C1 Mean Value Theorem implies that

ϕ−1 is Lipschitz, Lemma 35 implies that D is a zero set, and the Riemann-Lebesgue

Theorem implies that f ◦ ϕ is Riemann integrable. Since |Jacϕ| is continuous, it is

Riemann integrable and so is the product f ◦ ϕ · |Jacϕ|. In short, the l.h.s. of (15)

makes sense.

Since ϕ is a diffeomorphism, it is a homeomorphism and it carries the boundary

of R to the boundary of ϕR. The former boundary is a zero set and by Lemma35 so

is the latter. Thus χϕR is Riemann integrable. Choose a rectangle R′ that contains
ϕR. Then the r.h.s. of (15) becomes

∫

ϕR
f =

∫

R′
f · χϕR,

which also makes sense. It remains to show that the two sides of (15) not only make

sense but are equal.

The idea is simple: Use a grid G to break R into squares Rij of radius r, prove an

approximate result on each Rij , add the results, and take a limit as r tends to zero.

The details are not so simple.

Let zij be the center point of Rij and call

Aij = (Dϕ)zij ϕ(zij) = wij ϕ(Rij) = Wij .

See Exercise 45. Each set Sk ∩ Z has diameter ≤ diamSk and therefore h(Z ∩ Sk)

has diameter ≤ L diamSk. As such it is contained in a square Sk of edge length

( )

has diameter ≤ L diamSk As such it is contained in a square S′ of edge length

L diamSk. The squares Sk cover h(Z) andL diamSk The squares S′ cover h(Z) and

∑
|S′

k| ≤ L2
∑

(diamSk)
2 = 2L2

∑
|Sk| ≤ 2L2ε.

k

k k k

Therefore h(Z) is a zero set.

Proof of the Change of Variables Formula Recall what our the assumptions are:

ϕ : U → W is a C1 diffeomorphism,ffff f : W → R is Riemann integrable, R is a rect-

angle in U , and it is asserted thatangle in U and it is asserted that

(15)

∫
f ◦ ϕ · | Jacϕ| =

∫
f.

g ,

∫

R

∫∫ ∫

ϕ

∫∫

R

Let D′ be the set of discontinuity points of f . It is a zero set. Then

D = ϕ−1(D′)

is the set of discontinuity points of f ◦ ϕ. The C1 Mean Value Theorem implies that

ϕ is Lipschitz, Lemma 35 implies that D is a zero set, and the Riemann-Lebesgueϕ−1 is Lipschitz Lemma 35 implies that D is a zero set and the Riemann-Lebesgue

Theorem implies that f ◦ ϕ is Riemann integrable. Since |Jacϕ| is continuous, it is

Riemann integrable and so is the product f ◦ ϕ · |Jacϕ|. In short, the l.h.s. of (15)Riemann integrable and so is the product f ◦ ϕ · |Jacϕ| In short the l h s of (15)

makes sense.makes sense

Since ϕ is a diffeomorphism, it is a homeomorphism and it carries the boundaryffff

of R to the boundary of ϕR. The former boundary is a zero set and by Lemma35 so

is the latter. Thus χϕR is Riemann integrable. Choose a rectangle R′ that contains
ϕR. Then the r.h.s. of (15) becomes

∫
f =

∫
f · χϕR,

∫

ϕ

∫∫

R
f

∫

R

∫∫
′

which also makes sense. It remains to show that the two sides of (15) not only make

sense but are equal.

The idea is simple: Use a grid G to break R into squares Rij of radius r, prove an

approximate result on each Rij , add the results, and take a limit as r tends to zero.

The details are not so simple.

Let zij be the center point of Rij and call

Aij = (Dϕ)zij ϕ(zij) = wij ϕ(Rij) = WijWW .
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The Taylor approximation to ϕ on Rij is the affine map

φij(z) = wij +Aij(z − zij).

The composite ψ = φ−1
ij ◦ ϕ sends zij to itself and its derivative at zij is the

identity transformation. Uniform continuity of (Dϕ)z on R implies that for all Rij

and for all z ∈ Rij we have ‖Dψ)z − id‖ < σ, and σ = σ(r) → 0 as r → 0. Lemma34

implies that ψ(Rij) is sandwiched between squares of radius r(1± σ) centered at zij .

Applying φij to this square sandwich gives the parallelogram sandwich

(16) φij((1− σ)Rij) ⊂ ϕ(Rij) = Wij ⊂ φij((1 + σ)Rij).

where (1±σ)Rij refers to the (1±σ)-dilation of Rij centered at zij . See Figure 120.

Figure 120 How we magnify the picture and sandwich a nonlinear

parallelogram between two linear ones

By Proposition 33 this gives the area estimate

(1− σ)2Jij |Rij | ≤ |Wij | ≤ (1 + σ)2Jij |Rij |(17)

where Jij = | Jaczij ϕ|.
Let mij and Mij be the infimum and supremum of f ◦ ϕ on Rij . Then, for all

w ∈ ϕR = W we have

∑
mijχintWij (w) ≤ f(w) ≤

∑
MijχWij (w)

The Taylor approximation to ϕ on Rij is the affine map

φij(z) = wij +Aij(z − zij).

The composite ψ = φ−1 ◦ ϕ sends zij to itself and its derivative at zij is theφij

identity transformation. Uniform continuity of (Dϕ)z on R implies that for all Rijntity transformation Uniform continuity of (Dϕ) on R implies that for all Rij

and for all z ∈ Rij we have ‖Dψ)z − id‖ < σ, and σ = σ(r) → 0 as r → 0. Lemma34

implies that ψ(Rij) is sandwiched between squares of radius r(1± σ) centered at zij .implies that ψ(Rij) is sandwiched between squares of radius r(1± σ) centered at zij
Applying φij to this square sandwich gives the parallelogram sandwichApplying φij to this square sandwich gives the parallelogram sandwich

(16) φij((1− σ)Rij) ⊂ ϕ(Rij) = WijWW ⊂ φij((1 + σ)Rij).

where (1±σ)Rij refers to the (1±σ)-dilation of Rij centered at zij . See Figure 120.

Figure 120 How we magnify the picture and sandwich a nonlinear

parallelogram between two linear ones

By Proposition 33 this gives the area estimate

(1− σ)2JijJJ |Rij | ≤ |WijWW | ≤ (1 + σ)2JijJJ |Rij |(17)

where JijJJ = | Jaczij ϕ|.
Let mij and MijMM be the infimum and supremum of f ◦ ϕ on Rij . Then, for all

w ∈ ϕR = W we have∈ ϕR = W we have

∑
mijχintWijWW (w) ≤ f(w) ≤

∑
MijMM χWijWW (w)
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which integrates to

(18)
∑

mij |Wij | ≤
∫

ϕR
f ≤

∑
Mij |Wij | .

Using (17), we replace |Wij | in (18), getting

(1− σ)2
∑

mijJij |Rij | ≤
∫

ϕR
f ≤ (1 + σ)2

∑
MijJij |Rij | .

Uniform continuity of the Jacobian implies that there exists τ = τ(r) such that

for all z, z′ ∈ Rij we have

1− τ ≤ Jacz ϕ

Jacz′ ϕ
≤ 1 + τ

and τ(r) → 0 as r → 0. This gives

(1− τ)L ≤
∑

mijJij |Rij | ≤
∑

MijJij |Rij | ≤ (1 + τ)U(19)

where L and U are the lower and upper sums of f ◦ ϕ(z) |Jacz ϕ| with respect to the

grid G. Thus, the integral of f on ϕR is sandwiched between (1 − τ)(1 − σ)2L and

(1 + τ)(1 + σ)2U . As the grid mesh r tends to zero, the sandwich shrinks to the

integrals
∫
R f ◦ϕ(z) |Jacz ϕ| and

∫
ϕR f , which completes the proof of their equality.

Finally, here is a sketch of the n-dimensional theory. Instead of a two-dimensional

rectangle we have a box

R = [a1, b1]× · · · × [an, bn].

Riemann sums of a function f : R → R are defined as before: Take a grid G of small

boxes R� in R, take a sample point s� in each, and set

R(f,G, S) =
∑

f(s�)|R�|
where |R�| is the product of the edge lengths of the small box R� and S is the set of

sample points. If the Riemann sums converge to a limit it is the integral. The general

theory, including the Riemann-Lebesgue Theorem, is the same as in dimension 2.

Fubini’s Theorem is proved by induction on n, and has the same meaning: In-

tegration on a box can be done slice by slice, and the order in which the iterated

integration is performed has no effect on the answer.

The Change of Variables Formula has the same statement, only now the Jacobian

is the determinant of an n × n matrix. In place of area we have volume, the n-

dimensional volume of a set S ⊂ Rn being the integral of its characteristic function.
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∫
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∑
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∫∫
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∫

f

∫

ϕ

∫∫

R
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Jacz′ ϕ
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Fubini’s Theorem is proved by induction on n, and has the same meaning: In-

tegration on a box can be done slice by slice, and the order in which the iterated

integration is performed has no effect on the answer.ffff
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is the determinant of an n × n matrix. In place of area we have volume, the n-

dimensional volume of a set S ⊂ R being the integral of its characteristic function.dimensional volume of a set S ⊂ Rn being the integral of its characteristic function
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The volume-multiplier formula, Proposition 33, has essentially the same proof but

the elementary matrix notation is messier. (It helps to realize that the following

types of elementary row operations suffice for row reduction: Transposition of two

adjacent rows, multiplication of the first row by λ, and addition of the second row

to the first.) The proof of the Change of Variables Formula itself differs only in that

(1± σ)2 becomes (1± σ)n.

In Chapter 6 we give a different proof of the Volume Multiplier Formula, namely

polar form instead of elementary matrices. Also, it applies to sets that are Lebesgue

measurable, not just Riemann measurable. See page

8 Differential Forms
The Riemann integral notation

n∑
i=1

f(ti)Δxi ≈
∫ b

a
f(x) dx

may lead one to imagine the integral as an “infinite sum of infinitely small quantities

f(x)dx.” Although this idea itself seems to lead nowhere, it points to a good ques-

tion – how do you give an independent meaning to the symbol f dx? The answer:

differential forms. Not only does the theory of differential forms supply coherent,

independent meanings for f dx, dx, dy, df, dxdy, and even for d and x separately,

but it also unifies vector calculus results. A single result, the General Stokes Formula

for differential forms ∫

M
dω =

∫

∂M
ω,

encapsulates all integral theorems about divergence, gradient, and curl.

The presentation of differential forms in this section appears in the natural gener-

ality of n dimensions, and as a consequence it is unavoidably fraught with complicated

index notation – armies of i’s, j’s, double subscripts, multi-indices, and so on. Your

endurance may be tried.

First, consider a function y = F (x). Normally, you think of F as the function,

x as the input variable, and y as the output variable. But you can also take a dual

The volume-multiplier formula, Proposition 33, has essentially the same proof but

the elementary matrix notation is messier. (It helps to realize that the following

types of elementary row operations suffice for row reduction: Transposition of two

adjacent rows, multiplication of the first row by λ, and addition of the second row

to the first.) The proof of the Change of Variables Formula itself differs only in thatffff

(1± σ)2 becomes (1± σ)n.

In Chapter 6 we give a different proof of the Volume Multiplier Formula, namelyffff

polar form instead of elementary matrices. Also, it applies to sets that are Lebesgue

Theorem 6.15. It is valid in n-dimensions, not just in the plane, and it relies on

397.
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approach and think of x as the function, F as the input variable, and y as the output

variable. After all, why not? It’s a kind of mathematical yin/yang.

Now consider a path integral the way it is defined in calculus,

∫

C
f dx+ g dy =

∫ 1

0
f(x(t), y(t))

dx(t)

dt
dt+

∫ 1

0
g(x(t), y(t))

dy(t)

dt
dt.

f and g are smooth real-valued functions of (x, y) and C is a smooth path param-

eterized by (x(t), y(t)) as t varies on [0, 1]. Normally you think of the integral as a

number that depends on the functions f and g. Taking the dual approach you can

think of it as a number that depends on the path C. This will be our point of view.

It parallels that found in Rudin’s Principles of Mathematical Analysis.

Definition A differential 1-form is a function that sends paths to real numbers

and which can be expressed as a path integral in the previous notation. The name

of this particular differential 1-form is f dx+ g dy

In a way, this definition begs the question. For it simply says that the standard

calculus formula for path integrals should be read in a new way – as a function of the

integration domain. Doing so, however, is illuminating, for it leads you to ask: Just

what property of C does the differential 1-form f dx+ g dy measure?

First take the case that f(x, y) = 1 and g(x, y) = 0. Then the path integral is

∫

C
dx =

∫ 1

0

dx(t)

dt
dt = x(1)− x(0)

which is the “net x-variation” of the path C. In functional notation it becomes

dx : C �→ x(1)−x(0), which means that dx assigns to each path C its net x-variation.

Similarly dy assigns to each path its net y-variation. The word “net” is important.

Negative x-variation cancels positive x-variation, and negative y-variation cancels

positive y-variation. In the world of forms, orientation matters.

What about f dx? The function f “weights” x-variation. If the path C passes

through a region in which f is large, its x-variation is magnified accordingly, and the

integral
∫
C f dx reflects the net f -weighted x-variation of C. In functional notation

f dx : C �→ net f -weighted x-variation of C.

Similarly, g dy assigns to a path its net g-weighted y-variation, and the 1-form f dx+

g dy assigns to C the sum of the two variations.

dx : C �→ x(1)−x(0)

Similarly dy assigns

∫ 1

(1 0
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Figure 121 suggests why

∫

C
y dx is positive and

∫

C′
y dx is negative: The weight

factor is positive on C and negative on C ′. On the other hand, if the weight factor is

the constant c then both integrals are c(q − p).

C

C ′

p q

y < 0

y > 0

x-axis

Figure 121 C and C ′ are paths from p to q where p and q lie on the

x-axis. The integrals

∫

C
y dx and

∫

C′
y dx express the net y-weighted

x-variation along C and C ′.

Terminology A functional on a set X is a function from X to R.

Differential 1-forms are functionals on the set of paths. Some functionals on the

set of paths are differential forms but others are not. For instance, assigning to each

path its arclength is a functional that is not a form. For if C is a path parameterized

by (x(t), y(t)) then (x∗(t), y∗(t)) = (x(1− t), y(1− t)) parameterizes C in the reverse

direction. Arclength is unaffected but the value of every 1-form on the path changes

sign. Hence, arclength is not a 1-form. A more trivial example is the functional that

assigns to each path the number 1.

Definition A k-cell in Rn is a smooth map† ϕ : Ik → Rn where Ik is the unit

k-cube. If k = 1 then ϕ is a path. The set of k-cells is Ck(R
n). The set of functionals

on Ck(R
n) is Ck(Rn).

A k-cell ϕ need not be a diffeomorphism to its image. ϕ can be noninjective and

its derivative can have zero determinant at many points. For this reason cells are

often called “singular cells.” Singularities are permitted. For example, if 0 ≤ t ≤ 1

then ϕ : t �→ ((2t − 1)3, (2t − 1)2) is a smooth 1-cell in the plane, despite the fact

that its image has a cusp at the origin. See Figure 122.

†Normally, a smooth map should be defined on an open set. Here and below we mean there is a

ϕ̂ : U → Rn such that Ik ⊂ U ⊂ Rk, U is open, ϕ̂(x) = ϕ(x) for all x ∈ Ik, and ϕ̂ is smooth.

Terminology A functional on a set X is a function from X to R.

A more trivial example is the functional that

assigns to each path the number 1.

ϕ : t �→ ((2t − 1)3, (2t − 1)2)

its image has a cusp at the ori

†Normally, a smooth map should be defined on an open set. Here and below we mean there is a

ϕ̂ : U → Rn such that Ik ⊂ U ⊂ Rk, U is open, ϕ̂(x) = ϕ(x) for all x ∈ Ik, and ϕ̂ is smooth.

y, p p

(x(1− t), y(1− t))

but the value of ev

p†
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This flexibility is a good thing. It lets the closed disc and many other planar

regions be (the images of) 2-cells. See page 354, Figure 130, and Exercise 70.

Integrating a k-form over a k-cell ϕ with k ≥ 2 requires Jacobian determinants.

To simplify notation we write I = (i1, . . . , ik); it is always a k-tuple of distinct integers

in {1, . . . , n}. The Jacobian of ϕI at u ∈ Ik is the k × k determinant

∂ϕI

∂u
= det

⎡
⎢⎢⎢⎢⎣

∂ϕi1

∂u1
· · · ∂ϕi1

∂uk
...

...
...

∂ϕik

∂u1
· · · ∂ϕik

∂uk
.

⎤
⎥⎥⎥⎥⎦

(We assume the integers in I are distinct, since otherwise the determinant is zero.)

If k = 1 and I = (i) then ∂ϕI/∂u is just ∂ϕi/∂u, while if k = 2 and I = (1, 3) then

∂ϕI/∂u is the 2× 2 determinant

∂ϕI

∂u
=

∂(ϕ1, ϕ3)

∂(u1, u2)
= det

⎡
⎢⎢⎣

∂ϕ1

∂u1

∂ϕ1

∂u2
∂ϕ3

∂u1

∂ϕ3

∂u2

⎤
⎥⎥⎦ .

Notation We denote x ∈ Ik as x = (x1, . . . , xk) and y ∈ Rn as y = (y1, . . . , yn).

Thus y = ϕ(x) and ϕi(x1, . . . , xk) = yi is the i
th component of a k-cell ϕ : Ik → Rn at

x. Alternately, to match calculus notation, if k = 1 we write t instead of x1; if k = 2

we write (s, t) instead of (x1, x2); if n = 3 we write (x, y, z) instead of (y1, y2, y3).

For example dxdy is a 2-form in R3. It is the same as dx1dx2 but dxdy is a more

familiar name for it. A planar path ϕ is ϕ(t) = (ϕ1(t), ϕ2(t)) = (x(t), y(t)). Finally,

u = (u1, . . . , uk) is a dummy Riemann integration variable.

Definition The I-shadow area of ϕ is the functional on Ck(R
n), the set of k-cells,

dyI : ϕ �→
∫

Ik

∂ϕI

∂u
du

Notation We denote x ∈ Ik as x = (x1, . . . , xk) and y ∈ Rn as y = (y1, . . . , yn).

Thus y = ϕ(x) and ϕi(x1, . . . , xk) = yi is the i component of a k-cell ϕ : I → R atThus y = ϕ(x) and ϕi(x1 xk) = yi is the i
th component of a k-cell ϕ : Ik → Rn at

x. Alternately, to match calculus notation, if k = 1 we write t instead of x1; if k = 2x Alternately to match calculus notation if k = 1 we write t instead of x1; if k = 2

we write (s, t) instead of (x1, x2); if n = 3 we write (x, y, z) instead of (y1, y2, y3).

For example dxdy is a 2-form in R3. It is the same as dx1dx2 but dxdy is a more

familiar name for it. A planar path ϕ is ϕ(t) = (ϕ1(t), ϕ2(t)) = (x(t), y(t)). Finally,

u = (u1, . . . , uk) is a dummy Riemann integration variable.

dyI

distinct

∂ϕI/∂u is the 2× 2 determinant

∂ϕI
=

∂(ϕ1, ϕ3)

∂u ∂(u1, u2)∂u
=

∂(u1 u2)
=

⎡
∂ϕ1 ∂ϕ1

⎤

det⎣ ⎦

xk) and y ∈ Rn

t

⎡
⎢
⎡⎡

⎢⎢⎢⎣⎢⎢
∂ϕ1

∂u1

∂ϕ1

∂u2

⎤
⎥
⎤⎤

⎥⎥⎥⎦⎥⎥ .
ϕ3 ϕ3∂ϕ3 ∂ϕ3

∂u1 ∂u2

× k dete

∂ϕi1
⎤

ϕi1

∂uk

⎤
∂uk
..

⎤
⎥
⎤⎤

⎥⎥⎥⎥⎥⎥
∂

.
⎦.

∂ϕik

⎥⎥⎥⎥⎦⎥⎥
. ⎥

∂∂uk

(We assume the integers in I are distinct, since otherwise the determinant is zero.)rwise the

If k = 1 and I = (i) then ∂ϕI/∂u is just ∂ϕi/∂u, while if k = 2 and I = (1, 3) then

I at u ∈ I is th
⎡
∂ϕi1 · · ·

∂ϕ

∂

⎡
ϕi1

∂u

⎣ .

∂u1
· · ·

i I di ti t i

..
ϕI

∂u
= det⎢⎢⎢⎢⎣⎢⎢ .

∂ϕik

t

⎡
⎢
⎡⎡

⎢⎢⎢⎢⎢⎢
∂u1
..

I-shadow

ϕ

11/2

Figure 122 This smooth 1-cell is a path with a cusp. It is part of the

graph of y = x2/3.

0 (0, 0)
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where I = (i1, . . . , ik), ϕI = (ϕi1 , . . . , ϕik), and the integral notation is shorthand,

∫

Ik

∂ϕI

∂u
du =

∫ 1

0
. . .

∫ 1

0

∂(ϕi1 , . . . , ϕik)

∂(u1, . . . , uk)
du1 . . . duk.

For 1-forms the definition is nothing new. The integral of dx on the path ϕ(t) =

(x(t), y(t)) is the integral of the 1× 1 Jacobian dx(t)/dt, namely

∫ 1

0

dx(t)

dt
dt = x(1)− x(0)

which is the net x-variation of ϕ. In the shadow terminology it is the “x-area” of ϕ.

Just as for paths, shadow area can be positive or negative. It is the signed area

of the shadow of ϕ on the I-plane, i.e., the signed area of its projection πI(ϕ(I
k)).

After all, the Jacobian can be negative and it only involves the I-components of ϕ.

No components ϕj with j /∈ I appear in ∂ϕI/∂u. See Figure 123.

ϕ(I2)

π

x-axis

y-
ax
is

z
-a
x
is

Figure 123 A pseudopod emerging from a rectangle. It is a 2-cell ϕ in R3

that casts a shadow in the xy-plane.

If f is a smooth function on Rn then fdyI is the functional

f dyI : ϕ �→
∫

Ik
f(ϕ(u))

∂ϕI

∂u
du.

The function f “weights” I-area.

shadow

shadow

-I

fdyI

dyI

The function f “weights” I-area.

“x-area”
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Definition The functional dyI is a basic k-form and f dyI is a simple k-form,

while a sum of simple k-forms is a general k-form,

ω =
∑
I

fI dyI : ϕ �→
∑
I

(fI dyI)(ϕ).

The careful reader will detect some abuse of notation. Here, the k-tuple I =

(i1, . . . , ik) is used to index a collection of scalar coefficient functions {fI}, whereas
I is also used to reduce an n-vector (y1, . . . , yn) to a k-vector yI = (yi1 , . . . , yik), to

name the corresponding k-plane in Rn, and to denote the basic k-form dyI . Besides

this, I is the unit interval and the identity matrix. Please persevere.

To underline the fact that a form is an integral we write

ω(ϕ) =

∫

ϕ
ω.

Notation Ck(R
n) is the set of all k-cells in Rn, Ck(Rn) is the set of all functionals

on Ck(R
n), and Ωk(Rn) is the set of k-forms on Rn. Thus Ωk ⊂ Ck.

Because a determinant changes sign under a row transposition, k-forms satisfy

the signed commutativity property: If π permutes I to πI then

dyπI = sgn(π)dyI

where sgn(π) is the sign of the permutation π. In particular, dy(1,2) = −dy(2,1)
signifies that xy-area is the negative of yx-area, that is dxdy = −dydx, a formula

that is certainly familiar from Sophomore Calculus. Because a determinant is zero if

it has a repeated row, dyI = 0 if I has a repeated entry. In particular dxdx is the

zero functional on C2(R
2).

Upshot The integral of the basic 2-form dxdy over a 2-cell ϕ in R3 is the net area of

its shadow on the xy-plane. (“Net” means negative area cancels positive area.) The

same holds for the other coordinate planes and in higher dimensions – net shadow

area equals the integral of the basic form.

Example Consider a 2-cell ϕ : I2 → R3. What is its xy-area? By definition it is the

integral of the Jacobian ∂(ϕ1, ϕ2)/∂(s, t) over the unit square in (s, t)-space. Suppose

that ϕ is given by the formula

ϕ(s, t) =

{
(s, t(1−ms), t) if 0 ≤ s ≤ 1/2

(s, t(1−m+ms), t) if 1/2 ≤ s ≤ 1.

dyI dyI

fIff dyI : ϕ fIff dyI

The careful reader will detect some abuse of notation. Here, the k-tuple I =

(i1, . . . , ik) is used to index a collection of scalar coefficient functions {fIff }, whereas
I is also used to reduce an n-vector (y1, . . . , yn) to a k-vector yI = (yi1 , . . . , yik), toI is also used to reduce an n-vector (y1 y ) to a k-vector yI = (yi yi ) to

name the corresponding k-plane in Rn, and to denote the basic k-form dyI . Besides

this, I is the unit interval and the identity matrix.

Thus Ωk ⊂ Ck.

dyπI dyI

dy dy

dyI
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ϕ is only piecewise smooth but never mind. If the slope m is 4 then the signed xy-area

of ϕ is zero. If m > 4 it is negative.

I2 has four edges. ϕ sends the bottom edge to itself by the identity map, it sends

the top edge to the piecewise linear V -shaped path in the plane z = 1 from (0, 1, 1)

to (1/2, 1 − m/2, 1) to (1, 1, 1). Finally ϕ sends the left and right edges to lines of

slope 1 that join (0, 0, 0) to (0, 1, 1) and (1, 0, 0) to (1, 1, 1). Figure 124 shows the

projection of the cell on the xy-plane.

I2
πϕ

Figure 124 πϕ fixes all points of the square’s lower edge, left edge, and

right edge. It sends the upper edge to the V -shaped path from (0, 1) to

(1, 1). For fixed s, πϕ(s, t) is affine in t. Positive shadow area is lightly

shaded and negative shadow area heavily shaded. The total signed xy-area

of ϕ is negative when m > 4. When m ≥ 2 the cell ϕ resembles a ship’s

prow or an upside down cow catcher.

Form Naturality

It is a common error to confuse a cell, which a smooth mapping, with its image,

which is point set – but the error is fairly harmless.

36 Theorem Integrating a k-form over k-cells that differ by a reparameterization of

Ik produces the same answer up to a factor of ±1, and this factor of ±1 is determined

by whether the reparameterization preserves or reverses orientation.

or an upside down cow catcher.

of

Ik
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Proof If T is an orientation-preserving diffeomorphism of Ik to itself then the Jaco-

bian ∂T/∂u is positive. The product determinant formula and the change of variables

formula for multiple integrals applied to the simple form ω = fdyI give

∫

ϕ◦T
ω =

∫

Ik
f(ϕ ◦ T (u))∂(ϕ ◦ T )I

∂u
du

=

∫

Ik
f(ϕ ◦ T (u))

(
∂ϕI

∂v

)

v=T (u)

∂T

∂u
du

=

∫

Ik
f(ϕ(v))

∂ϕI

∂v
dv =

∫

ϕ
ω.

Taking sums shows that
∫
ϕ◦T ω =

∫
ϕ ω continues to hold for general forms ω ∈ Ωk.

If T reverses orientation, its Jacobian is negative. In the change of variables formula

appears the absolute value of the Jacobian, which causes
∫
ϕ◦T ω to change sign.

A particular case of the previous theorem concerns line integrals in the plane.

The integral of a 1-form over a curve C does not depend on how C is parameterized.

If we first parameterize C using a parameter t ∈ [0, 1] and then reparameterize it by

arclength s ∈ [0, L] where L is the length of C and the orientation of C remains the

same then integrals of 1-forms are unaffected. If ω = f dx+ g dy then

∫ 1

0
f(x(t), y(t))

dx(t)

dt
dt =

∫ L

0
f(x(s), y(s))

dx(s)

ds
ds

∫ 1

0
g(x(t), y(t))

dy(t)

dt
dt =

∫ L

0
g(x(s), y(s))

dy(s)

ds
ds.

Form Names

A k-tuple A = (i1, . . . , ik) ascends if i1 < · · · < ik.

37 Proposition Each k-form ω has a unique expression as a sum of simple k-forms

with ascending k-tuple indices,

ω =
∑

fAdyA.

Moreover, the coefficient fA(y) in this “ascending presentation” of ω is determined

by the value of ω on small k-cells at y.

Proof For each I there is a unique permutation π such that A = πI ascends. Signed

commutativity lets us regroup and combine a sum of simple forms into terms in which

the indices ascend, which gives existence of the ascending presentation ω =
∑

fAdyA.

yI

If ω = f dx+ g dy then

A

fAff dyA.

fAff (y)

.y

Proof For each I there is a unique permutation π such that A = πI ascends. Signed

commutativity lets us regroup and combine a sum of simple forms into terms in which

q p g

the indices ascend, which gives existence of the ascending presentation ω =
∑

fAff dyA.
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Fix an ascending k-tuple A = (i1, . . . , ik) and fix a point y ∈ Rn. Let L : Rk → Rn

be the linear map sending u to u1ei1 + · · · + ukeik . For r > 0 the inclusion cell is

ι : Ik → Rn where

ι = ιr,y : u �→ y + rL(u).

ι sends Ik to a cube of side length r in the yA-plane at y. As r → 0, the cube shrinks

to y. If I ascends then the Jacobian of ι is

∂ιI
∂u

=

{
rk if I = A

0 if I �= A.

Thus, if I �= A then fIdyI(ι) = 0 and

ω(ι) = fAdyA(ι) = rk
∫

Ik
fA(ι(u)) du.

Continuity of fA implies that

(20) fA(y) = lim
r→0

1

rk
ω(ι),

which is how the value of ω on small k-cells at y determines the coefficient fA(y).

38 Corollary If k > n then Ωk(Rn) = 0.

Proof There are no ascending k-tuples of integers in {1, . . . , n}.

Moral A form may have many names, but it has a unique ascending name. Therefore

if definitions or properties of a form are to be discussed in terms of a form’s name

then the use of ascending names avoids ambiguity.

Wedge Products

Let α be a k-form and β be an �-form. Write them in their ascending presentations,

α =
∑

A aAdyA and β =
∑

B bBdyB. Their wedge product is the (k + �)-form

α ∧ β =
∑
A,B

aAbBdyAB

where A = (i1, . . . , ik), B = (j1, . . . , j�), AB = (i1, . . . , ik, j1, . . . , j�), and the sum

is taken over all ascending A,B. The use of ascending presentations avoids name

ambiguity although Theorem39 makes the ambiguity moot. A particular case of the

definition is

dy1 ∧ dy2 = dy(1,2).

A y

+

y

dyI

fAff dyA(ι)

y

α =
∑

A aAdyA
∑

B bBdyB.

α ∧ β =
∑
A B

aAbBdyAB

A B AB

A,B

dy1 ∧ dy2 = dy(1,2).

fAff

Let L : Rk → Rn

inclusion cell isbe the linear map sending u to u1ei1 + · · · + ukeik .

ι : Ik → Rn where

ι = ιr,y : u �→ y

fAff

fAff
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39 Theorem The wedge product ∧ : Ωk × Ω� → Ωk+l satisfies four natural condi-

tions:

(a) distributivity: (α+ β) ∧ γ = α ∧ γ + β ∧ γ and γ ∧ (α+ β) = γ ∧ α+ γ ∧ β.

(b) insensitivity to presentations: α ∧ β =
∑

I,J aIbJdyIJ for general presentations

α =
∑

aIdyI and β =
∑

bJdyJ .

(c) associativity: α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

(d) signed commutativity: β ∧ α = (−1)k�α ∧ β when α is a k-form and β is an

�-form. In particular dx ∧ dy = −dy ∧ dx.

40 Lemma The wedge product of basic forms satisfies

dyI ∧ dyJ = dyIJ .

Proof #1 See Exercise 55.

Proof #2 If I and J ascend then the lemma merely repeats the definition of the

wedge product. Otherwise, let π and ρ be permutations that make πI and ρJ ascend.

Call σ the permutation of IJ that is π on the first k terms and ρ on the last �. The

sign of σ is sgn(π) sgn(ρ) and

dyI ∧ dyJ = sgn(π) sgn(ρ) dyπI ∧ dyρJ = sgn(σ) dyσ(IJ) = dyIJ .

Proof of Theorem 39 (a) To check distributivity, suppose that α =
∑

aIdyI and

β =
∑

bIdyI are k-forms, while γ =
∑

cJdyJ is an �-form and all sums are ascending

presentations. Then ∑
(aI + bI)dyI

is the ascending presentation of α+ β (this is the only trick in the proof) and

(α+ β) ∧ γ =
∑
I,J

(aI + bI)cJdyIJ =
∑
I,J

aIcJdyIJ +
∑
I,J

bIcJdyIJ ,

which is α ∧ γ + β ∧ γ, and verifies distributivity on the left. Distributivity on the

right is checked in the same way.

(b) Let
∑

aIdyI and
∑

bJdyJ be general nonascending presentations of α and β.

By distributivity and Lemma40 we have

(∑
I

aIdyI

)
∧
(∑

J

bJdyJ

)
=

∑
I,J

aIbJdyI ∧ dyJ =
∑
I,J

aIbJdyIJ

in the same way

bJdyJaIdyI

∧
d

dyI ∧ dyJ = dyIJ .

dyI ∧ dyJ = sgn(π) sgn(ρ) dyπI ∧ dyρJ = sgn(σ) dyσ(IJ) = dyIJ .

Proof of Theorem 39 (a) To check distributivity, suppose that α =
∑

aIdyI and

β = bIdyI are k-forms, while γ =
∑

cJdyJ is an �-form and all sums are ascending

presentations Thensenta

oof o

=
∑

b

senta

dyI

cJdyIJ bIcJdyIJaIcJdyIJ

aIdyI bJdyJ aIbJdyI dyJ aIbJdyIJ



336 Multivariable Calculus Chapter 5

(c) By (b), to check associativity we need not use ascending presentations. Thus

if α =
∑

aIdyI , β =
∑

bJ dyJ , and γ =
∑

cK dyK then

α ∧ (β ∧ γ) =

(∑
I

aI dyI

)
∧
⎛
⎝∑

J,K

bJcK dyJK

⎞
⎠ =

∑
I,J,K

aIbJcK dyIJK ,

which equals (α ∧ β) ∧ γ.

(d) Associativity implies that it makes sense to write dyI and dyJ as products

dyi1 ∧ · · · ∧ dyik and dyj1 ∧ · · · ∧ dyj� . Thus,

dyI ∧ dyJ = dyi1 ∧ · · · ∧ dyik ∧ dyj1 ∧ · · · ∧ dyj� .

It takes k� pair-transpositions to push each dyi past each dyj , which implies

dyJ ∧ dyI = (−1)k�dyI ∧ dyJ .

Distributivity completes the proof of signed commutativity for general α and β.

The Exterior Derivative

Differentiating a form is subtle. The idea, as with all derivatives, is to imagine

how the form changes under small variations of the point at which it is evaluated.

A 0-form is a smooth function f(x). Its exterior derivative is by definition the

functional on paths ϕ : [0, 1] → Rn,

df : ϕ �→ f(ϕ(1))− f(ϕ(0)).

41 Proposition df is a 1-form; when n = 2 it is expressed as

df =
∂f

∂x
dx+

∂f

∂y
dy.

In particular, d(x) = dx.

Proof When no abuse of notation occurs we use calculus shorthand and write fx =

∂f/∂x, fy = ∂f/∂y. Applied to ϕ, the form ω = fxdx+ fydy produces the number

ω(ϕ) =

∫ 1

0

(
fx(ϕ(t))

dx(t)

dt
+ fy(ϕ(t))

dy(t)

dt

)
dt.

By the Chain Rule the integrand is the derivative of f ◦ ϕ(t), so the Fundamental

Theorem of Calculus implies that ω(ϕ) = f(ϕ(1)) − f(ϕ(0)). Therefore df = ω as

claimed.

aIdyI bJ dyJ cK dyK

dyJKdyI dyIJK

dyi1 dyik dyjy 1 dyjy �

dyI dyJ dyi1 dyik dyjy 1 dyjy �

dyjy

k�dyIdyJ dyI dyJ

dyi
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Remark Just as with the 1-form dx, the 1-form df measures the net f -variation of

a path from p to q. It is the difference fq − fp.

Definition Fix k ≥ 1. Let
∑

fAdyA be the ascending presentation of a k-form ω.

The exterior derivative of ω is the (k + 1)-form

dω =
∑
A

dfA ∧ dyA.

The sum is taken over all ascending k-tuples A. The derivative of ω = fdyA amounts

to how the coefficient f changes. If f is constant then dω = 0.

Use of the ascending presentation makes the definition unambiguous although

Theorem42 makes this moot. Since dfA is a 1-form and dyA is k-form, dω is indeed

a (k + 1)-form. For example, we get

d(fdx+ gdy) = (gx − fy)dx ∧ dy.

42 Theorem Exterior differentiation d : Ωk → Ωk+1 satisfies four natural condi-

tions.

(a) It is linear: d(α+ cβ) = dα+ cdβ.

(b) It is insensitive to presentation: If
∑

fIdyI is a general presentation of ω then

dω =
∑

dfI ∧ dyI .

(c) It obeys a product rule: If α is a k-form and β is an �-form then

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ.

(d) d2 = 0. That is, d(dω) = 0 for all ω ∈ Ωk.

Proof (a) Linearity is easy and is left for the reader as Exercise 57.

(b) Let π make πI ascend. Linearity of d and associativity of ∧ give

d(fIdyI) = sgn(π) d(fIdyπI) = sgn(π) d(fI) ∧ dyπI = d(fI) ∧ dyI .

Linearity of d promotes the result from simple forms to general ones.

(c) The ordinary Leibniz product rule for differentiating functions of two variables

gives

d(fg) =
∂fg

∂x
dx+

∂fg

∂y
dy

= fxg dx+ fyg dy + fgx dx+ fgy dy

fAff dyA

∑
A

dfAff ∧ dyA

A fdyA

dfAff dyA

ar: d(α+ cβ) = dα+ cdβ.∑

-fork

(b) It is inseensitive to presentation: If
∑

k-

dω =
∑

dfIff ∧ dyI .

(c) It obeys a product rule: If α is a ka product rule: If α is a kIt obeys a product

fIff dyI fIff dyπI dyIdyπI
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which is g df + f dg, and verifies (c) for 0-forms in R2. The higher-dimensional case

is similar. Next we consider simple forms α = f dyI and β = g dyJ . Then

d(α ∧ β) = d(fg dyIJ) = (g df + f dg) ∧ dyIJ

= (df ∧ dyI) ∧ (g dyJ) + (−1)k(f dyI) ∧ (dg ∧ dyJ)

= dα ∧ β + (−1)kα ∧ dβ.

Distributivity completes the proof for general α and β.

The proof of (d) is fun. We check it first for the special 0-form x. By Proposition 41

the exterior derivative of x is dx and in turn the exterior derivative of dx is zero. For

dx = 1dx, d1 = 0, and by definition, d(1dx) = d(1) ∧ dx = 0. For the same reason,

d(dyI) = 0.

Next we consider a smooth function f : R2 → R and prove that d2f = 0. Since

d2x = d2y = 0 we have

d2f = d(fx dx+ fy dy) = d(fx) ∧ dx + d(fy) ∧ dy

= (fxx dx+ fxy dy) ∧ dx + (fyx dx+ fyy dy) ∧ dy

= fxx dx ∧ dx + (fyx − fxy)dx ∧ dy + fyy dy ∧ dy = 0

since dx ∧ dx = dy ∧ dy = 0 and smoothness of f implies fxy = fyx.

The fact that d2 = 0 for functions easily gives the same result for forms. The

higher-dimensional case is similar.

Pushforward and Pullback

According to Theorem36 forms behave naturally under cell reparameterization.

What about changes of the target space instead of changes of the domain space? Let

T : Rn → Rm be a smooth transformation. It induces a natural transformation on

k-cells, T∗ : ϕ �→ T ◦ϕ, called the pushforward of T . The k-cell ϕ in Rn gets pushed

forward to become a k-cell T∗ϕ on Rm. Dual to the pushforward is the pullback. If

α is a k-form on Rm then its pullback to Rn is the k-form T∗α that sends each k-cell

ϕ to α(T ◦ ϕ). This is expressed as the duality equation

T∗α(ϕ) = α(T∗ϕ).

The pushforward T∗ goes the same direction as T , from Rn to Rm, while the pullback

T∗ goes the opposite way.

dyI dyJ

fg dyIJ dyIJ

dyI g dyJ f dyI

dyI

Pushforward and Pullback

According to Theorem36 forms behave naturally under cell reparameterization.

What about changes of the target space instead of changes of the domain space? Let

T : Rn → Rm be a smooth transformation. It induces a natural transformation on

k-cells, T∗TT : ϕ �→ T ◦ϕ, called the pushforward of T . The k-cell ϕ in R gets pushedk-cells T : ϕ �→ T ◦ϕ called the pushforward of T The k-cell ϕ in Rn gets pushed∗
forward to become a k-cell T∗TT ϕ on Rm. Dual to the pushforward is the pullback. If

p
∗ϕ p p

α is a k-form on Rm then its pullback to Rn is the k-form T∗α∗ that sends each k-cell
∗ϕ p p

ϕ to α(T ◦ ϕ). This is expressed as the duality equationt (T ) Thi i d th d lit ti

T∗α(ϕ) = α(T∗TT ϕ).

The pushforward T∗TT goes the same direction as T , from Rn to Rm, while the pullback

T goes the opposite way.

p ∗ g
T∗ goes the opposite way.
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It is clear that T∗α is a functional on the space of cells, Ck(R
n), and in the next

theorem we show that it is actually a k-form. Thus T∗ : Ωk(Rm) → Ωk(Rn).

Linearity of T∗ is straightforward: T∗(α+λβ) = T∗α+λT∗β, since for each ϕ we

have

(T∗(α+ λβ))(ϕ) = (α+ λβ)(T ◦ ϕ) = α(T∗ϕ) + λβ(T∗ϕ) = T∗α(ϕ) + λT∗β(ϕ).
Figure 125 is what to remember.

T

T∗

T∗

k-cells in Rmk-cells in Rn

ϕ

T∗ϕ

k-forms on Rn k-forms on Rm

pushforward

pullback

Rm = z-spaceRn = y-space

Ik ⊂ x-space

ϕ αT∗α

Figure 125 k-cells in Rn get pushed forward into Rm while k-forms on Rm

get pulled back to Rn.

43 Theorem Pullbacks of forms obey the following four natural conditions.

(a) The pullback of a form is a form. In particular, T∗(dzI) = dTI = dTi1∧· · ·∧dTik

where TI = (Ti1 , . . . , Tik) is the I-component of T .

(b) The pullback preserves wedge products: T∗(α ∧ β) = T∗α ∧ T∗β.
(c) The pullback commutes with the exterior derivative: dT∗= T∗d.
(d) The pullback commutes with the integral:

∫
T◦ϕ α =

∫
ϕ T∗α.

Proof (a) We rely on a nontrivial result in linear algebra, the Cauchy-Binet For-

mula, which concerns the determinant of a product matrix AB = C, where A is

k × n and B is n× k. See AppendixE.

k-cells in Rn
T∗T k-cells in Rm

pushforwardhf d

T
Ik ⊂ x-space

Rn = y-space

T∗α

ϕϕ

Rm = z-space

T ϕ

α

T∗TT ϕ

ϕϕ

get pulled back to Rn.

43 Theorem Pullbacks of forms obey the following four natural conditions.

(a) The pullback of a form is a form. In particular, T∗(dzI) = dTIT = dTiTT 1∧· · ·∧dTiTT k

where TIT = (TiTT 1 , . . . , TiTT k
) is the I-component of T .where TIT = (TiT TiT ) is the I-component of T

(b) The pullback preserves wedge products: T∗(α ∧ β) = T∗α∗ ∧ T∗β∗ .

I ( i1 , , ik) p f

T d.

( ) p p g p ( β) β

( ) Th llb k t ith th t i d i ti dT∗ T∗d∗
(d) The pullback commutes with the integral:

∫
T

∫∫
◦ϕ α =

∫
ϕ

∫∫
T∗α∗ .

(c) The pullback commutes with the exterior derivative: dT =

(d) h llb k h h l
∫ ∫ ∗

(c) The pullback commutes with the exterior derivative: dT∗=

auchy-Binet For-PProof (a) We rely on a nontrivial result in linear algebra, the Ca

mula, which concerns the determinant of a product matrix AB = C, where A is

k × n and B is n× k. See AppendixE.

T∗
k-forms on Rm

pullbackllback

It is clear that T∗α∗ is a functional on the space of cells, CkC (Rn), and in the next

theorem we show that it is actually a k-form. Thus T∗ : Ωk(Rm) → Ωk(Rn).

p , CkC ( ),

h th t it i t ll k f Th T∗ Ωk(Rm) Ωk(Rn)

Linearity of T∗ is straightforward: T∗(α+λβ) = T∗α∗ +λT∗β∗ , since for each ϕ weLi i f T∗ i i h f d T∗( λβ) T∗ λT∗β∗ i f

have

(T∗(α+ λβ))(ϕ) = (α+ λβ)(T ◦ ϕ) = α(T∗TT ϕ) + λβ(T∗TT ϕ) = T∗α(ϕ) + λT∗β∗ (ϕ).

Fi 125 i h t t b
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In terms of Jacobians, the Cauchy-Binet Formula asserts that if the maps ϕ :

Rk → Rn and ψ : Rn → Rk are smooth then the composite φ = ψ ◦ ϕ : Rk → Rk

satisfies
∂φ

∂x
=

∑
A

∂ψ

∂yA

∂ϕA

∂x
.

The Jacobian ∂ψ/∂yA is evaluated at y = ϕ(x) and A ranges through all ascending

k-tuples in {1, . . . , n}. Applying this formula to the composition TI ◦ ϕ gives

Jacx(TI ◦ ϕ) =
∑
A

(
∂TI

∂yA

)

y=ϕ(x)

(
∂ϕA

∂x

)

where I is a k-tuple in {1, . . . ,m} and TI = (Ti1 , . . . , Tik) is the I-component of T .

Let’s start with a simple form f dzI on Rm and its pullback evaluated on ϕ,

T∗(f dzI)(ϕ) = f dzI(T ◦ ϕ). By the definition of how f dzI acts on the k-cell T ◦ ϕ
and the Cauchy-Binet Formula, we have

T∗(f dzI)(ϕ) =

∫

Ik
f ◦ T ◦ ϕ(u)

(
∂(T ◦ ϕ)I

∂u

)
du

=

∫

Ik
f ◦ T ◦ ϕ(u)

(
∂(TI ◦ ϕ)

∂u

)
du

=

∫

Ik
f ◦ T ◦ ϕ(u)

∑
A

(
∂TI

∂yA

)

y=ϕ(u)

(
∂ϕA

∂u

)
du,

which is exactly the same answer we would get by letting the k-form

∑
A

(
f ◦ T (y)

(
∂TI

∂yA

)

y

)
dyA

act on ϕ. Therefore the pullback of a simple form is a form:

(21) T∗(f dzI) =
∑
A

(T∗f)∂TI

∂yA
dyA

Linearity of T∗ promotes (21) from simple forms to general forms, and completes the

proof that the pullback of a form is a form.

It remains to check that T∗(dzI) = dTI . If I = (i1, . . . , ik) then distributivity of

the wedge product and the definition of the exterior derivative of a function imply

that

dTI = dTi1 ∧ · · · ∧ dTik =

(
n∑

s1=1

∂Ti1

∂ys1
dys1

)
∧ · · · ∧

⎛
⎝

n∑
sk=1

∂Tik

∂ysk
dysk

⎞
⎠

=

n∑
s1,...,sk=1

∂Ti1

∂ys1
· · · ∂Tik

∂ysk
dys1 ∧ · · · ∧ dysk

In terms of Jacobians, the Cauchy-Binet Formula asserts that if the maps ϕ :

Rk → Rn and ψ : Rn → Rk are smooth then the composite φ = ψ ◦ ϕ : Rk → Rk

satisfies
∂φ

=
∑ ∂ψ ∂ϕA

.

ψ

satisfies

∂x
=

∑
A

∂yA ∂x

The Jacobian ∂ψ/∂yA is evaluated at y ϕ(x) and A ranges through all ascendingThe Jacobian ∂ψ/∂yA is evaluated at y = ϕ(x) and

k-tuples in {1, . . . , n}. Applying this formula to the composition TIT ◦ ϕ gives

ψ/ yA y ϕ( ) g g

n}. Applying this formula to the composition

Jacx(TIT ◦ ϕ) =
∑(

∂TIT
) (

∂ϕA
)∑

A

(
∂yA

)

y=ϕ(x)

(
∂x

where I is a k tuple in {1, . . . ,m} and TIT (TiTT 1 , . . . , TiTT k
) is the I-component of T .where I is a k-tuple in {1 m} and TIT = (TiTT 1 TiTT ) is the I-component o{ } ( )

Let’s start with a simple form f dzI on Rm and its pullback evaluated on ϕ,L ’ i h i l f f d Rm d i llb k l d

TT∗(f dzI)(ϕ) = f dzI(T ◦ ϕ). By the definition of how f dzI acts on the k-cell T ◦ ϕ
and the Caand the Cauchy-Binet Formula we haved th C h Bi t F l h

T∗(f dzI)(ϕ) =

∫
f ◦ T ◦ ϕ(u)

(
∂(T ◦ ϕ)I

)
du

auchy-Binet Formula, we haveauchy-Binet Formula we have∫
f ◦ T ◦ ϕ(u)

(

u=

)
d

∫∫

I

∫∫
k

f ◦ T ◦ ϕ(u)
(

∂u

=

∫
f ◦ T ◦ ϕ(u)

(
∂(TIT ◦ ϕ))

d

∫ (
∂(TIT ◦ ϕ))

∂

==

∫
f ◦ T ◦ ϕ(u)

∑(
∂TIT

)

∫
f ϕ( )

( )
∂u

∫

I

∫∫
k

ϕ(u)y=ϕ

∫

I

∫∫
k

f ◦ T ◦ ϕ(u)
∑
A

(
∂yA

)

y

(
∂ϕA

)
du,

)

(
∂u

g the k-formwhich is exactly the same aanswer we would get by lettingld t b l tti h k f

∑(
f ◦ T (y)

(
∂TIT

))
dyA

g y ganswer we would get by letting

∑
A

(
f ◦ T (y)

(
∂yA

)

y

)))

act on ϕ. Therefore the pullback of a simple form is a form:llback of a simple form is a for

(21) T∗(f dzI) =
∑

(T∗f∗ )
∂TIT

dyA

ϕ p p
∑
A

(T f)
∂yA

Linearity of T promotes (21) from simple forms to general forms, and completes theLinearity of T∗ promotes (21) from simple forms to general

proof that the pullback of a form is a form.f th t th llb k f f i f

It remains to check that T∗(dzI) = dTIT . If I = (i1, . . . , ik) then distributivity of

the wedge product and the definition of the exterior derivative of a function implyd d t d th d fi iti f th t i d i ti f f ti i l

that

dTIT = dTiTT 1 ∧ · · · ∧ dTiTT k
=

=

n∑
s1,...,sk=1

∂TiTT 1

∂ys1
· · · ∂TiTT k

∂ysk
dys1 ∧ · · · ∧ dysk

(
n∑

s1=1

∂TiTT 1

∂ys1
dys1

)
∧ · · · ∧

⎛
⎝
⎛⎛

n∑
sk=1

∂TiTT k

∂ysk
dysk

⎞
⎠
⎞⎞
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The indices i1, . . . , ik are fixed. All terms with repeated dummy indices s1, . . . , sk
are zero, so the sum is really taken as (s1, . . . , sk) varies in the set of k-tuples with

no repeated entry, and then we know that (s1, . . . , sk) can be expressed uniquely

as (s1, . . . , sk) = πA for an ascending A = (j1, . . . , jk) and a permutation π. Also,

dys1 ∧ · · · ∧ dysk = sgn(π) dyA. This gives

dTI =
∑
A

(∑
π

sgn(π)
∂Ti1

∂yπ(j1)
· · · ∂Tik

∂yπ(jk)

)
dyA =

∑
A

(
∂TI

∂yA

)
dyA

and hence T∗(dzI) = dTI . Here we used the description of the determinant from

AppendixE.

(b) For 0-forms it is clear that the pullback of a product is the product of the

pullbacks, T∗(fg) = T∗f T∗g. Suppose that α is a simple k-form and β is a simple

�-form. Then α = f dzI , β = g dzJ , and α ∧ β = fg dzIJ . By (a) we get

T∗(α ∧ β) = T∗(fg)dTIJ = T∗f T∗g dTI ∧ dTJ = T∗α ∧ T∗β.

Wedge distributivity and pullback linearity complete the proof of (b).

(c) If α is a form of degree 0, α = f ∈ Ω0(Rm), then

T∗(df) = T∗
(

m∑
i=1

∂f

∂zi
dzi

)

=
m∑
i=1

T∗
(
∂f

∂zi

)
T∗(dzi)

=
m∑
i=1

(
∂f

∂zi

)

z=T (y)

dTi

=

n∑
j=1

(
m∑
i=1

(
∂f

∂zi

)

z=T (y)

(
∂Ti

∂yj

))
dyj ,

which is merely the Chain Rule expression for d(f ◦ T ) = d(T∗f),

d(f ◦ T ) =
n∑

j=1

(
∂f(T (y))

∂yj

)
dyj .

Thus, T∗dα = dT∗α for 0-forms.

The indices i1, . . . , ik are fixed. All terms with repeated dummy indices s1, . . . , sk
are zero, so the sum is really taken as (s1, . . . , sk) varies in the set of k-tuples with

no repeated entry, and then we know that (s1, . . . , sk) can be expressed uniquely

as (s1, . . . , sk) = πA for an ascending A = (j1, . . . , jk) and a permutation π. Also,

dys1 ∧ · · · ∧ dysk = sgn(π) dyA. This gives

dTIT =
∑(∑

sgn(π)
∂TiTT 1 · · · ∂TiTT k

)
dyA =

∑(
∂TIT

)
dyA

∑
A

(∑
π

sgn(π)
∂yπ(j1)

· · ·
∂yπ(jk)

)
dyA =

∑
A

(
∂yA

and hence T∗(dzI) = dTIT . Here we used the description of the determinant from

AppendixE.A di E

(b) For 0-forms it is clear that the pullback of a product is the product of the

pullbacks, T∗(fg) = T∗f T∗ ∗g∗ . Suppose that α is a simple k-form and β is a simple

( ) p p p

�-form. Then α = f dzI , β = g dzJ , and α ∧ β = fg dzIJ . By (a) we get� f Th f d β d d ∧ β f d B ( ) t

T∗(α ∧ β) = T∗(fg)dTIJT = T∗f T∗ ∗g dT∗
IT ∧ dTJT = T∗α ∧ T∗β∗ .

Wedge distributivity and pullback linearity complete the proof of (b).

(c) If α is a form of degree 0, α = f ∈ Ω0(Rm), then

T∗(df) = T∗
(

m∑ ∂f
dzi

)(∑
i 1

∂zi

( )

m∑ (
∂f

)

(

i=1 i

dzi)=
∑

T∗
(
∂f

∂

)
T∗(d

∑ ∗
(
∂f

)
∗∑

i 1

(
∂zi

=
∑(

∂f
)

dTiTT
m∑(

∂f
)

)

i=1i=1

(
i

=

∑
i 1

(
f

∂zi

)

z=T (y)

d

=
∑
j=1

(∑
i=1

(
∂f

∂zi

)

z

i=1

(
i

)

z=T (y)

n
(

m (
∂f

)

)

(
∂TiTT

)
∂yjy

)))
dyjy ,d

which is merely the Chain Rule expression for d(f ◦ T ) = d(T∗f∗ ),

d(f ◦ T ) =
n∑(

∂f(T (y))
)
dyjy .

∑
j=1

(
∂yjy

Thus, T∗d∗ α = dT∗α∗ for 0-forms.
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Next consider a simple k-form α = f dzI with k ≥ 1. Using (a), the degree-zero

case, and the wedge differentiation formula, we get

d(T∗α) = d(T∗f dTI)

= d(T∗f) ∧ dTI + (−1)0T∗f ∧ d(dTI)

= T∗(df) ∧ dTI = T∗(df ∧ dyI) = T∗(dα).

Linearity promotes this to general k-forms and completes the proof of (c).

(d) is merely a restatement of the duality equation T∗α(ϕ) = α(T∗ϕ) since
∫

ϕ
T∗α = T∗α(ϕ) = α(T∗ϕ) =

∫

T∗ϕ
α =

∫

T◦ϕ
α,

which completes the proof.

9 The General Stokes Formula
In this section we establish the general Stokes formula as

∫

ϕ
dω =

∫

∂ϕ
ω,

where ω ∈ Ωk(Rn) and ϕ ∈ Ck+1(R
n). Then, as special cases, we reel off the standard

formulas of vector calculus. Finally, we discuss antidifferentiation of forms and briefly

introduce de Rham cohomology.

First we verify Stokes’ formula on a cube, and then get the general case by means

of the pullback.

Definition A k-chain is a formal linear combination† of k-cells,

Φ =

N∑
j=1

ajϕj ,

where a1, . . . , aN are real constants. The integral of a k-form ω over Φ is

∫

Φ
ω =

N∑
j=1

aj

∫

ϕj

ω.

†To be more precise, but no more informative, we form an infinite-dimensional vector space V

using an uncountable basis consisting of all all k-cells in Rn. Then Φ =
∑N

j=1 ajϕj is a vector in V .
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Next consider a simple k-form α = f dzI with k ≥ 1. Using (a), the degree-zero

case, and the wedge differentiation formula, we getffffe and the wedge differentiation formula we getffff

d(T∗α) = d(T∗f dT∗
IT )

= d(T∗f∗ ) ∧ dTIT + (−1)0T∗f∗ ∧ d(dTIT )

( )

= T∗(df) ∧ dTIT = T∗(df ∧ dyI) = T∗(dα).
( ) ( ) ( )

T∗(df) ∧ dT T∗(df ∧ d ) T

Linearity promotes this to general k-forms and completes the proof of (c).

(d) is merely a restatement of the duality equation T∗α∗ (ϕ) = α(T∗TT ϕ) since

∫
T∗α = T∗α(ϕ) = α(T∗TT ϕ) =

∫
α =

∫
α,

∫ ∫ ∫∫

ϕ

∫∫
(ϕ) ( ∗ϕ)

∫

T

∫∫

∗TT ϕ

∫

T

∫∫

◦ϕ

which completes the proof.f
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Definition The boundary of a (k + 1)-cell ϕ is the k-chain

∂ϕ =
k+1∑
j=1

(−1)j+1(ϕ ◦ ιj,1 − ϕ ◦ ιj,0)

where ι : Ik+1 → Rk+1 is the identity-inclusion and its rear face and front face are

ιj,0 : (u1, . . . , uk) �→ (u1, . . . , uj−1, 0, uj , . . . , uk)

ιj,1 : (u1, . . . , uk) �→ (u1, . . . , uj−1, 1, uj , . . . , uk).

They are k-cells. See Figure 126. The jth dipole of ϕ is the two term k-chain

x-axis

y-axis

z
-a
x
is

z-frontface

y-rearface

x-rearface

Figure 126 The rear inclusions ι1,0 and ι2,0 are the x-rearface and the

y-rearface. The front inclusion ι3,1 is the z-frontface, the top of the cube.

δjϕ = ϕ ◦ ιj,1 − ϕ ◦ ιj,0, so ∂ϕ is the alternating sum of dipoles

∂ϕ =

k+1∑
j=1

(−1)j+1δjϕ.

Since δjι = ιj,1 − ιj,0 this means δjϕ is the pushforward of δjι, δjϕ = ϕ∗(δjι).
44 Stokes’ Formula for a Cube Assume that k + 1 = n. If ω ∈ Ωk(Rn) and

ι : In → Rn is the identity-inclusion n-cell in Rn then
∫

ι
dω =

∫

∂ι
ω.

(k + 1)

They are k-cells. The jth dipole of ϕ is the two term k-chain

δjϕ = ϕ ◦ ιj,1 − ϕ ◦ ιj,0, so ∂ϕ is the alternating sum of dipoles

k+1∑k+1

j=1

−1)j+1δjϕ.
∑

(
1

44 Stokes’ Formula for a Cube Assume that k + 1 = n. If ω ∈ Ωk(Rn) and

∂ϕ =

Since δjι = ιj,1 − ιj,0 this means δjϕ is the pushforward of δjι, δjϕ = ϕ∗(δjι).i h

44 St k ’ F l f C b A th t k + 1 If Ωk(Rn

ι : I → R is the identity-inclusion n-cell in R thenι : In → Rn is the identity-inclusion n-cell in Rn then
∫

ι

∫∫
dω =

∫

∂ι

∫∫
ω.

on n-cell in R t
∫ ∫
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Proof Write ω as

ω =

n∑
i=1

fi(x)dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

where the hat above the term dxi is standard notation to indicate that dxi is deleted.

The exterior derivative of ω is

dω =
n∑

i=1

dfi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=
n∑

i=1

(−1)i−1 ∂fi
∂xi

dx1 ∧ · · · ∧ dxn

=

n∑
i=1

(−1)i+1 ∂fi
∂xi

dx1 ∧ · · · ∧ dxn

which implies that
∫
ι dω is the alternating sum of Riemann integrals over In,

∫

ι
dω =

n∑
i=1

(−1)i+1

∫

In

∂fi
∂xi

dx1 . . . dxn.

Deleting the jth component of the rear jth face ιj,0(u) gives the k-tuple (u1, . . . , uk),

while deleting any other component gives a k-tuple with a component that remains

constant as u varies. The same is true of the jth front face. Thus the Jacobians are

∂(ιj, 0)I
∂u

=
∂(ιj, 1)I

∂u
=

{
1 if I = (1, . . . , ĵ, . . . , n)

0 otherwise,

and so the jth dipole integral of ω is zero except when i = j, and in that case

∫

δjι
ω =

∫ 1

0
. . .

∫ 1

0
(fj(u1, . . . , uj−1, 1, uj , . . . , uk)

−fj(u1, . . . , uj−1, 0, uj , . . . , uk)) du1 . . . duk.

By the Fundamental Theorem of Calculus we can substitute the integral of a deriva-

tive for the fj difference; and by Fubini’s Theorem the order of integration in ordinary

multiple integration is irrelevant. This expresses
∫
δjι ω as a Riemann integral over

In, ∫

δjι
ω =

∫ 1

0
. . .

∫ 1

0

∂fj
∂xj

dx1 . . . dxn,

so the alternating dipole sum
∑

(−1)j+1
∫
δjι ω equals

∫
ι dω.

∫

∫

δ

∫∫
j

∫∫

ι
ω =

∫
δ

∫∫
jι ω

which implies that
∫
ι

∫∫
dω is the alternating sum of Riemann integrals over In,

∫∫ n ∫
∂f

dx1 . . . dxn.

∫
dω =

∑
(−1)i+1

∫
∂fiff

i
d

∫ ∑
1

∫
∂fif

∫

ι

∫∫

i 1

∫
dω =

∑
i=1

( 1)

∫

I

∫∫
n ∂xi

0 0 j∑
(−1)j+1

∫
δ

∫∫
jι ω
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45 Stokes’ Formula for a General Cell If ω is an (n− 1)-form in Rm and ϕ is

an n-cell in Rm then ∫

ϕ
dω =

∫

∂ϕ
ω.

Proof Viewing ϕ in the rôle of a smooth transformation, it follows from Theo-

rem 43(c,d) that

∫

ϕ
dω =

∫

ϕ◦ι
dω =

∫

ι
ϕ∗dω =

∫

ι
dϕ∗ω =

∫

∂ι
ϕ∗ω =

∫

ϕ∗∂ι
ω =

∫

∂ϕ
ω.

where ι : In → Rn is the identity-inclusion. For ϕ∗(∂ι) = ∂ϕ.

Stokes’ Formula on Manifolds

If M ⊂ Rn divides into m-cells diffeomorphic to Im and its boundary divides into

(m− 1)-cells diffeomorphic to Im−1 as shown in Figure 127, then there is a version of

Stokes’ Formula for the m-dimensional manifold M . Namely, if ω is an (m−1)-form

then ∫

M
dω =

∫

∂M
ω.

It is required that the boundary (m−1)-cells that are interior to M cancel each other

out. This prohibits M being the Möbius band or another nonorientable set. The

m-cells are said to“tile” M .

Figure 127 Two dimensional manifolds in R2 and R3. The boundary of

M , drawn darker, may have several connected components.

45 Stokes’ Formula for a General Cell If ω is an (n − 1)-form in Rm and ϕ is

an n-cell in R thenan n-cell in Rm then

Proof Viewing ϕ in the rôle of a smooth transformation, it follows from Theo-

rem 43(c,d) that

∫
dω =

∫
dω =

∫
ϕ∗d∗ ω =

∫
dϕ∗ω =

∫
ϕ∗ω =

∫
ω =

∫
ω.

∫

ϕ

∫∫ ∫

ϕ

∫∫

◦ι

∫

ι

∫∫
ϕ

∫

ι

∫∫
ϕ

∫

∂ι

∫∫
ϕ

∫

ϕ

∫∫

∗∂ι

∫

∂ϕ

∫∫

where ι : In → Rn is the identity-inclusion. For ϕ∗(∂ι) = ∂ϕ.

If M ⊂ Rn divides into m-cells diffeomorphic toffff Im and its boundary divides into

(m 1)-cells diffeomorphic toffff I as shown in Figure 127, then there is a version of− 1)-cells diffeomorphic toffff Im−1 as shown in Figure 127 then there is a version of

Stokes Formula for the m-dimensional manifold M . Namely, if ω is an (m 1)-formStokes’ Formula for the m-dimensional manifold M Namely if ω is an (m−1)-form

thenthen

∫
dω =

∫
ω.

∫

ϕ

∫∫ ∫

∂ϕ

∫∫

1m

m-cells are said to“tile” M .

Two dimensional manifolds in R2 and R3. The boundary of

M , drawn darker, may have several connected components.
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Vector Calculus

The Fundamental Theorem of Calculus can be viewed as a special case of Stokes’

Formula ∫

M
dω =

∫

∂M
ω

by taking M = [a, b] ⊂ R1 and ω = f . The integral of ω over the 0-chain ∂M = b− a

is f(b)− f(a), while the integral of dω over M is
∫ b
a f ′(x) dx. Likewise, if f : R2 → R

is smooth then the integral of the 1-form df = fx dx+ fy dy is “path independent” in

the sense that if ϕ,ψ are paths from p to q then
∫

ϕ
df =

∫

ψ
df.

After all, paths are 1-cells and both integrals equal f(q) − f(p). The same holds in

R3 and Rn.

Second, Green’s Formula in the plane,
∫∫

D
(gx − fy)dxdy =

∫

C
fdx+ gdy,

is also a special case when we take ω = f dx + g dy. Here, the region D is bounded

by the curve C. It is a manifold of 2-cells in the plane.

Third, the Gauss Divergence Theorem
∫∫∫

D
divF =

∫∫

S
fluxF,

is a consequence of Stokes’ Formula. Here, F = (f, g, h) is a smooth vector field

defined on U ⊂ R3. (The notation indicates that f is the x-component of F , g is its

y-component, and h is its z-component.) The divergence of F is the scalar function

divF = fx + gy + hz.

If ϕ is a 2-cell in U then the integral
∫

ϕ
f dy ∧ dz + g dz ∧ dx + h dx ∧ dy

is the flux of F across ϕ. Let S be a compact manifold of 2-cells. The total flux

across S is the sum of the flux across its 2-cells. If S bounds a region D ⊂ U then

the Gauss Divergence Theorem is just Stokes’ Formula with

ω = f dy ∧ dz + g dz ∧ dx + h dx ∧ dy.

as
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For dω = divF dx ∧ dy ∧ dz.

Finally, the curl of a vector field F = (f, g, h) is the vector field

(hy − gz, fz − hx, gx − fy).

Applying Stokes’ Formula to the form ω = f dx+ g dy + h dz gives∫
S
(hy − gz) dy ∧ dz + (fz − hx) dz ∧ dx + (gx − fy) dx ∧ dy

=

∫
C
f dx+ g dy + h dz

where S is a surface bounded by the closed curve C. The first integral is the total curl

across S, while the second is the circulation of F at the boundary. Their equality

is Stokes’ Curl Theorem. See Corollaries 50 and 51 for further vector calculus

results.

Closed Forms and Exact Forms

A form is closed if its exterior derivative is zero. It is exact if it is the exterior

derivative of some other form. Since d2 = 0, every exact form is closed:

ω = dα ⇒ dω = d(dα) = 0.

When is the converse true? That is, when can we antidifferentiate a closed form

ω and find α such that ω = dα? If the forms are defined on Rn then the answer

“always” is the Poincaré Lemma. See below. But if the forms are defined on some

subset U of Rn, and if they do not extend to smooth forms defined on all of Rn, then

the answer depends on the topology of U .

There is one case that should be familiar from calculus: Every closed 1-form

ω = f dx+ g dy on R2 is exact. See Exercise 58. With more work the result holds for

every U ⊂ Rn that is simply connected in the sense that each closed curve in U

can be continuously shrunk to a point in U without leaving U .

If U ⊂ R2 is not simply connected then there are 1-forms on it that are closed

but not exact. The standard example is

ω =
−y

r2
dx+

x

r2
dy

where r2 = x2 + y2. Its domain of definition is the “punctured plane” R2� {O}. See
Exercise 65.
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In R3 it is instructive to consider the 2-form

ω =
x

r3
dy ∧ dz +

y

r3
dz ∧ dx +

z

r3
dx ∧ dy.

ω is defined on U , which is R3 minus the origin. U is a spherical shell with inner

radius 0 and outer radius ∞. The form ω is closed but not exact despite the fact

that U is simply connected. See Exercise 59.

46 Poincaré Lemma If ω is a closed k-form on Rn then it is exact.

Proof In fact a better result is true. There are “integration operators”

Lk : Ωk(Rn) → Ωk−1(Rn)

with the property that Ld+ dL = identity. That is, for all ω ∈ Ωk(Rn) we have

(Lk+1d+ dLk)(ω) = ω.

From the existence of these integration operators, the Poincaré Lemma is immediate.

For if dω = 0 then we have

ω = L(dω) + dL(ω) = dL(ω),

which shows that ω is exact with antiderivative α = L(ω).

The construction of L is tricky. First we consider a k-form β, not on Rn, but on

Rn+1. It can be expressed uniquely as

(22) β =
∑
I

fI dxI +
∑
J

gJ dt ∧ dxJ

where fI = fI(x, t), gJ = gJ(x, t), and (x, t) ∈ Rn+1 = Rn × R. The first sum is

taken over all ascending k-tuples I in {1, . . . , n}, and the second over all ascending

(k − 1)-tuples J in {1, . . . , n}. The exterior derivative of β is

dβ =
∑
I,�

∂fI
∂x�

dx� ∧ dxI +
∑
I

∂fI
∂t

dt ∧ dxI +
∑
J,�

∂gJ
∂x�

dx� ∧ dt ∧ dxJ(23)

where � = 1, . . . , n.

Then we define operators

N : Ωk(Rn+1) → Ωk−1(Rn)
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by setting

N(β) =
∑
J

(∫ 1

0
gJ(x, t) dt

)
dxJ .

The operator N only looks at terms of the form in which dt appears. It ignores the

others. We claim that for all β ∈ Ωk(Rn+1) we have

(24) (dN +Nd)(β) =
∑
I

(fI(x, 1)− fI(x, 0)) dxI

where the coefficients fI take their meaning from (22). By Theorem14 it is legal to

differentiate past the integral sign. From (23) and the definition of N we get

N(dβ) =
∑
I

(∫ 1

0

∂fI
∂t

dt

)
dxI −

∑
J,�

(∫ 1

0

∂gJ
∂x�

dt

)
dx� ∧ dxJ

dN(β) =
∑
J,�

(∫ 1

0

∂gJ
∂x�

dt

)
dx� ∧ dxJ .

For the coefficients in N(β) are independent of t. Therefore

(dN +Nd)(β) =
∑
I

(∫ 1

0

∂fI
∂t

dt

)
dxI =

∑
I

(fI(x, 1)− fI(x, 0))dxI ,

as claimed in (24).

Then we define a cone map ρ : Rn+1 → Rn by

ρ(x, t) = tx,

and set L = N ◦ ρ∗. See Figure 128. Commutativity of pullback and d gives

Ld+ dL = Nρ∗d+ dNρ∗= (Nd+ dN)ρ∗,(25)

so it behooves us to work out ρ∗(ω). First suppose that ω is simple, say ω = h dxI ∈
Ωk(Rn). Since ρ(x, t) = (tx1, . . . , txn) we have

ρ∗(h dxI) = (ρ∗h)(ρ∗(dxI)) = h(tx)dρI

= h(tx)(d(txi1) ∧ · · · ∧ d(txik))

= h(tx)((t dxi1 + xi1 dt) ∧ · · · ∧ (t dxik + xikdt))

= h(tx)(tkdxI) + terms that include dt

where I = {i1, . . . , ik}. From (24) we conclude that

(Nd+ dN) ◦ ρ∗(hdxI) = (h(1x)1k − h(0x)0k)dxI = hdxI ,
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(x, y, t) �→ (tx, ty, t) (tx, ty, t) �→ (tx, ty)

Figure 128 When n+ 1 = 3 the cone map sends vertical cylinders to

vertical cones, which are then projected to the plane.

and from (25) we get

(26) (Ld+ dL)(hdxI) = hdxI .

The linearity of L and d promote (26) to general k-forms,

(Ld+ dL)ω = ω,

and as remarked at the outset, the existence of such an L implies that closed forms

on Rn are exact.

47 Corollary If U is diffeomorphic to Rn then all closed forms on U are exact.

Proof Let T : U → Rn be a diffeomorphism and assume that ω is a closed k-form

on U . Set α = (T−1)∗ω. Since pullback commutes with d we see that α is a closed

k-form on Rn. By the Poincaré Lemma there is a (k− 1)-form μ on Rn with α = dμ.

Then

dT∗μ = T∗dμ = T∗α = T∗◦ (T−1)∗ω = (T−1 ◦ T )∗ω = id∗ω = ω

which shows that ω is exact with antiderivative T∗μ.

48 Corollary Locally, closed forms defined on open subsets of Rn are exact.

Proof Locally an open subset of Rn is diffeomorphic to Rn.
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49 Corollary If U ⊂ Rn is open and starlike (in particular, if U is convex) then

closed forms on U are exact.

Proof A starlike set U ⊂ Rn contains a point p such that the line segment from

each q ∈ U to p lies in U . Every starlike open set in Rn is diffeomorphic to Rn. See

Exercise 52.

50 Corollary A smooth vector field F on R3 (or on an open set diffeomorphic to

R3) is the gradient of a scalar function if and only if its curl is everywhere zero.

Proof If F = gradφ then

F = (φx, φy, φz) ⇒ curlF = (φzy − φyz, φxz − φzx, φyx − φxy) = 0.

On the other hand, if F = (f, g, h) then

curlF = 0 ⇒ ω = f dx+ g dy + h dz

is closed and therefore exact. A function φ with dφ = ω has gradient F .

51 Corollary A smooth vector field on R3 (or on an open set diffeomorphic to R3)

has everywhere zero divergence if and only if it is the curl of some other vector field.

Proof If F = (f, g, h) and G = curlF then

G = (hy − gz, fz − hx, gx − fy)

so the divergence of G is zero. On the other hand, if the divergence of G = (A,B,C)

is zero then the form

ω = Ady ∧ dz + Bdz ∧ dx + Cdx ∧ dy

is closed and therefore exact. If the form α = f dx + g dy + h dz has dα = ω then

F = (f, g, h) has curl F = G.

Cohomology

The set of exact k-forms on U is usually denoted Bk(U), while the set of closed

k-forms is denoted Zk(U). (“B” is for boundary and “Z” is for cycle.) Both are

vector subspaces of Ωk(U) and

Bk(U) ⊂ Zk(U).
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The quotient vector space

Hk(U) = Zk(U)/Bk(U)

is the kth de Rham cohomology group of U . Its members are the “cohomology

classes” of U . As was discussed above, if U is simply connected then H1(U) = 0.

Also, H2(U) �= 0 when U is the three-dimensional spherical shell. If U is starlike

then Hk(U) = 0 for all k > 0, and H0(U) = R. Cohomology necessarily reflects the

global topology of U . For locally, closed forms are exact. The relation between the

cohomology of U and its topology is the subject of algebraic topology, the basic idea

being that the more complicated the set U (think of Swiss cheese), the more compli-

cated is its cohomology, and vice versa. The book From Calculus to Cohomology by

Madsen and Tomehave provides a beautiful exposition of the subject.

Differential Forms Viewed Pointwise

The preceding part of this chapter presents differential forms as “abstract inte-

grands” – things which it makes sense to write after an integral sign. But they are

not defined as functions that have values point by point. Rather they are special

functionals on the space of cells. This is all well and good since it provides a clean

path to the main result about forms, the Stokes Formula.

A different path to Stokes involves multilinear functionals. You have already seen

bilinear functionals like the dot product. It is a map β : Rn × Rn → R with various

properties, the first being that for each v ∈ Rn the maps

w �→ β(v, w) and w �→ β(w, v)

are linear. We say β is linear in each vector variable separately. A map β : Rn ×
· · · × Rn → R which is linear in each vector variable separately is a k-multilinear

functional. (Its domain is the Cartesian product of k copies Rn.) It is alternating

if for each permutation π of {1, . . . , k} we have

β(v1, . . . , vk) = sgn(π)β(vπ(1), . . . , vπ(k)).

The set of alternating k-linear forms is a vector space Ak, and one can view ω ∈
Ωk(Rn) at a point p as a member ωp ∈ Ak. It is a certain type of tensor that we

integrate over a cell as p varies in the cell; the vectors on which ωp is evaluated are

tangent to the cell at p. You can read about this approach to differential forms in

Michael Spivak’s book Calculus on Manifolds.

chapter
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10* The Brouwer Fixed-Point Theorem
Let B = Bn be the closed unit n-ball,

B = {x ∈ Rn : |x| ≤ 1}.

The following is one of the deep results in topology and analysis:

52 Brouwer Fixed-Point Theorem If F : B → B is continuous then it has a

fixed-point, a point p ∈ B such that F (p) = p.

Proof The proof is relatively short and depends on Stokes’ Theorem. Note that

Brouwer’s Theorem is trivial when n = 0, for B0 is a point and is the fixed-point of

F . Also, if n = 1 then, as observed on page 242, the result is a consequence of the

Intermediate Value Theorem on B1 = [−1, 1]. For the continuous function F (x)− x

is nonnegative at x = −1 and nonpositive at x = +1, so at some p ∈ [−1, 1] we have

F (p)− p = 0; i.e., F (p) = p.

The strategy of the proof in higher dimensions is to suppose that there does exist

a continuous F : B → B which fails to have a fixed-point, and from this supposition

to derive a contradiction, namely that the volume of B is zero. The first step in the

proof is standard.

Step 1. The existence of a continuous F : B → B without a fixed-point implies

the existence of a smooth retraction T of a neighborhood U of B to ∂B. The map

T sends U to ∂B and fixes every point of ∂B.

If F has no fixed-point as x varies in B, then compactness of B implies there is

some μ > 0 such that for all x ∈ B we have

|F (x)− x| > μ.

The Stone-Weierstrass Theorem then produces a multivariable polynomial F̃ : Rn →
Rn that μ/2-approximates F on B. The map

G(x) =
1

1 + μ/2
F̃ (x)

is smooth and sends B into the interior of B. It μ-approximates F on B, so it too

has no fixed-point. The restriction of G to a small neighborhood U of B also sends

U into B and has no fixed-point.

Figure 129 shows how to construct the retraction T from the map G. Since G is

smooth, so is T .
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Figure 129 T retracts U onto ∂B. The point u ∈ U is sent by T to the

unique point u′ = T (u) at which the segment [u,G(u)], extended through u,

crosses the sphere ∂B.

Step 2. T∗ kills all n-forms. If there is a point p ∈ U such that (DT )p is invertible

then the Inverse Function Theorem implies TU contains an open n-dimensional ball

at fp. Since no such ball is contained in ∂B = TU , DT is nowhere invertible, its

Jacobian determinant ∂T/∂u is everywhere zero, and T∗ : Ωn(U) → Ωn(U) is the

zero map.

Step 3. There is a map ϕ : In → B that exhibits B as an n-cell such that

(a) ϕ is smooth.

(b) ϕ(In) = B and ϕ(∂In) = ∂B.

(c)

∫

In

∂ϕ

∂u
du > 0.

To construct ϕ, start with a smooth function σ : R → R such that σ(r) = 0 for

r ≤ 1/2, σ′(r) > 0 for 1/2 < r < 1, and σ(r) = 1 for r ≥ 1. Then define ψ : Rn → Rn

(U
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by

ψ(v) =

⎧
⎨
⎩

v + σ(|v|)
(

v

|v| − v

)
if v �= 0

0 if v = 0.

See Figure 130 and Exercise 53. Since σ(|v|) = 0 when |v| ≤ 1/2, ψ is smooth.

ψ
ψEEE

Figure 130 The map ψ crushes all of Rn onto the closed unit ball Bn. It is

a diffeomorphism of the interior of Bn to itself, and fixes each point of

∂Bn = Sn−1. Its derivative has rank n− 1 at each point of Rn� intBn.

Restricted to each (n− 1)-dimensional face E of the cube [−1, 1]n, ψ is a

diffeomorphism from the interior of E to one of the 2n open cubical polar

caps on Sn−1. See also Figure 131 and Exercise 52.

The map ψ carries the sphere Sr of radius r to the sphere Sρ of radius ρ where

ρ(r) = r + σ(r)(1− r), sending each radial line into itself. Fix the n-cell

ϕ = ψ ◦ κ

where κ scales In to [−1, 1]n by the affine map κ : u �→ v = (2u1 − 1, . . . , 2un − 1).

Then

(i) ϕ is smooth since ψ and κ are smooth.

(ii) ϕ sends ∂In to ∂B since ψ sends ∂([−1, 1]n) to ∂B.

(iii) It is left as Exercise 70 to show that the Jacobian of ψ is ρ′(r)ρ(r)n−1/rn−1 when

r = |v|. Thus, the Jacobian ∂ϕ/∂u is always nonnegative, and is identically

equal to 2n on the ball of radius 1/4 at the center of In, so its integral on In is

positive.

to the sphere SρS of radius ρ where

ρ(r) = r + σ(r)(1− r), sending each radial line into itself. Fix the n-cell

ϕ = ψ ◦ κ

where κ scales In to [−1, 1]n by the affine map κ : u �→ v = (2u1 − 1, . . . , 2un − 1).

Then



356 Multivariable Calculus Chapter 5

North Pole

East Polar Cap

East Pole

Figure 131 There are six polar caps at the six poles of the 2-sphere.

Step 4. Consider an (n − 1)-form α. If ν : In−1 → Rn is an (n − 1)-cell whose

image lies in ∂B then

∫

ν
α =

∫

T◦ν
α =

∫

ν
T∗α

since T is the identity map on ∂B. The (n − 1)-dimensional faces of ϕ : In → B lie

in ∂B. Thus

(27)

∫

∂ϕ
α =

∫

∂ϕ
T∗α.

Step 5. Now we get the contradiction. Consider the specific (n− 1)-form

α = x1 dx2 ∧ · · · ∧ dxn.

Note that dα = dx1 ∧ · · · ∧ dxn is n-dimensional volume and

∫

ϕ
dα =

∫

In

∂ϕ

∂u
du > 0.

∫

ν

∫∫
α =

∫

T

∫∫

◦ν
α =

∫

ν

∫∫
T∗α

∫

ν

∫∫

Figure 131 There are six polar caps at the six poles of the 2-sphere.

Step 4. Consider an (n − 1)-form α. If ν : In−1 → Rn is an (n − 1)-cell whose

image lies in ∂B thenage lies in ∂B then
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In fact the integral is the volume of B. However, we also have∫
ϕ
dα =

∫
∂ϕ

α by Stokes’ Theorem on a cell

=

∫
∂ϕ

T∗α by Equation (27)

=

∫
ϕ
dT∗α by Stokes’ Theorem on a cell

=

∫
ϕ
T∗dα

= 0 by Step 2.

This is a contradiction – an integral can not simultaneously be zero and positive. The

assumption that there exists a continuous F : B → B with no fixed-point has led to

a contradiction. Therefore it is untenable and every F does have a fixed-point.

Appendix A Perorations of Dieudonné
In his classic book, Foundations of Analysis, Jean Dieudonné of the

French Bourbaki school writes

“The subject matter of this Chapter [Chapter VIII on differential calculus]

is nothing else but the elementary theorems of Calculus, which however

are presented in a way which will probably be new to most students. That

presentation which throughout adheres strictly to our general ‘geometric’

outlook on Analysis, aims at keeping as close as possible to the fundamen-

tal idea of Calculus, namely the local approximation of functions by linear

functions. In the classical teaching of Calculus, this idea is immediately

obscured by the accidental fact that, on a one-dimensional vector space,

there is a one-to-one correspondence between linear forms and numbers,

and therefore the derivative at a point is defined as a number instead of

a linear form. This slavish subservience to the shibboleth of numerical

interpretation at any cost becomes much worse when dealing with func-

tions of several variables: One thus arrives, for instance, at the classical

formula”... “giving the partial derivatives of a composite function, which

has lost any trace of intuitive meaning, whereas the natural statement of

the theorem is of course that the (total) derivative of a composite function

by (c) in Theorem 43
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is the composite of their derivatives”..., “a very sensible formulation when

one thinks in terms of linear approximation.”

“This ‘intrinsic’ formulation of Calculus, due to its greater ‘abstraction’,

and in particular to the fact that again and again, one has to leave the

initial spaces and climb higher and higher to new ‘function spaces’ (es-

pecially when dealing with the theory of higher derivatives), certainly

requires some mental effort, contrasting with the comfortable routine of

the classical formulas. But we believe the result is well worth the labor,

as it will prepare the student to the still more general idea of Calculus on

a differentiable manifold; the reader who wants to have a glimpse of that

theory and of the questions to which it leads can look into the books of

Chevalley and de Rham. Of course, he will observe in these applications,

all the vector spaces which intervene have finite dimension; if that gives

him an additional feeling of security, he may of course add that assump-

tion to all the theorems of this chapter. But he will inevitably realize

that this does not make the proofs shorter or simpler by a single line; in

other words the hypothesis of finite dimension is entirely irrelevant to the

material developed below; we have therefore thought it best to dispense

with it altogether, although the applications of Calculus which deal with

the finite-dimensional case still by far exceed the others in number and

importance.”

I share most of Dieudonné’s opinions expressed here. And where else will you

read the phrase “slavish subservience to the shibboleth of numerical interpretation

at any cost”?

Appendix B TheHistory ofCavalieri’s Principle
The following is from Marsden and Weinstein’s Calculus.

The idea behind the slice method goes back, beyond the invention of

calculus, to Francesco Bonaventura Cavalieri (1598-1647), a student of

Galileo and then professor at the University of Bologna. An accurate

report of the events leading to Cavalieri’s discovery is not available, so we

have taken the liberty of inventing one.

Cavalieri’s delicatessen usually produced bologna in cylindrical form, so

that the volume would be computed as π. radius2. length. One day the
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casings were a bit weak, and the bologna came out with odd bulges. The

scale was not working that day, either, so the only way to compute the

price of the bologna was in terms of its volume.

Cavalieri took his best knife and sliced the bologna into n very thin slices,

each of thickness x, and measured the radii, r1, r2, . . . , rn of the slices

(fortunately they were all round). He then estimated the volume to be∑n
i=1 πr

2
i x, the sum of the volumes of the slices.

Cavalieri was moonlighting from his regular job as a professor at the Uni-

versity of Bologna. That afternoon he went back to his desk and began

the book Geometria indivisibilium continuorum nova quandum ratione

promota (Geometry shows the continuous indivisibility between new ra-

tions and getting promoted), in which he stated what is now known as

Cavalieri’s principle: If two solids are sliced by a family of parallel planes

in such a way that corresponding sections have equal areas, then the two

solids have the same volume.

The book was such a success that Cavalieri sold his delicatessen and re-

tired to a life of occasional teaching and eternal glory.

Appendix C A Short Excursion into the Com-

plex Field
The field C of complex numbers corresponds bijectively with R2. The complex number

z = x + iy ∈ C corresponds to (x, y) ∈ R2. A function T : C → C is complex linear

if for all λ, z, w ∈ C we have

T (z + w) = T (z) + T (w) and T (λz) = λT (z).

Since C is a one-dimensional complex vector space the value μ = T (1) determines T ,

namely, T (z) = μz for all z. If z = x + iy and μ = α + iβ then μz = (αx − βy) +

i(βx+ αy). In R2 terms T : (x, y) �→ ((αx− βy), (βx+ αy)) which shows that T is a

linear transformation R2 → R2 whose matrix is[
α −β

β α

]
.

The form of this matrix is special. For instance it could never be

[
2 1

1 1

]
.
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A complex function of a complex variable f(z) has a complex derivative f ′(z)
if the complex ratio (f(z+h)−f(z))/h tends to f ′(z) as the complex number h tends

to zero. Equivalently,
f(z + h)− f(z)− f ′(z)h

h
→ 0

as h → 0. Write f(z) = u(x, y) + iv(x, y) where z = x+ iy, and u, v are real-valued

functions of two real variables. Define F : R2 → R2 by F (x, y) = (u(x, y), v(x, y)).

Then F is R-differentiable with derivative matrix

DF =

⎡⎢⎢⎢⎢⎣
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

⎤⎥⎥⎥⎥⎦ .

Since this derivative matrix is the R2 expression for multiplication by the complex

number f ′(z), it must have the

[
α −β

β α

]
form. This demonstrates a basic fact

about complex differentiable functions – their real and imaginary parts, u and v,

satisfy the

53 Cauchy-Riemann Equations

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Appendix D Polar Form
The shape of the image of a unit ball under a linear transformation T is not an issue

that is used directly in anything we do in Chapter 5 but it certainly underlies the

geometric outlook on linear algebra.

Question. What shape is the (n− 1)-sphere Sn−1?

Answer. Round.

Question. What shape is T (Sn−1)?

Answer. Ellipsoidal. See also Exercise 39.

Let z = x + iy be a nonzero complex number. Its polar form is z = reiθ where

r > 0 and 0 ≤ θ < 2π, and x = r cos θ, y = r sin θ. Multiplication by z breaks up
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into multiplication by r, which is just dilation, and multiplication by eiθ, which is

rotation of the plane by angle θ. As a matrix the rotation is[
cos θ − sin θ

sin θ cos θ

]
.

The polar coordinates of (x, y) are (r, θ).

Analogously, consider an isomorphism T : Rn → Rn. Its polar form is

T = OP

where O and P are isomorphisms Rn → Rn such that

(a) O is like eiθ; it is an orthogonal isomorphism.

(b) P is like r; it is positive definite symmetric (PDS) isomorphism.

Orthogonality of O means that for all v, w ∈ Rn we have

〈Ov,Ow〉 = 〈v, w〉,

while P being PDS means that for all nonzero vectors v, w ∈ Rn we have

〈Pv, v〉 > 0 and 〈Pv,w〉 = 〈v, Pw〉.

The notation 〈v, w〉 indicates the usual dot product on Rn.

The polar form T = OP reveals everything geometric about T . The geometric

effect of O is nothing. It is an isometry and changes no distances or shapes. It is

rigid. The effect of a PDS operator P is easy to describe. In linear algebra it is shown

that there exists a basis B = {u1, . . . , un} of orthonormal vectors (the vectors are of

unit length and are mutually perpendicular) and with respect to this basis we have

P =

⎡⎢⎢⎢⎢⎢⎣
λ1 0 . . .

0 λ2 0 . . .

. . .

. . . 0 λn−1 0

. . . 0 λn

⎤⎥⎥⎥⎥⎥⎦
The diagonal entries λi are positive. P stretches each ui by the factor λi. Thus P

stretches the unit sphere to an n-dimensional ellipsoid. The ui are its axes. The

norm of P and hence of T is the largest λi, while the conorm is the smallest λi. The

ratio of the largest to the smallest, the condition number, is the eccentricity of the

ellipsoid.
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Upshot Except for the harmless orthogonal factor O, an isomorphism is no more

geometrically complicated than a diagonal matrix with positive entries.

54 Polar Form Theorem Each isomorphism T : Rn → Rn factors as T = OP ,

where O is orthogonal and P is PDS.

Proof Recall that the transpose of T : Rn → Rn is the unique isomorphism T t

satisfying the equation

〈Tv,w〉 = 〈v, T tw〉

for all v, w ∈ Rn. Thus the condition 〈Pv,w〉 = 〈v, Pw〉 in the definition of PDS

means exactly that P t = P .

Let T be a given isomorphism T : Rn → Rn. We must find its factors O and

P . We just write them down as follows. Consider the composite T t ◦ T . It is PDS

because

(T tT )t = (T t)(T t)t = T tT and 〈T tTv, v〉 = 〈Tv, Tv〉 > 0.

Every PDS transformation has a unique PDS square root, just as does every positive

real number r. (To see this, take the diagonal matrix with entries
√
λi in place of

λi.) Thus T
tT has a PDS square root and this is the factor P that we seek,

P 2 = T tT.

By P 2 we mean the composite P ◦ P . In order for the formula T = OP to hold with

this choice of P we must have O = TP−1. To finish the proof we merely must check

that TP−1 actually is orthogonal. Magically,

〈Ov,Ow〉 = 〈TP−1v, TP−1w〉 = 〈P−1v, T tTP−1w〉
= 〈P−1v, Pw〉 = 〈P tP−1v, w〉 = 〈PP−1v, w〉
= 〈v, w〉

which implies that O is orthogonal.

55 Corollary Under any invertible T : Rn → Rn the unit ball is sent to an ellipsoid.

Proof Write T in polar form T = OP . The image of the unit ball under P is an

ellipsoid. The orthogonal factor O merely rotates the ellipsoid.
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Appendix E Determinants
A permutation of a set S is a bijection π : S → S. That is, π is one-to-one and onto.

We assume the set S is finite, S = {1, . . . , k}. The sign of π is

sgn(π) = (−1)r

where r is the number of reversals – i.e., the number of pairs i, j such that

i < j and π(i) > π(j).

56 Proposition Every permutation is the composite of pair transpositions; the sign

of a composite permutation is the product of the signs of its factors; and the sign of

a pair transposition is −1.

The proof of this combinatorial proposition is left to the reader. Although the

factorization of a permutation π into pair transpositions is not unique, the number

of factors, say t, satisfies (−1)t = sgn(π).

Definition The determinant of a k × k matrix A is the sum

detA =
∑
π

sgn(π)a1π(1)a2π(2) . . . akπ(k)

where π ranges through all permutations of {1, . . . , k}.

Equivalent definitions appear in standard linear algebra courses. One of the key

facts about determinants is the product rule: For two k × k matrices we have

detAB = detA detB.

It extends to nonsquare matrices as follows.

57 Cauchy-Binet Formula Assume that k ≤ n. If A is a k × n matrix and B is

an n× k matrix, then the determinant of the product k × k matrix AB = C is given

by the formula

detC =
∑
J

detAJ detBJ ,

where J ranges through the set of ascending k-tuples in {1, . . . , n}, AJ is the k × k

minor of A whose column indices j belong to J , while BJ is the k × k minor of B

whose row indices i belong to J . See Figure 132.
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Figure 132 The paired 4× 4 minors of A and B are determined by the

4-tuple J = (j1, j2, j3, j4).

Proof Note that special cases of the Cauchy-Binet Formula occur when k = 1 or

k = n. When k = 1, C is the 1× 1 matrix that is the dot product of an A-row vector

of length n times a B-column vector of height n. The 1-tuples J in {1, . . . , n} are just

single integers, J = (1), . . . , J = (n), and the product formula is immediate. In the

second case, k = n, we have the usual product determinant formula because there is

only one ascending k-tuple in {1, . . . , k}, namely J = (1, . . . , k).

To handle the general case, define the sum

S(A,B) =
∑
J

detAJ detBJ

as above. Consider an elementary n× n matrix E. We claim that

S(A,B) = S(AE,E−1B).

Since there are only two types of elementary matrices, this is not too hard a calcu-

lation, and is left to the reader. Then we perform a sequence of elementary column

operations on A to put it in lower triangular form

A′ = AE1 . . . Er =

⎡⎢⎢⎢⎢⎣
α11 0 · · · · · · 0 · · · 0

α21 α22 · · · · · · 0 · · · 0
...

...
. . .

...
...

αk1 αk2 · · · αkk 0 · · · 0

⎤⎥⎥⎥⎥⎦ .
About B′ = E−1

r . . . E−1
1 B we observe only that

AB = A′B′ = A′J0B′
J0



Appendix E Determinants 365

where J0 = (1, . . . , k). Since elementary column operations do not affect S we have

S(A,B) = S(AE1, E
−1
1 B) = S(AE1E2, E

−1
2 E−1

1 B) = . . . = S(A′, B′).

All terms in the sum that defines S(A′, B′) are zero except the J th
0 , and thus

det(AB) = detA′J0 detB′
J0 = S(A′, B′) = S(A,B)

as claimed.
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Exercises
1. Let T : V → W be a linear transformation, and let p ∈ V be given. Prove that

the following are equivalent.

(a) T is continuous at the origin.

(b) T is continuous at p.

(c) T is continuous at at least one point of V .

2. Let L be the vector space of continuous linear transformations from a normed
space V to a normed space W . Show that the operator norm makes L a normed
space.

3. Let T : V → W be a linear transformation between normed spaces. Show that

‖T‖ = sup{|Tv| : |v| < 1}
= sup{|Tv| : |v| ≤ 1}
= sup{|Tv| : |v| = 1}
= inf{M : v ∈ V ⇒ |Tv| ≤ M |v|}.

4. The conorm of a linear transformation T : Rn → Rm is

m(T ) = inf

{ |Tv|
|v| : v �= 0

}
.

It is the minimum stretch that T imparts to vectors in Rn. Let U be the
unit ball in Rn.

(a) Show that the norm and conorm of T are the radii of the smallest ball
that contains TU and, when n = m, the largest ball contained in TU .

(b) If T is an isomorphism prove that m(T ) =
∥∥T−1

∥∥−1
.

(c) If m = n, T = I + S, and ‖S‖ < 1 prove that m(T ) > 0. [Hint: The
inequality |u+ v| ≥ |u| − |v| is useful because it implies |Tu| ≥ |u| − |Su|.]
How can you infer that T is an isomorphism?

(d) If the norm and conorm of T are equal, what can you say about T?

5. Formulate and prove the fact that function composition is associative. Why
can you infer that matrix multiplication is associative?

6. LetMn and Ln be the vector spaces of n×nmatrices and linear transformations
Rn → Rn. Let T :Mn → Ln send A to TA as on page 277.

(a) Look up the definition of “ring” in your algebra book.

(b) Show that Mn and Ln are rings with respect to matrix multiplication and
composition.

(c) Show that T :Mn → Ln is a ring isomorphism.

7. Two norms | |1 and | |2 on a vector space are comparable† if there are

†From an analyst’s point of view, the choice between comparable norms has little importance. At
worst it affects a few constants that turn up in estimates.

when n = mthat contains TU and, the largest ball c

(b) If T is an isomorphism prove that m(T ) =
∥∥∥∥T−1

∥∥∥∥−1
.

when n = m,

T ) > 0. [Hint: The

∥ ∥
(c) If m = n, T = I + S, and ‖S‖ < 1 prove that m(T

es |Tu| ≥ |u| |Su|.]inequality |u+ v| ≥ |u| |v| is useful because it impliees |Tu| ≥ |u| − |Su|.]inequality |u+ v| ≥ |u| − |v| is useful because it implie
How can you infer that T is an isomorphism?How can you infer that T is an isomorphism?H i f h T i i hi ?

(d) If the norm and conorm of T are equal, what can you say about T?

Let T :Mn → Ln send A to TAT as on page 277.

up the definition of “ring” in your algebra book
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positive constants c and C such that for all nonzero vectors in V we have

c ≤ |v|1
|v|2 ≤ C.

(a) Prove that comparability is an equivalence relation on norms.

(b) Prove that any two norms on a finite-dimensional vector space are com-
parable. [Hint: Use Theorem 3.]

(c) Consider the norms

|f |L1 =

∫ 1

0
|f(t)| dt and |f |C0 = max{|f(t)| : t ∈ [0, 1]},

defined on the infinite-dimensional vector space C0 of continuous func-
tions f : [0, 1] → R. Show that the norms are not comparable by finding
functions f ∈ C0 whose integral norm is small but whose C0 norm is 1.

*8. Let | | = | |C0 be the supremum norm on C0 as in the previous exercise.
Define an integral transformation T : C0 → C0 by

T : f �→
∫ x

0
f(t) dt.

(a) Show that T is linear, continuous, and find its norm.

(b) Let fn(t) = cos(nt), n = 1, 2, . . .. What is T (fn)?

(c) Is the set of functions K = {fn : n ∈ N} closed? Bounded? Compact?

(d) Is T (K) compact? How about its closure?

9. Give an example of two 2 × 2 matrices such that the operator norm of the
product is less than the product of the operator norms.

10. In the proof of Theorem3 we used the fact that with respect to the Euclidean
norm, the length of a vector is at least as large as the length of any of its
components. Show by example that this is false for some norms in R2. [Hint:
Consider the matrix

A =

[
3 −2
−2 2

]
.

Use A to define an inner product 〈v, w〉A =
∑

viaijwj on R2, and use the inner
product to define a norm

|v|A =
√

〈v, v〉A.
(What properties must A have for the sum to define an inner product? Does
A have these properties?) With respect to this norm, what are the lengths of
e1, e2, and v = e1 + e2?]
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11. Consider the shear matrix

S =

[
1 s
0 1

]

and the linear transformation S : R2 → R2 it represents. Calculate the norm
and conorm of S. [Hint: Using polar form, it suffices to calculate the norm
and conorm of the positive definite symmetric part of S. Recall from linear
algebra that the eigenvalues of the square of a matrix A are the squares of the
eigenvalues of A.]

12. What is the one-line proof that if V is a finite-dimensional normed space then
its unit sphere {v : |v| = 1} is compact?

13. The set of invertible n× n matrices is open in Mn. Is it dense?

14. An n × n matrix is diagonalizable if there is a change of basis in which it
becomes diagonal.

(a) Is the set of diagonalizable matrices open in Mn?

(b) Closed?

(c) Dense?

15. Show that both partial derivatives of the function

f(x, y) =

⎧
⎨
⎩

xy

x2 + y2
if (x, y) �= (0, 0)

0 if (x, y) = (0, 0)

exist at the origin but the function is not differentiable there.

16. Let f : R2 → R3 and g : R3 → R be defined by f = (x, y, z) and g = w where

w = w(x, y, z) = xy + yz + zx

x = x(s, t) = st y = y(s, t) = s cos t z = z(s, t) = s sin t.

(a) Find the matrices that represent the linear transformations (Df)p and
(Dg)q where p = (s0, t0) = (1, 0) and q = f(p).

(b) Use the Chain Rule to calculate the 1 × 2 matrix [∂w/∂s, ∂w/∂t] that
represents (D(g ◦ f))p.

(c) Plug the functions x = x(s, t), y = y(s, t), and z = z(s, t) directly into
w = w(x, y, z), and recalculate [∂w/∂s, ∂w/∂t], verifying the answer given
in (b).

(d) Examine the statements of the multivariable chain rules that appear in
your old calculus book and observe that they are nothing more than the
components of various product matrices.

17. Let f : U → Rm be differentiable, [p, q] ⊂ U ⊂ Rn, and ask whether the direct
generalization of the one-dimensional Mean Value Theorem is true: Does there
exist a point θ ∈ [p, q] such that

(28) f(q)− f(p) = (Df)θ(q − p)?

n

(1, 0)

Mn
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(a) Take n = 1, m = 2, and examine the function

f(t) = (cos t, sin t)

for π ≤ t ≤ 2π. Take p = π and q = 2π. Show that there is no θ ∈ [p, q]
which satisfies (28).

**(b) Assume that the set of derivatives

{(Df)x ∈ L(Rn,Rm) : x ∈ [p, q]}
is convex. Prove there exists θ ∈ [p, q] which satisfies (28). [Hint: Google
“support plane.”]

(c) How does (b) imply the one-dimensional Mean Value Theorem?

18. The directional derivative of f : U → Rm at p ∈ U in the direction u is the
limit, if it exists,

∇pf(u) = lim
t→0

f(p+ tu)− f(p)

t
.

(Often one requires that |u| = 1.)

(a) If f is differentiable at p, why is it obvious that the directional derivative
exists in each direction u?

(b) Show that the function f : R2 → R defined by

f(x, y) =

⎧
⎨
⎩

x3y

x4 + y2
if (x, y) �= (0, 0)

0 if (x, y) = (0, 0)

has ∇(0,0)f(u) = 0 for all u but is not differentiable at (0, 0).

*19. Using the functions in Exercises 15 and 18, show that the composite of func-
tions whose partial derivatives exist may fail to have partial derivatives, and
the composite of functions whose directional derivatives exist may fail to have
directional derivatives. (That is, the classes of these functions are not closed
under composition, which is further reason to define multidimensional differ-
entiability in terms of Taylor approximation, and not in terms of partial or
directional derivatives.)

20. Assume that U is a connected open subset of Rn and f : U → Rm is differen-
tiable everywhere on U . If (Df)p = 0 for all p ∈ U , show that f is constant.

21. For U as above, assume that f is second-differentiable everywhere and (D2f)p =
0 for all p. What can you say about f? Generalize to higher-order differentia-
bility.

22. If Y is a metric space and f : [a, b]× Y → R is continuous, show that

F (y) =

∫ b

a
f(x, y) dx

is continuous.

**(

[Hint: Google
“support plane.”]
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23. Assume that f : [a, b]× Y → Rm is continuous, Y is an open subset of Rn, the
partial derivatives ∂fi(x, y)/∂yj exist, and they are continuous. Let Dyf be the
linear transformation Rn → Rm which is represented by the m × n matrix of
partials.

(a) Show that

F (y) =

∫ b

a
f(x, y) dx

is of class C1 and

(DF )y =

∫ b

a
(Dyf) dx.

This generalizes Theorem14 to higher dimensions.

(b) Generalize (a) to higher-order differentiability.

24. Show that all second partial derivatives of the function f : R2 → R defined by

f(x, y) =

⎧⎨⎩
xy(x2 − y2)

x2 + y2
if (x, y) �= (0, 0)

0 if (x, y) = (0, 0)

exist everywhere, but the mixed second partials are unequal at the origin,
∂2f(0, 0)/∂x∂y �= ∂2f(0, 0)/∂y∂x.

*25. Construct an example of a C1 function f : R → R that is second-differentiable
only at the origin. (Infer that this phenomenon occurs also in higher dimen-
sions.)

26. Suppose that u �→ βu is a continuous function from U ⊂ Rn into L(Rm,Rm).

(a) If for all u ∈ U , βu is symmetric, prove that its average over each W ⊂ U
is symmetric.

(b) Conversely, prove that if the average over all small two-dimensional paral-
lelograms in U is symmetric then βu is symmetric for all u ∈ U . (That is,
if for some p ∈ U , βp is not symmetric, prove that its average over some
small two-dimensional parallelogram at p is also not symmetric.)

(c) Generalize (a) and (b) by replacing L with a finite-dimensional space E,
and the subset of symmetric bilinear maps with a linear subspace of E:
The average values of a continuous function always lie in the subspace if
and only if the values do.

*27. Assume that f : U → Rm is of class C2 and show that D2f is symmetric by
the following integral method. With reference to the signed sum Δ of f at the
vertices of the parallelogram P in Figure 109, use the C1 Mean Value Theorem
to show that

Δ =
(∫ 1

0

∫ 1

0
(D2f)p+sv+tw dsdt

)
(v, w).

Infer symmetry of (D2f)p from symmetry of Δ and Exercise 26.
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28. Let β : Rn × · · · × Rn → Rm be r-linear. Define its “symmetrization” as

symm(β)(v1, . . . , vr) =
1

r!

∑
π

β(vπ(1), . . . , vπ(r)),

where π ranges through the set of permutations of {1, . . . , r}.
(a) Prove that symm(β) is symmetric.

(b) If β is symmetric prove that symm(β) = β.

(c) Is the converse to (b) true?

(d) Prove that α = β− symm(β) is antisymmetric in the sense that if π is any
permutation of {1, . . . , r} then

α(vπ(1), . . . , vπ(r)) = sgn(π)α(v1, . . . , vr).

Infer that Lr = Lr
s ⊕Lr

a where Lr
s and Lr

a are the subspaces of symmetric
and antisymmetric r-linear transformations.

(e) Let β ∈ L2(R2,R) be defined by

β((x, y), (x′, y′)) = xy′.

Express β as the sum of a symmetric and an antisymmetric bilinear trans-
formation.

*29. Prove Corollary 18 that rth-order differentiability implies symmetry of Drf ,
r ≥ 3, in one of two ways.

(a) Use induction to show that (Drf)p(v1, . . . , vr) is symmetric with respect
to permutations of v1, . . . , vr−1 and of v2, . . . , vr. Then take advantage of
the fact that r is strictly greater than 2.

(b) Define the signed sum Δ of f at the vertices of the paralleletope P spanned
by v1, . . . , vr, and show that it is the average of Drf . Then proceed as in
Exercise 27.

30. Consider the equation

(29) xey + yex = 0.

(a) Observe that there is no way to write down an explicit solution y = y(x)
of (29) in a neighborhood of the point (x0, y0) = (0, 0).

(b) Why, nevertheless, does there exist a C∞ solution y = y(x) of (29) near
(0, 0)?

(c) What is its derivative at x = 0?

(d) What is its second derivative at x = 0?

(e) What does this tell you about the graph of the solution?

(f) Do you see the point of the Implicit Function Theorem better?

**31. Consider a function f : U → R such that
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(i) U is a connected open subset of R2.

(ii) f is C1.

(iii) For each (x, y) ∈ U we have

∂f(x, y)

∂y
= 0.

(a) If U is a disc show that f is independent of y.

(b) Construct such an f of class C∞ which does depend on y.

(c) Show that the f in (b) can not be analytic.

(d) Why does your example in (b) not invalidate the proof of the Rank The-
orem on page 306?

32. Let G denote the set of invertible n× n matrices.

(a) Prove that G is an open subset of M(n× n).

(b) Prove that G is a group. (It is called the general linear group.)

(c) Prove that the inversion operator Inv : A �→ A−1 is a homeomorphism of
G onto G.

(d) Prove that Inv is a diffeomorphism and show that its derivative at A is
the linear transformation M→M,

X �→ −A−1 ◦X ◦A−1.

(e) Relate this formula to the ordinary derivative of 1/x at x = a.

33. Observe that Y = InvX solves the implicit function problem

F (X,Y )− I = 0,

where F (X,Y ) = X ◦ Y . Assume it is known that Inv is smooth and use the
Chain Rule to derive from this equation the formula for the derivative of Inv.

34. Use Gaussian elimination to prove that the entries of the matrix A−1 depend
smoothly (in fact analytically) on the entries of A.

*35. Give a proof that the inversion operator Inv is analytic (i.e., is defined locally
by a convergent power series) as follows:

(a) If T ∈ L(Rn,Rn) and ‖T‖ < 1 show that the series of linear transforma-
tions

I + T + T 2 + . . .+ T k + . . .

converges to a linear transformation S, and

S ◦ (I − T ) = I = (I − T ) ◦ S,

where I is the identity transformation.

(b) Infer from (a) that inversion is analytic at I.

general linear group.



Exercises Multivariable Calculus 373

(c) In general, if T0 ∈ G and ‖T‖ < 1/
∥∥T−1

0

∥∥ show that

Inv(T0 − T ) = Inv(I − T−1
0 ◦ T ) ◦ T−1

0 ,

and infer that Inv is analytic at T0.

(d) Infer from the general fact that analyticity implies smoothness that inver-
sion is smooth.

(This proof avoids Cramer’s Rule and makes little use of finite-dimensionality.)

*36. Give a proof of smoothness of Inv by the following bootstrap method.

(a) Using Exercise 4c on page 366 and the identity

X−1 − Y −1 = X−1 ◦ (Y −X) ◦ Y −1,

give a simple proof that Inv is continuous.

(b) Infer that Y = Inv(X) is a continuous solution of the C∞ implicit function
problem

F (X,Y )− I = 0,

where F (X,Y ) = X ◦ Y as in Exercise 33. Since the proof of the C1

Implicit Function Theorem relies only on continuity of Inv, it is not circular
reasoning to conclude that Inv is C1.

(c) Assume simultaneously that the Cr Implicit Function Theorem has been
proved and that Inv is known to be Cr−1. Prove that Inv is Cr and that
the Cr+1 Implicit Function Theorem is true.

(d) Conclude logically that Inv is smooth and the C∞ Implicit Function The-
orem is true.

(This proof avoids Cramer’s Rule and also makes little use of finite dimension-
ality.)

*37. Use polar decomposition to give an alternate proof of the volume-multiplier
formula.

**38. Consider the set S of all 2× 2 matrices X ∈M =M2 that have rank 1.

(a) Show that in a neighborhood of the matrix

X0 =

[
1 0
0 0

]

S is diffeomorphic to a two-dimensional disc.

(b) Is this true (locally) for all matrices X ∈ S?

(c) Describe S globally. (How many connected components does it have? Is
it closed in M? If not, what are its limit points and how does S approach
them? What is the intersection of S with the unit sphere in M?, etc.)

39. Draw pictures of all the possible shapes of T (S2) where T : R3 → R3 is a linear
transformation and S2 is the 2-sphere. (Don’t forget the cases in which T has
rank < 3.)

Exercise 4c on page 366 and

=M2
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40. Let M and N be n× n real matrices.

(a) If N represents a positive definite symmetric transformation Rn → Rn,
prove that there exist orthogonal matrices O1 and O2, and a diagonal
matrix D with positive entries such that N = O1DO2.

(b) If M is invertible prove that there exist orthogonal matrices O3 and O4,
and a diagonal matrix D with positive entries such that M = O3DO4.

(c) What can you prove if M is not invertible?

**41. Suppose that f and g are rth-order differentiable and that the composite h =
g ◦ f makes sense. A partition divides a set into nonempty disjoint subsets.
Prove the Higher Order Chain Rule,

(Drh)p =

r∑
k=1

∑
μ∈P (k,r)

(Dkg)q ◦ (Dμf)p

where μ partitions {1, . . . , r} into k subsets, and q = f(p). In terms of r-linear
transformations, this notation means

(Drh)p(v1, . . . , vr)

=

r∑
k=1

∑
μ

(Dkg)q((D
|μ1|f)p(vμ1), . . . , (D|μk|f)p(vμk

))

where |μi| = #μi and vμi is the |μi|-tuple of vectors vj with j ∈ μi. (Symmetry
implies that the order of the vectors vj in the |μi|-tuple vμi and the order in
which the partition blocks μ1, . . . , μk occur are irrelevant.)

**42. Suppose that β is bilinear and β(f, g) makes sense. If f and g are rth-order
differentiable at p, find the Higher-Order Leibniz Formula for Dr(β(f, g))p.
[Hint: First derive the formula in dimension 1.]

43. Suppose that T : Rn → Rm has rank k.

(a) Show there exists a δ > 0 such that if S : Rn → Rm and ‖S−T‖ < δ then
S has rank ≥ k.

(b) Give a specific example in which the rank of S can be greater than the
rank of T , no matter how small δ is.

(c) Give examples of linear transformations of rank k for each k where 0 ≤
k ≤ min{n,m}.

44. Let S ⊂ M be given.

(a) Define the characteristic function χS : M → R.

(b) If M is a metric space, show that χS(x) is discontinuous at x if and only
if x is a boundary point of S.

45. On page 315 there is a definition of Z ⊂ R2 being a zero set that involves open
rectangles.

40. Let M and N be n× n real matrices.

(a) If N represents a positive definite symmetric transformation Rn → Rn,(a) If N represents a positive definit
prove that there exist orthogonal matrices O1 and O2, and a diagonalprove that there exist orthogonal matrices O1 and O2, and a diagonal
matrix D with positive entries such that N = O1DO2.

(b) If M is invertible prove that there exist orthogonal matrices O3 and O4,
and a diagonal matrix D with positive entries such that M = O3DO4.

(c) What can you prove if M is not invertible?
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(a) Show that the definition is unaffected if we require that the rectangles
covering Z are open squares.

(b) What if we permit the squares or rectangles to be nonopen?

(c) What if we use discs or other shapes instead of squares and rectangles?

*46. Assume that S ⊂ R2 is bounded.

(a) Prove that if S is Riemann measurable then so are its interior and closure.

(b) Suppose that the interior and closure of S are Riemann measurable and
| int(S)| = |S| < ∞. Prove that S is Riemann measurable.

(c) Show that some open bounded subsets of R2 are not Riemann measurable.
See AppendixE in Chapter 6.

*47. The ambiguity in Fubini’s formula
∫
R f =

∫ d
c

(∫ b
a f(x, y) dx

)
dy revolves around

writing
∫ b
a f(x, y) dx at points y where f(x, y) fails to be integrable as a function

of x. What we actually showed in the proof of Fubini’s Theorem on pages 316-
318 is that the lower and upper integrals of f with respect to x are integrable
with respect to y, equal for almost every y, and their integrals with respect to y
equal

∫
R f . (The lower and upper integrals with respect to x are F (y) and F (y).

They always exist.) Let E ⊂ [c, d] denote the “equality set” {y : F (y) = F (y)},
and let E(y) denote the “equality value” F (y) = F (y) on E. The complement
of E is a zero set. To remove the ambiguity one must “define” the integral of
f(x, y) with respect to x at points y ∈ Ec – that’s exactly where the integral
doesn’t exist! One way is to take the average, F (y) = (F (y)+F (y))/2. Then F
is integrable, defined everywhere, agrees with E(y) at all y ∈ E, and its integral
equals

∫
R f . A more general way is to choose any Riemann integrable function

F (y) which equals E(y) on E. Then F (y) =
∫ b
a f(x, y) dx “by definition.”

Justify this approach by proving the following.

(a) Riemann integrable functions g, h : [a, b] → R that are almost everywhere
equal have equal integrals. [Hint: This is like Corollary 31 in Chapter 3.
For any partition P of [a, b], why is there a choice of sample points T such
that the Riemann sums R(g, P, T ) and R(h, P, T ) are equal, and why does
this imply that

∫
g =

∫
h?]

(b) Under the hypotheses above, if F (y) is any function such that F (y) ≤
F (y) ≤ F (y) for all y ∈ [c, d], show that F (y) is Riemann integrable and
its integral agrees with those of F (y) and F (y).

(c) If F (y) is any Riemann integrable function which equals E(y) on E, show
that the integral of F equals those of F and F .

(d) Find a counterexample to (c) if we remove the hypothesis that F is Rie-
mann integrable.

48. Set f(x, y) = 1− 1/q if x, y ∈ Q∩ [0, 1] and y = p/q in lowest terms. Set f = 1
otherwise. Prove that f is Riemann integrable on R = [0, 1]2, calculate F (y)
and F (y), and prove that

∫ 1
0 F (y) dy =

∫ 1
0 F (y) dy =

∫
R f = 1.

318 is that the lower and upper integrals of f with respect to x are integrable
with respect to y, equal for almost every y, and their integrals with respect to y

pp g f p g
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49. Using the Fundamental Theorem of Calculus, give a direct proof of Green’s
Formulas

−
∫∫

R
fy dxdy =

∫
∂R

f dx and

∫∫
R
gx dxdy =

∫
∂R

g dy

where R is a square in the plane and f, g : R2 → R are smooth. (Assume that
the edges of the square are parallel to the coordinate axes.)

50. Draw a staircase curve Sn that approximates the diagonal

Δ = {(x, y) ∈ R2 : 0 ≤ x = y ≤ 1}
to within a tolerance 1/n. See Figure 133. Suppose that f, g : R2 → R are

Sn

Δ

Figure 133 The staircase curve approximating the diagonal consists of
both treads and risers.

smooth.

(a) Why does the length of Sn not converge to the length of Δ as n → ∞?

(b) Despite (a), prove that∫
Sn

f dx →
∫
Δ
f dx and

∫
Sn

g dy →
∫
Δ
g dy

as n → ∞.

(c) Repeat (b) with Δ replaced by the graph of a smooth function h : [a, b] →
R.

(d) If C is a smooth simple closed curve in the plane, show that it is the union
of finitely many arcs C�, each of which is the graph of a smooth function
y = h(x) or x = h(y), and the arcs C� meet only at common endpoints.
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(e) Infer that if (Sn) is a sequence of staircase curves that converges to C then∫
Sn

f dx+ g dy →
∫
C
f dx+ g dy.

(f) Use (e) and Exercise 49 to give a proof of Green’s Formulas on a general
region D ⊂ R2 bounded by a smooth simple closed curve C, that relies
on approximating† C, say from the inside, by staircase curves Sn which
bound regions Rn composed of many small squares. (You may imagine
that R1 ⊂ R2 ⊂ . . . and that Rn → D.)

51. A region R in the plane is of type 1 if there are smooth functions g1 : [a, b] → R,
g2 : [a, b] → R such that g1(x) ≤ g2(x) and

R = {(x, y) : a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x)}.

R is of type 2 if the roles of x and y can be reversed, and it is a simple region
if it is of both type 1 and type 2.

(a) Give an example of a region that is type 1 but not type 2.

(b) Give an example of a region that is neither type 1 nor type 2.

(c) Is every simple region starlike? Convex?

(d) If a convex region is bounded by a smooth simple closed curve, is it simple?

(e) Give an example of a region that divides into three simple subregions but
not into two.

*(f) If a region is bounded by a smooth simple closed curve C then it need not
divide into a finite number of simple subregions. Find an example.

(g) Infer that the standard proof of Green’s Formulas for simple regions (as,
for example, in J. Stewart’s Calculus) does not immediately carry over to
the general planar region R with smooth boundary; i.e., cutting R into
simple regions can fail.

***(h) Is there a planar region bounded by a smooth simple closed curve such
that for every linear coordinate system (i.e., a new pair of axes), the region
does not divide into finitely many simple subregions? In other words, is
Stewart’s proof of Green’s Theorem doomed?

*(i) Show that if the curve C in (f) is analytic, then no such example exists.
[Hint: C is analytic if it is locally the graph of a function defined by a
convergent power series. A nonconstant analytic function has the property
that for each x, there is some derivative of f which is nonzero, f (r)(x) �= 0.]

**52. Show that every starlike open subset of the plane is diffeomorphic to the plane.
(The same is true in Rn.)

†This staircase approximation proof generalizes to regions that are bounded by fractal, nondiffer-
entiable curves such as the von Koch snowflake. As Jenny Harrison has shown, it also generalizes to
higher dimensions.
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**53. The 2-cell ϕ : In → Bn constructed in Step 3 of the proof of Brouwer’s Theorem
is smooth but not one-to-one. For it crushes the corners of In into ∂B.

(a) Construct a homeomorphism h : I2 → B2 where I2 is the closed unit
square and B2 is the closed unit disc.

(b) In addition make h in (a) be of class C1 (on the closed square) and be
a diffeomorphism from the interior of I2 onto the interior of B2. (The
derivative of a diffeomorphism is everywhere nonsingular.)

(c) Why can h not be a diffeomorphism from I2 onto B2?

(d) Improve class C1 in (b) to class C∞.

**54. If K,L ⊂ Rn and if there is a homeomorphism h : K → L that extends to
H : U → V such that U, V ⊂ Rn are open, H is a homeomorphism, and H,H−1

are of class Cr with 1 ≤ r ≤ ∞ then we say that K and L are ambiently Cr-
diffeomorphic.

(a) In the plane, prove that the closed unit square is ambiently diffeomorphic
to a general rectangle and to a general parallelogram.

(b) If K,L are ambiently diffeomorphic polygons in the plane, prove that K
and L have the same number of vertices. (Do not count vertices at which
the interior angle is 180 degrees.)

(c) Prove that the closed square and closed disc are not ambiently diffeomor-
phic.

(d) If K is a convex polygon that is ambiently diffeomorphic to a polygon L,
prove that L is convex.

(e) Is the converse to (b) true or false? What about in the convex case?

(f) The closed disc is tiled by five ambiently diffeomorphic copies of the unit
square as shown in Figure 134. Prove that it cannot be tiled by fewer.

(g) Generalize to dimension n ≥ 3 and show that the n-ball can be tiled by
2n+ 1 diffeomorphs of the n-cube. Can it be done with fewer?

(h) Show that a triangle can be tiled by three diffeomorphs of the square.
Infer that any surface that can be tiled by diffeomorphs of the triangle
can also be tiled by diffeomorphs of the square. What happens in higher
dimensions?

55. Choose at random I, J , two non-ascending triples of integers between 1 and 9.
Using only the wedge definition on page 334, check that dxI ∧ dxJ = dxIJ .

56. True or false? For every k-form α we have α ∧ α = 0.

57. Show that d : Ωk → Ωk+1 is a linear vector space homomorphism.

58. Using Stokes’ Formula (but not the Poincaré Lemma and its consequences),
prove that closed 1-forms are exact (i.e., dω = 0 ⇒ ω = dh for some h) when
defined on R2 or on any convex open subset of R2 as follows.

(a) If ϕ, ψ : [0, 1] → U are paths from p to q, define

σ(s, t) = (1− s)ϕ(t) + sψ(t)

two non-ascending triples of integers between 1 and 9.
Using only the wedge definition on page 334, check t
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Figure 134 Five diffeomorphs of the square tile the disc.

for 0 ≤ s, t ≤ 1 and observe it is a smooth 2-cell.

(b) If ω = f dx + g dy is a closed 1-form, how does Stokes’ Formula imply∫
ϕ ω =

∫
ψ ω, and what does this mean about path independence?

(c) Show that if p is held fixed then

h(q) =

∫

ϕ
ω

is smooth and dh = ω.

(d) What if U is nonconvex but diffeomorphic to R2?

(e) What about higher dimensions?

*59. For 0 < a < b the spherical shell is the set

U = {(x, y, x) ∈ R3 : a2 < x2 + y2 + z2 < b2}.

It is the open region between spheres of radius a and b. If C is any closed
curve in U (i.e., the image of a continuous map γ : S1 → U), show that C
can be shrunk to a point without leaving U . That is, U is simply connected.
[Hint: Why is there a point of U not in C, and how does this help? Gazing at
Figure 135 may be a good idea.]

*60. Prove that the closure of the spherical shell is simply connected.

61. Assume d2f = 0 for all smooth functions f , and prove that d2ω = 0 for all
smooth k-forms ω.

61. Assume d2f = 0 for all smooth functions f , and prove that d2ω = 0 for all
smooth k-forms ω.



380 Multivariable Calculus Chapter 5

62. Does there exist a continuous mapping from the circle to itself that has no
fixed-point? What about the 2-torus? The 2-sphere?

63. Show that a smooth map T : U → V induces a linear map of cohomology
groups Hk(V ) → Hk(U) defined by

T∗ : [ω] �→ [T∗ω].

Here, [ω] denotes the equivalence class of ω ∈ Zk(V ) in Hk(V ). The question
amounts to showing that the pullback of a closed form ω is closed and that its
cohomology class depends only on the cohomology class of ω.†

64. Prove that diffeomorphic open sets have isomorphic cohomology groups.

65. Show that the 1-form defined on R2� {(0, 0)} by

ω =
−y

r2
dx+

x

r2
dy

is closed but not exact. Why do you think that this 1-form is often referred to
as dθ and why is the name problematic?

66. Let H ⊂ R3 be the helicoid {(x, y, z) : x2 + y2 �= 0 and z = arctan y/x} and let
π : H → R2� {(0, 0)} be the projection (x, y, z) �→ (x, y).

(a) For ω = (x dy − y dx)/r2 as in Exercise 65, why is π∗ω a closed 1-form on
H?

(b) Is it exact? That is, does there exist a smooth function f : H → R such
that df = ω?

(c) Is there more than one?

(d) Is there more than one such that f(1, 0, 0) = 0?

67. Show that the 2-form defined on the spherical shell by

ω =
x

r3
dy ∧ dz +

y

r3
dz ∧ dx +

z

r3
dx ∧ dy

is closed but not exact.

68. True or false: If ω is closed then fω is closed.
True or false: If ω is exact then fω is exact.

69. Is the wedge product of closed forms closed? Of exact forms exact? What
about the product of a closed form and an exact form? Does this give a ring
structure to the cohomology classes?

†A fancier way to present the proof of the Brouwer Fixed Point Theorem goes like this: As
always, the question reduces to showing that there is no smooth retraction T of the n-ball to its
boundary. Such a T would give a cohomology map T∗ : Hk(∂B) → Hk(B) where the cohomology
groups of ∂B are those of its spherical shell neighborhood. The map T∗ is seen to be a cohomology
group isomorphism because T ◦ inclusion∂B = inclusion∂B and inclusion∂B

∗ = identity. But when
k = n − 1 ≥ 1 the cohomology groups are nonisomorphic; they are computed to be Hn−1(∂B) = R

and Hn−1(B) = 0.
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70. Prove that the n-cell ψ : [−1, 1]n → Bn in the proof of the Brouwer Fixed-Point
Theorem has Jacobian ρ′(r)ρ(r)n−1 / rn−1 for r = |v| as claimed on page 355.

**71. The Hairy Ball Theorem states that any continuous vector field X in R3

that is everywhere tangent to the 2-sphere S is zero at some point of S. Here
is an outline of a proof for you to fill in. (If you imagine the vector field as hair
combed on a sphere, there must be a cowlick somewhere.)

(a) Show that the Hairy Ball Theorem is equivalent to a fixed-point assertion:
Every continuous map of S to itself that is sufficiently close to the iden-
tity map S → S has a fixed-point. (This is not needed below but it is
interesting.)

(b) If a continuous vector field on S has no zero on or inside a small simple
closed curve C ⊂ S, show that the net angular turning of X along C
as judged by an observer who takes a tour of C in the counterclockwise
direction is −2π. (The observer walks along C in the counterclockwise
direction when S is viewed from the outside, and he measures the angle
that X makes with respect to his own tangent vector as he walks along
C. By convention, clockwise angular variation is negative.) Show also
that the net turning is +2π if the observer walks along C in the clockwise
direction.

(c) If Ct is a continuous family of simple closed curves on S, a ≤ t ≤ b, and
if X never equals zero at points of Ct, show that the net angular turning
of X along Ct is independent of t. (This is a case of a previous exercise
stating that a continuous integer-valued function of t is constant.)

(d) Imagine the following continuous family of simple closed curves Ct. For
t = 0, C0 is the Arctic Circle. For 0 ≤ t ≤ 1/2, the latitude of Ct

decreases while its circumference increases as it oozes downward, becomes
the Equator, and then grows smaller until it becomes the Antarctic Circle
when t = 1/2. For 1/2 ≤ t ≤ 1, Ct maintains its size and shape, but its new
center, the South Pole, slides up the Greenwich Meridian until at t = 1,
Ct regains its original arctic position. See Figure 135. Its orientation has
reversed. Orient the Arctic Circle C0 positively and choose an orientation
on each Ct that depends continuously on t. To reach a contradiction,
suppose that X has no zero on S.

(i) Why is the total angular turning of X along C0 equal to −2π?.

(ii) Why is it +2π on C1?

(iii) Why is this a contradiction to (c) unless X has a zero somewhere?

(iv) Conclude that you have proved the Hairy Ball Theorem.
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Figure 135 A deformation of the Arctic Circle that reverses its orientation.



6
Lebesgue Theory

This chapter presents a geometric theory of Lebesgue measure and integration. In

calculus you certainly learned that the integral is the area under the curve. With

a good definition of area that is the point of view I advance here. Deriving the

basic theory of Lebesgue integration then becomes a matter of inspecting the right

picture. See Appendix E for the geometric relation between Riemann integration and

Lebesgue integration.

Throughout the chapter definitions and theorems are stated in Rn but proved in

R2. Multidimensionality can complicate a proof’s notation but never its logic.

1 Outer Measure
How should you measure the length of a subset of the line? If the set to be measured

is simple, so is the answer. The length of the interval (a, b) is b − a. But what is

the length of the set of rational numbers? of the Cantor set? As is often the case in

analysis we proceed by inequalities and limits. In fact one might distinguish the fields

of algebra and analysis solely according to their use of equalities versus inequalities.

Definition The length of an interval I = (a, b) is b − a. It is denoted |I|. The

Lebesgue outer measure of a set A ⊂ R is

m∗A = inf

{∑
k

|Ik| : {Ik} is a covering of A by open intervals

}
.
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Tacitly we assume that the covering is countable; the series
∑

k |Ik| is its total

length. (Recall that “countable” means either finite or denumerable.) The outer

measure of A is the infimum of the total lengths of all possible coverings {Ik} of A

by open intervals. If every series
∑

k |Ik| diverges then by definition m∗A = ∞.

Outer measure is defined for every A ⊂ R. It measures A from the outside as do

calipers. A dual approach measures A from the inside. It is called inner measure,

is denoted m∗A, and is discussed in Section 4.

Three properties of outer measure (the “axioms of outer measure”) are easy to

check.

1 Theorem (a) The outer measure of the empty set is 0, m∗∅ = 0.

(b) If A ⊂ B then m∗A ≤ m∗B.

(c) If A = >∞
n=1An then m∗A ≤

∞∑
n=1

m∗An.

Proof (b) and (c) are called monotonicity and countable subadditivity.

(a) This is obvious. Every interval covers the empty set.

(b) This is obvious. Every covering of B is also a covering of A.

(c) This uses the ε/2n trick. Given ε > 0 there exists for each n a covering {Ik,n :

k ∈ N} of An such that

∞∑
k=1

|Ik,n| < m∗An +
ε

2n
.

The collection {Ik,n : k, n ∈ N} covers A and

∑
k,n

|Ik,n| =
∞∑
n=1

∞∑
k=1

|Ik,n| ≤
∞∑
n=1

(m∗An +
ε

2n
) =

∞∑
n=1

m∗An + ε.

Thus the infimum of the total lengths of coverings of A by open intervals is ≤∑
nm

∗An + ε, and since ε > 0 is arbitrary the infimum is ≤ ∑nm
∗An, which is

what (c) asserts.

Next, suppose you have a set A in the plane and you want to measure its area.

Here is the natural way to do it.

Definition The area of a rectangle R = (a, b) × (c, d) is |R| = (b− a) · (d − c) and

the (planar) outer measure of A ⊂ R2 is the infimum of the total area of countable
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coverings of A by open rectangles Rk

m∗A = inf

{∑
k

|Rk| : {Rk} covers A

}
.

See Figure 136.

A

Figure 136 Rectangles that cover A

Because it is so natural, the preceding definition makes perfect sense in higher

dimensions too.

Definition An open box B ⊂ Rn is the Cartesian product n open intervals, B =∏
k Ik. Its n-dimensional volume |B| is the product of their lengths. The n-dimensional

outer measure of A ⊂ Rn is the infimum of the total volume of countable coverings

of A by open boxes Bk

m∗A = inf

{∑
k

|Bk| : {Bk} covers A

}
.

If need be, we decorate | | and m∗with subscripts “1”, “2”, or “n” to distinguish

the linear, planar, and n-dimensional quantities. As in the linear case we write |R| and
|B| only for open rectangles and boxes. The outer measure axioms – monotonicity,

countable subadditivity, and the outer measure of the empty set being zero – are true

for planar outer measure too. See also Exercise 2.
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Definition If Z ⊂ Rn has outer measure zero then it is a zero set.

2 Proposition Every subset of a zero set is a zero set. The countable union of zero

sets is a zero set. Each plane Pi(a) = {(x1, . . . , xn) ∈ Rn : xi = a} is a zero set in

Rn.

Proof Monotonicity implies m∗(Z ′) ≤ m∗Z = 0 whenever Z ′ is a subset of a zero

set Z. If m∗(Zk) = 0 for all k ∈ N and Z = >Zk then by Theorem1(c) we have

m∗Z ≤
∑
k

m∗Zk = 0.

We assume n = 2. The “plane” Pi(a) is the line {x = a} when i = 1 or {y = a} when

i = 2. Given ε > 0 we can cover the line P1(a) with rectangles Rk = Ik × Jk where

Ik = (a− ε/k2k+2, a+ ε/k2k+2) Jk = (−k, k).

The total area of these rectangles is ε so P1(a) is a zero set.

The next theorem states a property of outer measure that seems obvious.

3 Theorem The linear outer measure of [a, b] is b − a; the planar outer measure

[a, b]× [c, d] is (b− a) · (d− c); the n-dimensional outer measure of a closed box is the

product of its edge lengths.

Proof for n = 1 For each ε > 0 the open interval (a − ε, b + ε) covers [a, b]. Thus

m∗([a, b]) ≤ (b+ ε)− (a− ε) = b− a+2ε. By the ε-principle we get m∗([a, b]) ≤ b− a.

To get the reverse inequality we must show that if {Ii} is a countable open covering

of [a, b] then
∑ |Ii| ≥ b − a. Since [a, b] is compact it suffices to prove this for finite

open coverings {I1, . . . , IN}. Let Ii = (ai, bi). If N = 1 then (a1, b1) ⊃ [a, b] implies

a1 < a ≤ b < b1 so b− a < |I1|. That’s the base case of the induction.

Assume that for each open covering of a compact interval [c, d] byN open intervals

{Jj} we have d − c <
∑N

j=1 |Jj |, and let {Ii} be a covering of [a, b] by N + 1 open

intervals Ii = (ai, bi). We claim that
∑N+1

i=1 |Ii| > b−a. One of the intervals contains

a, say it is I1 = (a1, b1). If b1 ≥ b then I1 ⊃ [a, b) and again a1 < a ≤ b ≤ b1 implies

that
∑N+1

i=1 |Ii| ≥ |I1| = b1 − a1 > b− a. On the other hand, if b1 < b then

[a, b] = [a, b1) ∪ [b1, b]

INI N

ch ope∑N
j=1

We cla

) If b

Nd let {∑N+1
i=1

en I1 ⊃
ON

The linear outer measure of [a, b] is b − a; the planar outer measure

the n-dimensional outer measure of a closed box is the[a, b]× [c, d] is (b− a) · (d− c);

product of its edge lengths

s (b− a) · (d− c);
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and |I1| > b1−a. The compact interval [b1, b] is covered by I2, . . . , IN+1. By induction

we have
∑N+1

i=2 |Ii| > b− b1. Thus

N+1∑
i=1

|Ii| = |I1|+
N+1∑
i=2

|Ii| > (b1 − a) + (b− b1) = b− a

which completes the induction and the proof.

The preceding inductive proof does not carry over to rectangles. For a rectangle

has no left to right order. However, the following grid proof works for all n.

Grid proof for n = 2 Let R = [a, b] × [c, d] ⊂ R2. It is simple to see that m∗R ≤
(b − a) · (d − c). To check the reverse inequality, consider any countable covering of

R by open rectangles Rk. We must show that
∑ |Rk| ≥ (b − a) · (d − c). Since R

is compact the covering has a positive Lebesgue number λ. Partition [a, b] and [c, d]

into intervals Ii = (ai, bi) and Jj = (cj , dj) such that each rectangle Sij = Ii × Jj has

diameter < λ. Then
∑ |Sij | = |R|. Also, the union of the rectangles Sij contained in

any Rk forms a smaller rectangle R′
k ⊂ Rk. (Strictly speaking R′

k includes edges of

the Sij but they form a zero set.) See Figure 137.

Sij

R′
k

Rk

Ii

Jj

R

a b

c

d

Figure 137 Rk contains R′
k, heavily shaded. It consists of sixteen grid

rectangles Sij . Their total area is ≤ |Rk|.

Thus ∑
Sij⊂Rk

|Sij | ≤ |Rk| .

It follows that

(b− a) · (d− c) = |R| =
∑

|Sij | ≤
∑
k

∑
Sij⊂Rk

|Sij | =
∑
k

∣∣R′
k

∣∣ ≤
∑
k

|Rk| ,

which completes the proof.

INI
N

N+1∑
i=1

N+1∑
i=2

Grid proof for n = 2 Let R = [a, b] × [c, d] ⊂ R2. It is simple to see that m∗R∗ ≤
(b a) (d c). To check the reverse inequality, consider any countable covering of
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4 Corollary The formulas m∗I = b − a, m∗R = (b − a) · (d − c), and m∗B =∏
k m

∗(Ik) hold also for intervals, rectangles, and boxes that are open or partly open.

In particular, m∗I = |I|, m∗R = |R|, and m∗B = |B| for open intervals, rectangles,

and boxes.

Proof Let I be any interval with endpoints a < b and let ε > 0 be given. (We assume

ε < (b− a)/2 without loss of generality.) The closed intervals J = [a+ ε, b− ε] and

J ′ = [a− ε, b+ ε] sandwich I as J ⊂ I ⊂ J ′. By Theorem3 we have m∗J = b−a−2ε

and m∗J ′ = b− a+ 2ε. Thus

m∗J ≤ m∗I ≤ m∗J ′

‖ ‖
b− a− 2ε ≤ b− a ≤ b− a+ 2ε.

Then m∗I and b− a are sandwiched between b− a− 2ε and b− a+ 2ε for all ε > 0,

which implies the two constants m∗I and b − a are equal. The sandwich method

works equally well for rectangles and boxes.

2 Measurability
If A and B are subsets of disjoint intervals in R it is easy to show that

m∗(A � B) = m∗A+m∗B.

But what if A and B are merely disjoint? Is the formula still true? The answer

is “yes” if the sets have an additional property called measurability, and “no” in

general as is shown in Appendix D. Measurability is the rule and nonmeasurability

the exception. The sets you meet in analysis – open sets, closed sets, their unions,

differences, etc. – all are measurable. See Section 4.

Definition A set E ⊂ R is (Lebesgue) measurable if the division E|Ec of R is so

“clean” that for each “test set” X ⊂ R we have

(1) m∗X = m∗(X ∩E) + m∗(X ∩Ec).

The definition of measurability in higher dimensions is analogous. A set E ⊂ Rn is

measurable if E|Ec divides each X ⊂ Rn so cleanly that (1) is true for n-dimensional

outer measure.

b− a

b− a
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We denote by M = M(Rn) the collection of all Lebesgue measurable subsets of

Rn. If E is measurable its Lebesgue measure is m∗E, which we write as mE,

dropping the asterisk to emphasize the measurability of E.

Which sets are measurable? It is obvious that the empty set is measurable. It

is also obvious that if a set is measurable then so is its complement, since E|Ec and

Ec|E divide a test set X in the same way.

In the rest of this section we analyze measurability in the abstract. For the basic

facts about measurability have nothing to do with R or Rn. They hold for any

“abstract outer measure.”

Definition Let M be any set. The collection of all subsets of M is denoted as 2M .

An abstract outer measure on M is a function ω : 2M → [0,∞] that satisfies

the three axioms of outer measure: ω(∅) = 0, ω is monotone, and ω is countably

subadditive. A set E ⊂ M is measurable with respect to ω if E|Ec is so clean that

for each test set X ⊂ M we have

ωX = ω(X ∩ E) + ω(X ∩ Ec).

Example Given any set M there are two trivial outer measures on M . Counting

outer measure assigns to a finite set S ⊂ M its cardinality and assigns ∞ to every

infinite set. The zero/infinity measure assigns outer measure zero to the empty set and

∞ to every other set. All sets are measurable with respect to these outer measures.

See Exercise 10.

Example A less trivial outer measure weights Lebesgue outer measure. One sets

ωI = e−c2 |I|, where c is the midpoint of the interval I, and then defines the outer

measure of A ⊂ R to be the infimum of the total ω-area of countable interval coverings

of A. Other weighting functions can be used.

5 Theorem The collection M of measurable sets with respect to any outer measure

on any set M is a σ-algebra and the outer measure restricted to this σ-algebra is

countably additive. All zero sets are measurable and have no effect on measurability.

In particular Lebesgue measure has these properties.

A σ-algebra is a collection of sets that includes the empty set, is closed under

complement, and is closed under countable union. Countable additivity of ω means

that if E1, E2, . . . are measurable with respect to ω then

E = |
i
Ei ⇒ ωE =

∑
i

ωEi.
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Proof LetM denote the collection of measurable sets with respect to the outer mea-

sure ω on M . First we deal with zero sets, sets for which ωZ = 0. By monotonicity,

if Z is a zero set and X is a test set then

ωX ≤ ω(X ∩ Z) + ω(X ∩ Zc) = 0 + ω(X ∩ Zc) ≤ ωX

implies Z is measurable. Likewise, if E|Ec divides X cleanly then the same is true

for (E ∪Z)|(E ∪Z)c and (E�Z)|(E�Z)c. That is, Z has no effect on measurability.

To check that M is a σ-algebra we must show that it contains the empty set, is

closed under complements, and is closed under countable union. By the definition of

outer measure the empty set is a zero set so it is measurable, ∅ ∈M. Also, since E|Ec

divides a test set X in the same way that Ec|E does,M is closed under complements.

To check that M is closed under countable union takes four preliminary steps:

(a) M is closed under differences.

(b) M is closed under finite union.

(c) ω is finitely additive on M.

(d) ω satisfies a special countable addition formula.

(a) For measurable sets E1, E2, and a test set X, draw the Venn diagram in

Figure 138 where X is represented as a disc. To check measurability of E1
� E2 we

must verify the equation

2 + 134 = 1234

where 2 = ω(X ∩ (E1
� E2)), 134 = ω(X ∩ (E1

�E2)
c), 1234 = ωX, etc. Since E1

divides any set cleanly, 134 = 1+34, and since E2 divides any set cleanly, 34 = 3+4.

Thus

2 + 134 = 2 + 1 + 3 + 4 = 1 + 2 + 3 + 4.

For the same reason 1234 = 12 + 34 = 1 + 2 + 3 + 4 which completes the proof of

(a).

(b) Suppose that E1, E2 are measurable and E = E1 ∪ E2. Since Ec = Ec
1
�E2,

(a) implies that Ec ∈ M and thus E ∈ M. For more than two sets, induction shows

that if E1, . . . , En ∈M then E1 ∪ . . . ∪ En ∈M.

(c) If E1, E2 ∈M are disjoint then E1 divides E = E1 � E2 cleanly, so

ωE = ω(E ∩ E1) + ω(E ∩ Ec
1) = ωE1 + ωE2,

which is additivity for pairs of measurable sets. For more than two measurable sets,

induction implies that ω is finitely additive on M; i.e., if E1, . . . , En ∈M then

E =
n

|
i=1

Ei ⇒ ωE =

n∑
i=1

ωEi.

)c

ω(E ∩ Ec
1)
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Figure 138 The picture that proves M is closed under differences.

In particular, zero sets have no effect on measure: m(E ∪ Z) = mE = m(E�Z).

(d) Given a test set X ⊂ M and a countable disjoint union of measurable sets

E = |Ei we claim that

ωX =
∞∑
i=1

ω(X ∩ Ei) + ω(X ∩ Ec).(2)

(Taking X = E, (2) implies countable additivity of measurable sets, ωE =
∑

ω(Ei),

but does not imply measurability of E.) (b) implies that the finite union F = |k
i=1Ei

is measurable so it divides X cleanly: ωX = ω(X ∩ F ) + ω(X ∩ F c). Since F ⊂ E,

we have F c ⊃ Ec, which gives

ωX ≥ ω(X ∩ F ) + ω(X ∩ Ec).

The individual clean divisions by the Ei imply ω(X ∩ F ) =
∑k

i=1 ω(X ∩ Ei). Thus

ωX ≥
k∑

i=1

ω(X ∩ Ei) + ω(X ∩ Ec).

In particular, zero sets have no effect on measure:ffff m(E ∪ Z) = mE = m(E�Z).

(d) Given a test set X ⊂ M and a countable disjoint union of measurable sets(d) G X M d bl d f bl

E = |EiEE we claim that= |EiE we claim that

ωX =
∑

ω(X ∩ EiEE ) + ω(X ∩ Ec).(2)

∞

i=1

(Taking X = E, (2) implies countable additivity of measurable sets, ωE =
∑

ω(EiEE ),( ( )
∑

( )

but does not imply measurability of E.) (b) implies that the finite union F = |k
i=1EiEE

is measurable so it divides X cleanly: ωX = ω(X ∩ F ) + ω(X ∩ F ). Since F ⊂ E,is measurable so it divides X cleanly: ωX = ω(X ∩ F ) + ω(X ∩ F c) Since F ⊂ E
i 1

i bl it di id X l l X (X ∩ F ) + (X ∩ F c) Si F E

we have F ⊃ E , which giveswe have F c ⊃ Ec which gives

ωX ≥ ω(X ∩ F ) + ω(X ∩ Ec).

The individual clean divisions by the EiEE imply ω(X ∩ F ) =
∑k

i=1 ω(X ∩ EiEE ). Thus

∑∑k∑
i=1

ωXX (X ∩ EiEE ) + ω(X ∩ Ec).(X E ) (X Ec)ω≥≥
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Since the constant ωX dominates every partial sum, it dominates the whole series:

ωX ≥
∞∑
i=0

ω(X ∩ Ei) + ω(X ∩ Ec).

The reverse inequality is always true by subadditivity of ω, so we get equality, which

is the special additivity formula (2).

It remains to show that the countable union of measurable sets E = >Ei is

measurable. Since E can be re-expressed as a countable disjoint union of measurable

sets E′
i = Ei

� (E1 ∪ · · · ∪ Ei−1), it’s enough to check that E = |Ei is measurable.

Applying (2) to the test set Y = X ∩ E gives

ω(X ∩ E) =
∑

ω(X ∩ E ∩ Ei) + ω(X ∩ E ∩ Ec) =
∑

ω(X ∩ Ei).

Substituting this into (2) itself gives measurability of E and completes the proof that

M is a σ-algebra.

From countable additivity we deduce a very useful fact about measures. It applies

to any outer measure ω, in particular to Lebesgue outer measure.

6 Measure Continuity Theorem If {Ek} and {Fk} are sequences of measurable

sets then

upward measure continuity Ek ↑ E ⇒ ωEk ↑ ωE

downward measure continuity Fk ↓ F and ωF1 < ∞ ⇒ ωFk ↓ ωF.

Proof The notation Ek ↑ E means that E1 ⊂ E2 ⊂ . . . and E = >Ek. Write E

disjointly as E = |E′
k where E′

k = Ek
� (E1 ∪ . . . ∪ Ek−1). Countable additivity for

measurable sets gives

ωE =

∞∑
n=1

ωE′
n.

Also, the kth partial sum of the series equals ωEk, so ωEk converges upward to ωE.

The notation Fk ↓ F means that F1 ⊃ F2 ⊃ . . . and F = <Fk. Write F1 disjointly

as

F1 =

( ∞
|
k=1

F ′
k

)
� F

where F ′
k = Fk

� Fk+1. Then Fk = |n≥k F
′
n � F . The countable additivity formula

for measurable sets

ωF1 = ωF +

∞∑
n=1

ωF ′
n

Since the constant ωX dominates every partial sum, it dominates the whole series:

ωX ≥
∞∑

ω(X ∩ EiEE ) + ω(X ∩ Ec).
i=0

The reverse inequality is always true by subadditivity of ω, so we get equality, whichi l t b b dditi it f

is the special additivity formula (2).

It remains to show that the countable union of measurable sets E = >EiEE is

measurable. Since E can be re-expressed as a countable disjoint union of measurablebl Si E b d t bl di j i t i f bl

sets E′
iE = EiEE � (E1 ∪ · · · ∪ EiEE −1), it’s enough to check that E = |EiEE is measurable.

Applying (2) to the test set Y = X ∩ E givesApplying (2) to the test set Y = X ∩ E gives

ω(X ∩ E) =
∑

ω(X ∩ E ∩ EiEE ) + ω(X ∩ E ∩ Ec) =
∑

ω(X ∩ EiEE ).
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Substituting this into (2) itself gives measurability of and completes the proof thattuting this into (2) itself gives measurability of E and completes the pro

M is a σ-algebra.
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implies the series converges to a finite limit, so its tails converge to zero:

ωFk =

∞∑
n=k

ωF ′
n + ωF

converges downward to ωF as k → ∞.

3 Meseomorphism
A measure space is a triple (M,M, μ) where M is a set, M is a σ-algebra of subsets

of M , and μ is a measure on M. That is, μ :M→ [0,∞] has the three properties

(a) μ(∅) = 0

(b) μ is monotone: A ⊂ B implies μA ≤ μB.

(c) μ is countably additive on M : E = |Ei implies μE =
∑

μ(Ei).

As proved in the previous section, every abstract outer measure ω on a set M

restricts to a measure on the σ-algebra of ω-measurable setsM =M(ω). In particular,

this is true for outer Lebesgue measure on Rn, the measure space being the triple

(Rn,M,m) where M is the σ-algebra of Lebesgue measurable subsets of Rn.

An isomorphism preserves algebraic structure. A homeomorphism preserves topo-

logical structure. A diffeomorphism preserves smooth structure. A meseomorphism

preserves measure structure. More precisely, if (M,M, μ) and (M ′,M′, μ′) are mea-

sure spaces then a mapping T : M → M ′ is a

mesemorphism if T sends each E ∈M to TE ∈M′.
meseomorphism if T is a bijection, and both T and T−1 are mesemorphisms.

mesisometry if T is a meseomorphism and μ′(TE) = μE for each E ∈ M.

(Other terms for mesisometry are measure preserving transformation and

isomorphism of measure spaces.)

7 Theorem If a bijection increases outer measure by at most a factor t and its

inverse increases outer measure by at most a factor 1/t then it is a meseomorphism.

If t = 1 then it is a mesisometry.

Proof Let T : M → M ′ be the bijection where M and M ′ are equipped with outer

measures ω and ω′. For each X ⊂ M we have

ωX = ω(T−1 ◦ T (X)) ≤ t−1 ω′(TX) ≤ t−1t ωX = ωX.

Thus, if X ⊂ M and X ′ ⊂ M ′ then ω′(TX) = t ωX and ωT−1(X ′) = t−1ω′(X ′).

3 Meseomorphism
A measure space is a triple (M,M, μ) where M is a set, M is a σ-algebra of subsets

of M , and μ is a measure on M. That is, μ :M→ [0,∞] has the three properties[ ]

(a) μ(∅) = 0( ) (∅)
(b) μ is monotone: A ⊂ B implies μA ≤ μB.
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(Rn,M,m) where M is the σ-algebra of Lebesgue measurable subsets of Rn.

An isomorphism preserves algebraic structure. A homeomorphism preserves topo-

logical structure. A diffeomorphism preserves smooth structure. A meseomorphismffff

preserves measure structure. More precisely, if (M,M, μ) and (M ′,M′, μ′) are mea-

sure spaces then a mapping T : M → M ′ is a′

mesemorphism if T sends each E ∈M to TE ∈M′.
meseomorphism if T is a bijection, and both T and T−1 are mesemorphisms.meseomorphism if T is a bijection and both T and T

mesisometry if T is a meseomorphism and μ′(TE) = μE for each E ∈ M.

(Other terms for mesisometry are measure preserving transformation and(Other terms for mesisometry are measure preserving transformation and

isomorphism of measure spaces.)

7 Theorem If a bijection increases outer measure by at most a factor t and its
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Proof Let T : M → M ′ be the bijection where M and M ′ are equipped with outer
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Thus, if X ⊂ M and X ′ ⊂ M ′ then ω′(TX) = t ωX and ωT−1(X ′) = t−1ω′(X ′).
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If E ⊂ M is measurable and X ′ be a test set in M ′ then X = T−1(X ′) is a test set

ω′(X ′) = t ωX = t (ω(X ∩ E) + ω(X ∩ Ec))

= t (t−1ω′(T (X ∩ E)) + t−1ω′(T (X ∩ Ec))

= ω′(X ′ ∩ TE) + ω′(X ′ ∩ T (Ec))

shows TE is measurable. Likewise for T−1, so T is a meseomorphism. If t = 1 then

T preserves measure: it is a mesisometry.

These concepts may help you organize your thoughts while reading the next sec-

tions, but I think you will find Exercise 19 quite remarkable. One dimensional and

n-dimensional Lebesgue measure are mesisometric. A meseomorphism is no respecter

of topology. The more pertinent questions are – what do measurable subsets of Rn

look like and how do they behave with respect to transformations of Rn, not what

does the measure algebra look like. In the next section we will show that measurable

sets are not much different from open sets, and measurability is invariant under many

(but not all) continuous transformations of Rn.

4 Regularity

How is topology related to measure: which subsets of Euclidean space are measurable?

8 Theorem Open sets and closed sets in Rn are Lebesgue measurable.

9 Proposition The half-spaces [a,∞)×Rn−1 and (a,∞)×Rn−1 are measurable in

Rn. So are all open boxes.

Proof Without loss of generality we assume n = 2. Let H = [a,∞) × R. We must

show that H divides each test set X cleanly: m∗X = m∗(X∩H)+m∗(X∩Hc). Since

a× R is a zero set in R2 and zero sets have no effect on outer measure (Theorem5)

we may assume that X ∩ (a× R) = ∅. Set

X− = {(x, y) ∈ X : x < a} X+ = {(x, y) ∈ X : x > a}.

Then X = X− �X+. Given ε > 0 there is a countable covering R by rectangles R

with
∑
R |R| ≤ m∗X + ε. Let R± be the collection of rectangles R± = {(x, y) ∈ R :

If E ⊂ M is measurable and X ′ be a test set in M ′ then X = T−1(X ′) is a test set

ω′(X ′) = t ωX = t (ω(X ∩ E) + ω(X ∩ Ec))
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a× R is a zero set in R and zero sets have no effect on outer measure (Theorem5)ffffa× R is a zero set in R2 and zero sets have no effect on outer measure (Theorem5)ffff
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. Sincein M T multiplies outer measure by and is measurable the clean divisionEt
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R ∈ R and ± (x− a) > 0}. Then R± covers X± and

m∗X ≤ m∗(X ∩H) + m∗(X ∩Hc)

≤
∑
R+

∣∣R+
∣∣ +

∑
R−

∣∣R−∣∣ =
∑
R

|R| ≤ m∗X + ε.

Since ε > 0 is arbitrary this gives measurability of H = [a,∞) × R. Since the line

x = a is a planar zero set (a,∞)×R is also measurable. The vertical strip (a, b)×R

is measurable since it is the intersection

(a,∞)× R ∩ (−∞, b)× R

and (−∞, b) × R = ([b,∞) × R)c. Interchanging the coordinates shows that the

horizontal strip R× (c, d) is also measurable. The rectangle R = (a, b)× (c, d) is the

intersection of the strips and is therefore measurable.

Proof of Theorem8 Let U be an open subset of Rn. It is the countable union

of open boxes.† Since M(Rn) is a σ-algebra and a σ-algebra is closed with respect

to countable unions, U is measurable. Since a σ-algebra is closed with respect to

complements, every closed set in Rn is also measurable.

10 Corollary The Lebesgue measure of a closed or partially box is the volume of its

interior. The boundary of a box is a zero set.

Proof This is just Proposition 2, Theorem3, and Proposition 9.

Sets that are slightly more general than open sets and closed sets arise naturally.

A countable intersection of open sets is called a Gδ-set and a countable union of

closed sets is an Fσ-set. (“δ” stands for the German word durchschnitt and “σ”

stands for “sum.”) By DeMorgan’s laws, the complement of a Gδ-set is an Fσ-set

and conversely. Clearly a homeomorphism sends Gδ-sets to Gδ-sets and Fσ-sets to

Fσ-sets. Since the σ-algebra of measurable sets contains the open sets and the closed

sets it also contains the Gδ-sets and the Fσ-sets.

11 Theorem Lebesgue measure is regular in the sense that each measurable set E

can be sandwiched between an Fσ-set and a Gδ-set, F ⊂ E ⊂ G, such that G� F is

a zero set. Conversely, if there is such an F ⊂ E ⊂ G then E is measurable.

†This is a fact about separable metric spaces. Apply Exercises 127 and 131 from Chapter 2 to

Rn equipped with the maximum coordinate metric, d(x, y) = maxi |xi − yi|.
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Proof This is just Proposition 2, Theorem3, and Proposition 9.
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Proof We take E ⊂ R2. We assume first that E is bounded and choose a large

rectangle R that contains E. We write Ec = R�E. Measurability implies

mR = mE +m(Ec).

There are decreasing sequences of open sets Un and Vn such that Un ⊃ E, Vn ⊃
Ec, m(Un) → mE, and m(Vn) → m(Ec) as n → ∞. Measurability of E implies

m(Un
� E) → 0 and m(Vn

� Ec) → 0. The complements Kn = R� Vn form an

increasing sequence of closed subsets of E and

mKn = mR−mVn → mR−m(Ec) = mE.

Thus F = >Kn is an Fσ-set contained in E with mF = mE. Similarly, G = <Un

is a Gδ-set that contains E and has mG = mE. Because all the measures are finite,

the equality mF = mE = mG implies that m(G� F ) = 0.

Conversely, if F is an Fσ-set, G is a Gδ-set, F ⊂ E ⊂ G, and m(G� F ) = 0 then

E is measurable since E = F ∪ Z, where Z = E ∩ (G� F ) is a zero set.

The unbounded case is left as Exercise 6.

12 Corollary A bounded subset E ⊂ Rn is measurable if and only if it has a regu-

larity sandwich F ⊂ E ⊂ G such that F is an Fσ-set, G is a Gδ-set, and mF = mG.

Proof If E is measurable, bounded or not, then Theorem11 implies there is a regu-

larity sandwich with mF = mE = mG. Conversely, if there is a regularity sandwich

with mF = mG then boundedness of E implies mF < ∞. Measurability of F and G

imply m(G� F ) = mG−mF = 0 and Theorem11 then implies E is measurable.

13 Corollary Modulo zero sets, Lebesgue measurable sets are Fσ-sets and Gδ-sets.

Proof E = F ∪ Z = G�Z ′ for the zero sets Z = E� F and Z ′ = G�E.

14 Corollary A Lipeomorphism h : Rn → Rn is a meseomorphism.

Proof Homeomorphisms sendGδ-sets toGδ-sets and Fσ-sets to Fσ-sets. By Lemma 35

in Chapter 5, since h is Lipschitz it sends zero sets to zero sets. Thus h sends regu-

larity sandwiches to regularity sandwiches:

F ⊂ E ⊂ G −→ hF ⊂ hE ⊂ hG,

which implies h sends measurable sets to measurable sets. The same holds for h−1.

Proof We take E ⊂ R2. We assume first that E is bounded and choose a large

rectangle R that contains E. We write E = R�E. Measurability impliesrectangle R that contains E We write Ec = R�E Measurability implies
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E is measurable since E = F ∪ Z, where Z = E ∩ (G� F ) is a zero set.s measurable since E = F ∪ Z where Z = E ∩ (G� F ) is a zero set

The unbounded case is left as Exercise 6.h b d d l f

12 Corollary A bounded subset E ⊂ Rn is measurable if and only if it has a regu-

larity sandwich F ⊂ E ⊂ G such that F is an FσFF -set, G is a Gδ-set, and mF = mG.larity sandwich F ⊂ E ⊂ G such that F is an F -set G is a Gδ-set and mF = mG

Proof If E is measurable, bounded or not, then Theorem11 implies there is a regu-

larity sandwich with mF = mE = mG. Conversely, if there is a regularity sandwich

with mF = mG then boundedness of E implies mF < ∞. Measurability of F and G

imply m(G� F ) = mG−mF = 0 and Theorem11 then implies E is measurable.imply m(G� F ) = mG−mF = 0 and Theorem11 then implies E is measurable
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which implies h sends measurable sets to measurable sets. The same holds for h−1.
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Affine Motions

An affine motion of Rn is an invertible linear transformation T followed by a

translation. Translation does not affect Lebesgue measure, so we just deal with the

linear map T .

15 Theorem An affine motion T : Rn → Rn is a meseomorphism. It multiplies

measure by |detT |.

16 Lemma Every open set in n-space is a countable disjoint union of open cubes

plus a zero set.

Proof Take n = 2 and let U ⊂ R2 be open. Accept all the open unit dyadic

squares that lie in U , and reject the rest. Bisect every rejected square into four equal

subsquares. Accept the interiors of all these subsquares that lie in U , and reject the

rest. Proceed inductively, bisecting the rejected squares, accepting the interiors of

the resulting subsquares that lie in U , and rejecting the rest. In this way U is shown

to be the countable union of disjoint, accepted, open dyadic squares, together with

the points rejected at every step in the construction. See Figure 139. Rejected points

Figure 139 An open set is a countable union of dyadic cubes.

of U lie on horizontal or vertical dyadic lines. There are countably many such lines,

each is a zero set, and so the rejected points in U form a zero set.
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17 Lemma Every open set is a countable disjoint union of balls plus a zero set.

Proof Again, take n = 2, and let U ⊂ R2 be an open set. By Lemma 16, U is a

countable disjoint union of open squares plus a zero set. It therefore suffices to check

that every open square S is a countable disjoint union of discs plus a zero set. As

shown in Figure 140, S contains an open disc Δ whose area is greater than half the

area of the square, m(Δ) > m(S)/2.

B

C

sC

(s, s)

(1, 1)

Figure 140 B is the largest ball in C and sC is the largest cube in B.

The difference U1 = S� Δ is an open subset of S with m(U1) < m(S)/2. By

Lemma 16, U1 is the disjoint countable union of small open squares Si plus a zero

set. Each Si contains a small open disc Δi whose area is greater than half the area of

Si. The total area of just finitely many of the discs Δi is greater than half the total

area of all the squares Si. Thus, for some k,

U2 = S� (Δ ∪
k

>
i=1

Δi)

is an open subset of U1 and m(U2) < m(U1)/2 < m(S)/4. See Figure 141.

Repeating this process gives a nested sequence of open sets S ⊃ U1 ⊃ U2 ⊃
U3 ⊃ . . . . Each difference U�−1

�U� contains finitely many disjoint open discs whose

total area is greater than half m(U�). Call these discs “accepted at stage �.” Thus
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countable disjoint union of open squares plus a zero set. It therefore suffices to checkcountable disjoint union of open squares plus a zero set It therefore suffices to check

that every open square S is a countable disjoint union of discs plus a zero set. As

shown in Figure 140, S contains an open disc Δ whose area is greater than half the

area of the square, m(Δ) > m(S)/2.

(1, 1)

CC

BB

sCC
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Figure 140 B is the largest ball in C and sC is the largest cube in B.

The differenceffff U1UU = S� Δ is an open subset of S with m(U1UU ) < m(S)/2. By

Lemma 16, U1UU is the disjoint countable union of small open squares SiSS plus a zero

set. Each SiSS contains a small open disc Δi whose area is greater than half the area of

SiSS . The total area of just finitely many of the discs Δi is greater than half the total

area of all the squares SiSS . Thus, for some k,

k

U2UU = S� (Δ ∪ > Δi)
k

>
i=1

is an open subset of U1UU and m(U2UU ) < m(U1UU )/2 < m(S)/4. See Figure 141.

Repeating this process gives a nested sequence of open sets S ⊃ U1UU ⊃ U2UU ⊃
U3UU ⊃ . . . . Each differenceffff U�UU −1

�U�UU contains finitely many disjoint open discs whose⊃ Each differenceffff U�U 1
�U�U contains finitely many disjoint open discs whose

total area is greater than half m(U�UU ). Call these discs accepted at stage �. Thustotal area is greater than half m(U�U ) Call these discs “accepted at stage � ” Thus
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Figure 141 Each disc occupies greater than half the area of its square.

m(U�) ≤ m(S)/2� → 0 as � → ∞, and by countable additivity mU is the total area

of all the accepted discs.

In the n-dimensional case, n ≥ 3, “half” is replaced by 1/nn/2. The case n = 1 is

trivial: cubes are balls.

Proof of Theorem15 T is Lipschitz with Lipschitz constant ‖T‖. Its inverse has

Lipschitz constant
∥∥T−1

∥∥, so T is a Lipeomorphism. By Corollary 14, T is a meseo-

morphism, and it remains to check m(TE) = |detT |mE.

First, we assume that T is given by a diagonal matrix D with diagonal entries

λ1, . . . , λn. Its determinant is d = λ1 · · ·λn. Clearly

|TR| = |d| |R|
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for all open rectangles R. Let E ⊂ Rn be measurable and let ε > 0 be given. There

exists a covering of E by open rectangles Rk with total volume

∑
|Rk| ≤ mE + ε.

Then {T (Rk)} is a covering of TE by open rectangles with total volume |d|∑ |Rk|,
and it follows that m(TE) ≤ |d|mE + ε. Since ε is arbitrary, m(TE) ≤ |d|mE.

The same reasoning applies to T−1, and detT−1 = d−1, so mE ≤ ∣∣d−1
∣∣m(TE).

Together, these two inequalities become m(TE) ≤ |d|mE ≤ m(TE), completing the

proof of the theorem when T is diagonal.

Next, we assume T is orthogonal and R is an open cube. Lemmas 16 and 17 imply

that R is a countable disjoint union of balls Bi plus a zero set Z. The orthogonal

transformation T sends a ball B of radius r and center c to a ball TB of radius r

and center T (c). For orthogonal transformations are isometries. That is, TB is a

translate of B, so m(TB) = mB. Since TZ is a zero set, m(TR) = mR for all open

cubes R. As in the diagonal case this implies m(TE) = mE. Since the determinant

of an orthogonal transformation is ±1, this completes the proof of the theorem when

T is orthogonal.

Finally, we use Polar Form (AppendixD in Chapter 5) to write

T = O1DO2

where O1 and O2 are orthogonal and D is diagonal. Since |detT | = |detD|, the proof
is complete.

18 Corollary Rigid motions of Rn preserve Lebesgue measure. They are meseome-

tries.

Proof A rigid motion is an orthogonal transformation followed by a translation.

Inner Measure, Hulls, and Kernels

Consider any bounded A ⊂ Rn, measurable or not. m∗A is the infimum of the

measure of open sets that contain A. The infimum is achieved by a Gδ-set that

contains A. We call it a hull of A and denote it as HA. It is unique up to a zero

set. Dually, the inner measure of A is the supremum of the measure of closed sets

it contains. The supremum is achieved by an Fσ-set contained in A. We call it a

for all open rectangles R. Let E ⊂ Rn be measurable and let ε > 0 be given. There

exists a covering of E by open rectangles Rk with total volumeexists a covering of E by open rectangles Rk with total volume

∑
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Then {T (Rk)} is a covering of TE by open rectangles with total volume |d|∑ |Rk|,TE by open rectangle
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tries.
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measure of open sets that contain A. The infimum is achieved by a Gδ-set thatasure of open sets that contain A The infimum is achieved by a Gδ-set that
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it contains. The supremum is achieved by an FσFF -set contained in A. We call it a
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kernel of A and denote it as KA. It is unique up to a zero set.† We denote the inner

measure of A as m∗A. It equals m(KA). Clearly m∗A ≤ m∗A and m∗ measures A

from the inside. Also, m∗ is monotone: A ⊂ B implies m∗A ≤ m∗B. The hull and

kernel are measure theoretic analogs of closure and interior in topology.

Definition The measure theoretic boundary of A is ∂m(A) = HA
�KA.

Remark Theorem11 implies that a bounded subset of Rn is measurable if and only

if its inner and outer measures are equal, i.e., m(∂m(A)) = 0. Lebesgue took this as

his definition of measurability. He said a bounded set is measurable if its inner and

outer measures are equal, and an unbounded set is measurable if it is a countable

union of bounded measurable sets. In contrast, the current definition which uses

cleanness and test sets is due to Carathéodory. It is easier to use (there are fewer

complements to consider), unboundedness has no effect on it, and it generalizes more

easily to abstract measure spaces.

19 Theorem If A ⊂ B ⊂ Rn and B is a box then A is measurable if and only if it

divides B cleanly.

Remark The theorem is also valid for a bounded measurable set B instead of a box,

but it’s most useful for boxes. It means you don’t need to check clean division of all

test sets, just clean division of one big box.

20 Lemma If A is contained in a box B then mB = m∗A+m∗(B�A).

Proof If K ⊂ A is closed then B�K is open and contains B� A. Measurability

implies

mB = mK +m(B�K).

Maximizing mK minimizes m(B�K) and vice versa.

Proof of Theorem19 Lemma20 implies

m∗A + m∗(B�A) = mB.

If A divides B cleanly then

m∗A+m∗(B�A) = mB.

Finiteness of these four quantities permits subtraction, so m∗A = m∗A and A is

measurable. The converse is obvious: a measurable set divides every test set cleanly.
†If A is unbounded we need to take a little more care. It is not enough to achieve the infimum or

supremum if they are ∞. Rather, we demand that HA is minimal in the sense that if H ⊃ A and is

measurable then HA
�H is a zero set. Similarly, we demand maximality of KA in the sense that if

K ⊂ A and is measurable then K�KA is a zero set. See Exercise 6.
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5 Products and Slices
Regularity of Lebesgue measure has a number of uses such as in Exercises 21, 22, 23,

73, and 69. Here are some more.

21 Measurable Product Theorem If A ⊂ Rn and B ⊂ Rk are measurable then

A×B is measurable and

m(A×B) = mA ·mB.

By convention 0 · ∞ = 0 = ∞ · 0.

22 Lemma If A and B are boxes then A×B is measurable and m(A×B) = mA·mB.

Proof A×B is a box and the product formula follows from Corollary 10.

23 Lemma If A or B is a zero set then so is A×B.

Proof We assume A,B ⊂ R and mA = 0. If ε > 0 and � ∈ N are given then we

cover A with open intervals Ii whose total length is so small that the total area of

the rectangles Ii × [−�, �] is < ε/2�. The union of all these rectangles covers A × R

and has measure < ε. Thus A× R is a zero set and so is its subset A×B.

24 Lemma If U and V are open then U×V is measurable and m(U×V ) = mU ·mV .

Proof We assume U, V ⊂ R. Since U×V is open it is measurable. Lemma16 implies

that U = |i Ii ∪ ZU and V = |j Jj ∪ ZV , where Ii and Jj are open intervals while

ZU and ZV are zero sets. Then

U × V = |
i,j

Ii × Jj ∪ Z

where Z = (ZU × V ) ∪ (U × ZV ) is a zero set by Lemma23. Since

(∑
i

m(Ii)

)⎛
⎝∑

j

m(Jj)

⎞
⎠ =

∑
i,j

m(Ii)m(Jj) =
∑
i,j

m(Ii × Jj)

we conclude that m(U × V ) = mU ·mV .

Proof of the Measurable Product Theorem We assume A,B ⊂ I are measur-

able where I is the unit interval. We claim that the hull of a product is the product

of the hulls and the kernel of a product is the product of the kernels. Since hulls are
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Gδ-sets their product is a Gδ-set and is therefore measurable. Similarly, the product

of kernels is measurable. Clearly

KA ×KB ⊂ A×B ⊂ HA ×HB

and (HA×HB)�(KA×KB) = (HA× (HB
�KB))∪ ((HA

�KA)×HB). Measurability

of A and B implies m(HA
�KA) = m(HB

�KB) = 0 so Lemma23 gives

m(KA ×KB) = m(HA ×HB).

Since A× B is sandwiched between two measurable sets of the same finite measure,

it is measurable and its measure equals their common value. That is,

m(KA ×KB) = m(A×B) = m(HA ×HB).(3)

Let Un and Vn be sequences of open sets in I converging down to HA and HB.

Then Un×Vn is a sequence of open sets in I2 converging down toHA×HB. Downward

measure continuity implies m(Un × Vn) → m(HA × HB). By Lemma24 we have

m(Un × Vn) = m(Un) ·m(Vn). Since m(Un) → mA and m(Vn) → mB we conclude

from (3) that m(A×B) = mA ·mB.

Recall from Chapter 5 that the slice of E ⊂ Rn × Rk at x ∈ Rn is the set

Ex = {y ∈ Rk : (x, y) ∈ E}.

Among other things, the next theorem lets us generalize the Measurable Product

Theorem to nonmeasurable sets. See Exercise 73.

25 Zero Slice Theorem If E ⊂ Rn × Rk is measurable then E is a zero set if and

only if almost every slice of E is a (slice) zero set.

26 Lemma If W ⊂ In is open and Xα = Xα(W ) = {x : m(Wx) > α} then

mW ≥ m(Xα(W )) · α.

Remark Think of the slices Wx with x ∈ Xα as “heavy.” The lemma means there

can’t be too many (in the measure theoretic sense) heavy slices.

Proof The slices of an open set are open and are therefore measurable. Fix any

x ∈ Xα. There is a compact set K(x) ⊂ Wx such that measure > α. For m(Wx) =

m∗(Wx). Since x × K(x) is a compact subset of W , there is a product open set

Gδ-sets their product is a Gδ-set and is therefore measurable. Similarly, the product

of kernels is measurable. Clearly

KAK ×KBK ⊂ A×B ⊂ HAH ×HBH
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Since A× B is sandwiched between two measurable sets of the same finite measure,
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Recall from Chapter 5 that the slice of E ⊂ Rn × Rk at x ∈ Rn is the set

ExE = {y ∈ Rk : (x, y) ∈ E}.

Among other things, the next theorem lets us generalize the Measurable Product

Theorem to nonmeasurable sets. See Exercise 73.

25 Zero Slice Theorem If E ⊂ Rn × Rk is measurable then E is a zero set if and

only if almost every slice of E is a (slice) zero set.only if almost every slice of E is a (slice) zero set

26 Lemma If W ⊂ In is open and Xα = Xα(W ) = {x : m(WxWW ) > α} then

mW ≥ m(Xα(W )) · α.

Remark Think of the slices WxWW with x ∈ Xα as “heavy.” The lemma means there

can t be too many (in the measure theoretic sense) heavy slices.can’t be too many (in the measure theoretic sense) heavy slices

Proof The slices of an open set are open and are therefore measurable. Fix any

x ∈ Xα. There is a compact set K(x) ⊂ WxWW such that measure > α. For m(WxWW ) =

m∗(WxWW ). Since x × K(x) is a compact subset of W , there is a product open setm (W ) Since x × K(x) is a compact subset of W there is a product open set
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W (x) = U(x)× V (x) with W ⊃ W (x) ⊃ x×K(x). Each x′ ∈ U(x) has Wx′ ⊃ V (x),

which implies U(x) ⊂ Xα, so Xα = >x∈Xα
U(x) is open.

Let K ⊂ Xα be any compact set. The covering {U(x) : x ∈ Xα} of K reduces

to a finite subcovering {Ui}, 1 ≤ i ≤ N . As before, setting U ′
i = Ui

� (U1 ∪ . . . Ui−1)

gives a disjoint covering of K by measurable subsets of Xα. Thus

mW ≥ m(
N

|
i=1

U ′
i × Vi) =

N∑
i=1

m(U ′
i) ·m(Vi) >

N∑
i=1

m(U ′
i) · α ≥ mK · α.

Taking the supremum of mK over all compact K ⊂ Xα gives mW ≥ m∗(Xα) · α.
Since Xα is open, m∗(Xα) = m(Xα) and we get the asserted inequality.

Proof of the Zero Slice Theorem As above, it is no great loss of generality to

assume n = k = 1 and E is contained in the unit square.

We first assume that mE = 0 and prove that almost every slice of E is a zero set

mW < ε. Then Wx ⊃ Ex for all x and Xα(W ) ⊃ Xα(E) where

Xα(W ) = {x : m(Wx) > 0} Xα(E) = {x : m∗(Ex) > α}

Note that we use outer measure on Ex. For although mE = 0, some of its slices

can be nonmeasurable with respect to the slice measure. From Lemma 26 we have

ε ≥ mW ≥ m(Xα(W )) · α ≥ m∗(Xα(E)) · α. Holding α fixed and infimizing

over ε > 0 gives m∗(Xα(E)) = 0. Since X0(E) is the countable union of the zero

sets Xα(E) with 1/α ∈ N, we have m(X0(E)) = 0, which means exactly that almost

every slice of E is a zero set.

Conversely, we suppose E is measurable and m(Ex) = 0 for almost every x, and

seek to prove that mE = 0. Let Z = {x : Ex is not a zero set}. Z is a zero set.

The slices Ex for which Ex is not a zero set are contained in Z ×R which, as proved

above, is a zero set in R2. Then E� (Z ×R) is measurable, has the same measure as

E, and so it is no loss of generality to assume that every slice Ex is a zero set.

It suffices to show that the inner measure of E is zero. For measurability implies

m∗E = m∗E. (Here is where we use measurability of E.) We claim that every

compact K ⊂ E is a zero set. Let ε > 0 be given. The slice Kx is compact and

it has slice measure zero. Therefore it has an open neighborhood V (x) such that

m(V (x)) < ε. Compactness of K implies that for all x′ near x we have Kx′ ⊂ V (x).

For otherwise there is a sequence (xn, yn) in K with (xn, yn) → (x, y) and y /∈ Kx.
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We first assume that mE = 0 and prove that almost every slice of E is a zero set

mW < ε. Then WxWW ⊃ ExE for all x and Xα(W ) ⊃ Xα(E) wheremW < ε Then W ⊃ E for all x and X (W ) ⊃ X (E) where

Xα(W ) = {x : m(WxWW ) > 0} Xα(E) = {x : m∗(ExE ) > α}

Note that we use outer measure on ExE . For although mE = 0, some of its slices

can be nonmeasurable with respect to the slice measure. From Lemma 26 we have

ε ≥ mW ≥ m(Xα(W )) · α ≥ m∗(Xα(E)) · α. Holding α fixed and infimizing

p 6

over ε > 0 gives m (Xα(E)) = 0. Since X0(E) is the countable union of the zero

≥ ≥ ( α( )) ≥ ( α( )) g g

over ε > 0 gives m∗(X (E)) = 0 Since X0(E) is the countable union of the zero

sets Xα(E) with 1/α ∈ N, we have m(X0(E)) = 0, which means exactly that almostt X (E) ith 1/ N h (X (E)) 0 hi h tl th t l t

every slice of E is a zero set.every slice of E is a zero set

Conversely, we suppose E is measurable and m(ExE ) = 0 for almost every x, and

seek to prove that mE = 0. Let Z = {x : ExE is not a zero set}. Z is a zero set.

The slices ExE for which ExE is not a zero set are contained in Z ×R which, as provedThe slices E for which E is not a zero set are contained in Z ×R which as proved

above, is a zero set in R . Then E� (Z ×R) is measurable, has the same measure asabove is a zero set in R2 Then E� (Z ×R) is measurable has the same measure as

E, and so it is no loss of generality to assume that every slice ExE is a zero set.E and so it is no loss of generality to assume that every slice E is a zero set

It suffices to show that the inner measure of E is zero. For measurability implies

m∗E = m∗E∗ . (Here is where we use measurability of E.) We claim that every

It suffices to show that the inner measure of E is zero. For measurability implies

gcompact K ⊂ E is a zero set. Let ε > 0 be given. The slice KxKK is compact and

it has slice measure zero. Therefore it has an open neighborhood V (x) such thatit has slice measure zero Therefore it has an open neighborhood V (x) such that

m(V (x)) < ε. Compactness of K implies that for all x′ near x we have KxKK ′ ⊂ V (x).

( )

For otherwise there is a sequence (xn, yn) in K with (xn, yn) → (x, y) and y /∈// KxKK .For otherwise there is a sequence (x y ) in K with (x y ) → (x y) and y /∈// K

ε > W Iin the slice measure. Given 0 there is an open set such that ⊃ W ⊃ E and2
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U(x)

V (x)

V (x)

K KK

W

Figure 142 The open set V (x) contains the slice Kx and has small

measure. If x′ lies in a small enough neighborhood U(x) of x then the set

x′ ×Kx′ lies in W (x) = U(x)× V (x). These sets x′ ×Kx′ are shown in the

enlarged picture as vertical segments in K.

Closedness of K implies (x, y) ∈ K, so y ∈ Kx, a contradiction. Hence if U(x) is

small then for all x′ ∈ U(x) we have x′×Kx′ ⊂ W (x) = U(x)×V (x). See Figure 142.

The product neighborhoods U(x) × V (x) form an open covering of the compact

set K, and therefore the covering reduces to a finite subcovering, say {Ui × Vi} with

1 ≤ i ≤ N . The sets U ′
I = Ui

� (U1 ∪ . . . Ui−1) are disjoint and the sets U ′
i × Vi cover

K disjointly. Theorem 21 implies that

mK ≤
N∑
i=1

m(U ′
i × Vi) =

N∑
i=1

m(U ′
i) ·m(Vi) <

N∑
i=1

m(U ′
i) · ε ≤ ε,

so mK = 0 and m∗E = mE = 0.

Remark Measurability of E is a necessary condition in Theorem25. See Exercise 25.

V (x)

The product neighborhoods U(x) × V (x) form an open covering of the compact

set K, and therefore the covering reduces to a finite subcovering, say {UiUU × ViVV } withK and therefore the covering reduces to a finite subcovering say {UiU × ViVV } with

1 ≤ i ≤ N . The sets UU = UiUU � (U1U ∪ . . . UiUU −1) are disjoint and the sets UiUU × ViVV cover

{ }
1 ≤ i ≤ N The sets U ′ = UiU � (U1UU ∪ UiU 1) are disjoint and the sets U ′ × ViVV cover

K disjointly. Theorem 21 implies thatK disjointly Theorem 21 implies that

N N N∑
m(U ′

iUU ) · ε ≤ ε,mK ≤
∑

m(U ′
iUU × ViVV ) =

∑
m(U ′

iUU ) ·m(ViVV ) <
∑

i 1 i 1 i 1i=1 i=1 i=1

so mK = 0 and m∗E = mE = 0.

Closedness of K implies (x, y) ∈ K, so y ∈ KxKK , a contradiction. Hence if U(x) is

small then for all x ∈ U(x) we have x ×KxKK ′ ⊂ W (x) = U(x)×V (x). See Figure 142.

( ) ( )

small then for all x′ ∈ U(x) we have x′×K ′ ⊂ W (x) = U(x)×V (x) See Figure 142

Figure 142 The open set V (x) contains the slice KxKK and has small

measure. If x′ lies in a small enough neighborhood U(x) of x then the set

x′ ×KxKK ′ lies in W (x) = U(x)× V (x). These sets x′ ×KxKK ′ are shown in the

( )

enlarged picture as vertical segments in K.enlarged picture as vertical segments in K

i
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6 Lebesgue Integrals

Following J.C. Burkill, we justify the maxim that the integral of a function is the

area under its graph. Let f : R → [0,∞) be given.†

Definition The undergraph of f is

Uf = {(x, y) ∈ R× [0,∞) : 0 ≤ y < f(x)}.

The function f is (Lebesgue) measurable if Uf is measurable with respect to

planar Lebesgue measure, and if it is then the Lebesgue integral of f is the measure

of the undergraph ∫
f = m(Uf).

Figure 143 The geometric definition of the integral is the measure of the

undergraph.

See Figure 143.

Burkill refers to the undergraph as the ordinate set of f . The notation for the

Lebesgue integral intentionally omits the usual “dx” and the limits of integration to

remind you that it is not merely the ordinary Riemann integral
∫ b
a f(x) dx or the

improper Riemann integral f∞−∞ f(x) dx.

Since a measurable set can have infinite measure we permit
∫
f = ∞.

†In this section we deal with functions of one variable. The multivariable case in which f : Rn → R

offers no new ideas, only new notation.
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Definition The function f : R → [0,∞) is Lebesgue integrable if (it is measurable

and) its integral is finite.† The set of integrable functions is denoted by L1, L1, or L.

The three basic convergence theorems for Lebesgue integrals are the Monotone

Convergence Theorem, the Dominated Convergence Theorem, and Fatou’s Lemma.

Their proofs are easy if you look at the right undergraph pictures. We write fn → f

a.e. to indicate that lim
n→∞ fn(x) = f(x) for almost every x, i.e., for all x not belong-

ing to some zero set.‡ (See Chapter 3 for previous use of the phrase “almost every”

in connection with Riemann integrability.) However, we often abuse the notation

by dropping the “a.e.” for clarity. This is rarely a problem since Lebesgue theory

systematically neglects zero sets; as Theorem5 states, zero sets have no effect on

measurability or measure, and thus no effect on integrals.§

27 Monotone Convergence Theorem Assume that (fn) is a sequence of measur-

able functions fn : R → [0,∞) and fn ↑ f a.e. as n → ∞. Then
∫

fn ↑
∫

f.

Proof Obvious from Figure 144.

Definition The completed undergraph of f : R → [0,∞) is

Ûf = {(x, y) ∈ R× [0,∞) : 0 ≤ y ≤ f(x)}.
It is the undergraph plus the graph.

28 Proposition Ûf is measurable if and only if Uf is measurable, and if measurable

then their measures are equal.

Proof For n ∈ N let T±n : R2 → R2 send (x, y) to (x, (1± 1/n)y). The matrix that

represents T±n is [
1 0

0 1± 1/n

]
.

†Thus the integral of a measurable nonnegative function exists even if the function is not in-

tegrable. To avoid this abuse of language the word “summable” is sometimes used in place of

“integrable” to indicate that
∫

f < ∞.
‡You may also come across the abbreviation “p.p.” for the French presque partout.
§As informal, clunky notation you can decorate the standard symbols “→”, “=”, “∀”, etc. with

small zeros indicating “up to a zero set.” Thus fn
◦→ f would indicate a.e. convergence, A

◦
= B

would indicate set equality except for a zero set,
◦
∀ would indicate for almost every, and so on. We

will use the notation sparingly.

§As informal, clunky notation you can decorate the standard symbols “→”, “=”, “∀”, etc. with

small zeros indicating “up to a zero set.” Thus fnff → f would indicate a.e. convergence, A = B

, y y y , , ,

mall zeros indicating “up to a zero set ” Thus f
◦→ f would indicate a e convergence A

◦
= B

would indicate set equality except for a zero set, ∀ would indicate for almost every, and so on. We

small zeros indicating up to a zero set. Thus fnf → f would indicate a.e. convergence, A B

ld i di t t lit t f t
◦
∀ ld i di t f l t d W

will use the notation sparingly.will use the notation sparingly
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f

fn

Figure 144 fn ↑ f implies Ufn ↑ Uf . Upward measure continuity

(Theorem6) then implies
∫
fn = m(Ufn) ↑ m(Uf) =

∫
f .

By Theorem15 T±n is a meseomorphism and m(Tn(Uf)) = (1 + 1/n)m(Uf). The

intersection <Tn(Uf) is Ûf except for points (x, 0) of the x-axis at which f(x) = 0.

The x-axis is a planar zero set and has no effect on measurability. Therefore Ûf is

measurable and m(Ûf) = m(Uf).

Similarly, Uf is the union of the sets T−n(Ûf) except for points on the x-axis

and so measurability of Ûf implies measurability of Uf . Upward measure continuity

implies that

m(Uf) = lim
n→∞(1− 1/n)m(Ûf) = m(Ûf)

which completes the proof.

29 Corollary If (fn) is a sequence of integrable functions that converges monotoni-

cally downward to a limit function f almost everywhere then
∫

fn ↓
∫

f.

Proof Sincem(Û(fn)) =
∫
fn is finite, downward measure continuity is valid. Propo-

sition 28 then implies
∫

fn = m(U(fn)) = m(Û(fn)) ↓ m(Ûf) = m(Uf) =

∫
f

as n → ∞.

Definition If fn : X → [0,∞) is a sequence of functions then the lower and upper

envelope sequences are

f
n
(x) = inf{fk(x) : k ≥ n} fn(x) = sup{fk(x) : k ≥ n}.

We permit fn(x) = ∞.

m Ûf = (Ufm

Theorem15
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30 Proposition U(fn) = >
k≥n
U(fk) and Û(f

n
) = <

k≥n
Û(fk).

Proof We have

(x, y) ∈ U(fn) ⇐⇒ y < sup{fk(x) : k ≥ n}
⇐⇒ ∃ � ≥ n such that y < f�(x)

⇐⇒ ∃ � ≥ n such that (x, y) ∈ U(f�)
⇐⇒ (x, y) ∈ >

k≥n
U(fk).

The other equality is checked the same way.

31 Dominated Convergence Theorem If fn : R → [0,∞) is a sequence of mea-

surable functions such that fn → f a.e. and if there exists a function g : R → [0,∞)

whose integral is finite and which is an upper bound for all the functions fn then f

is integrable and
∫
fn → ∫ f as n → ∞.

Proof Obvious from Figure 145.

Figure 145 Dominated convergence. Proposition 30 implies the envelope

functions are measurable. Due to the dominator g they are integrable. The

Monotone Convergence Theorem and Corollary 29 imply their integrals

converge to
∫
f . Since U(f

n
) ⊂ U(fn) ⊂ Û(fn) the integral of fn also

converges to
∫
f .
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Remark If a dominator g with finite integral fails to exist then the assertion fails.

For example, the sequence of steeple functions shown in Figure 89 on page 214, have

integral n and converge at all x to the zero function as n → ∞. See Exercise 33.

32 Corollary The pointwise limit of measurable functions is measurable.

Proof U(f
n
) is measurable and converges upward to Uf .

33 Fatou’s Lemma If fn : R → [0,∞) is a sequence of measurable functions then∫
lim inf fn ≤ lim inf

∫
fn.

Proof The assertion is really more about lim infs than integrals. The lim inf of the

sequence (fn) is f = lim
n→∞ f

n
, where f

n
is the lower envelope function. Since f

n
↑ f ,

the Monotone Convergence Theorem implies
∫
f
n
↑ ∫ f , and since f

n
≤ fn we have∫

f ≤ lim inf
∫
fn.

Remark The inequality in Fatou’s Lemma can be strict as is shown by the steeple

functions. See Exercise 33.

Having established the three basic convergence theorems for Lebesgue integrals

using mainly pictures of undergraphs, we collect some integration facts of a more

mundane character.

34 Theorem Let f, g : R → [0,∞) be measurable functions.

(a) If f ≤ g then
∫
f ≤ ∫ g.

(b) If R = |∞
k=1Xk and each Xk is measurable then∫

f =

∞∑
k=1

∫
Xk

f.

(c) If X ⊂ R is measurable then mX =
∫
χX .

(d) If mX = 0 then
∫
X f = 0.

(e) If f(x) = g(x) almost everywhere then
∫
f =
∫
g.

(f) If c ≥ 0 then
∫
cf = c

∫
f .

(g) The integral of f is zero if and only if f(x) = 0 for almost every x.

(h)
∫
f + g =

∫
f +
∫
g.

Proof Assertions (a) – (g) are obvious from what we know about measure.
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(a) f ≤ g implies Uf ⊂ Ug implies m(Uf) ≤ m(Ug).
(b) The product Xk×R is measurable and its intersection with Uf is Uf |Xk

. Thus

Uf = |∞
k=1Uf |Xk

and countable additivity of planar measure gives the result.

(c) The planar measure of the product U(χX) = X × [0, 1) is mX.

(d) Uf is contained in the product X × R of zero planar measure.

(e) Almost everywhere equality of f and g means there is a zero set Z ⊂ R such

that if x /∈ Z then f(x) = g(x). Apply (b), (d) to R = Z � (R�Z).

(f) According to Theorem15 scaling the y-axis by the factor c scales planar measure

correspondingly.

(g) The Zero Slice Theorem (Theorem25) asserts that Uf is a zero set if and only if

almost every vertical slice is a slice zero set. The vertical slices are the segments

[0, fx).

(h) This requires a new concept and a corresponding picture. See Theorem35,

Corollary 36, and Figure 146.

Definition If f : R → R then f-translation Tf : R2 → R2 sends the point (x, y) to

the point (x, y + f(x)).

Tf slides points along the vertical lines x× R and

Tf ◦ Tg = Tf+g = Tg ◦ Tf

so Tf is a bijection whose inverse is T−f .

35 Theorem If f : R → [0,∞) is integrable then Tf preserves planar Lebesgue

measure; i.e., it is a mesisometry.

Proof We must show that Tf bijects the class M of Lebesgue measurable subsets of

R2 to itself and m(TfE) = mE for all E ∈M.

Consider Figure 146. It demonstrates that for any two nonnegative functions on

R we have two ways to express U(f + g), namely

Uf � Tf (Ug) = U(f + g) = Tg(Uf) � Ug.

First we consider the function

g(x) =

{
h if x ∈ I

0 otherwise

where I is an interval in R and h is a positive constant. See Figure 147. The un-

mesisometry
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f

f + g

g

Tf (Ug)
Tg(Uf)

Ug
Uf

Figure 146 The undergraph of a sum

dergraph of g is the rectangle R = I × [0, h). The Tf -image of R is the same as the

TfI -image, where fI(x) = f(x) ·χI(x). Thus we can assume that f(x) = 0 for x /∈ I.

The map Tg is vertical translation by the constant h and since Lebesgue measure is

translation invariant we get measurability of Tg(Uf). Then Uf � TfR = Tg(Uf) �R

implies TfR is measurable and

m(Uf) +m(TfR) = m(Tg(Uf)) +mR.

Since m(Uf) < ∞, subtraction is legal and we get m(TfR) = mR. If we translate R

vertically by k then we have a rectangle TkR = I× [k, h+k) and Tf (TkR) = Tk ◦TfR

implies that Tf sends each rectangle I×[c, d) to a measurable set of the same measure.

We claim that Tf never increases outer measure. If S ⊂ R2 and ε > 0 is given

then we cover S with countably many rectangles Ri such that
∑

m(Ri) ≤ m∗S + ε.

Then TfS is covered by countably many measurable sets Tf (Ri) with total measure

≤ m∗S + ε. From countable subadditivity and the ε-Principle we deduce m∗(TfS) ≤
m∗S. The same is true for T−f since

T−f = ψ ◦ Tf ◦ ψ
where ψ : R2 → R2 is the mesisometry sending (x, y) to (x,−y). Neither Tf nor its

inverse increase outer measure, so Theorem7 implies Tf is a mesisometry.

mesisometry

mesisometry
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f

f + g

g

Tg(Uf)

UgR = I × [0, h)

Uf

Tf (R)

Figure 147 Tf translates R upward by f and Tg translates Uf upward by

h.

36 Corollary If f : R → [0,∞) and g : R → [0,∞) are integrable then
∫

f + g =

∫
f +

∫
g.

Proof Since U(f + g) = Uf � Tf (Ug) and Tf is a mesisometry we see that f + g is

measurable and m(U(f + g)) = m(Uf) +m(Ug). That is, the integral of the sum is

the sum of the integrals.

Remark The standard proof of linearity of the Lebesgue integral is outlined in Ex-

ercise 47. It is no easier than this undergraph proof, and undergraphs at least give

you a picture as guidance.

37 Corollary If fk : R → [0,∞) is a sequence of integrable functions then

∞∑
k=1

∫
fk =

∫ ∞∑
k=1

fk.

Proof Let Fn(x) =
∑n

k=1 fk(x) be the nth partial sum and F (x) =
∑∞

k=1 fk(x).

Then Fn(x) ↑ F (x) as n → ∞. The Monotone Convergence Theorem implies
∫
Fn →∫

F . Corollary 36 implies
∑n

k=1

∫
fk =

∫ ∑n
k=1 fk and the assertion follows.

Until now we have assumed the integrand f is nonnegative. If f takes both

positive and negative values we define

f+(x) =

{
f(x) if f(x) ≥ 0

0 if f(x) < 0
f−(x) =

{
−f(x) if f(x) < 0

0 if f(x) ≥ 0.

mesisometry
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Then f± ≥ 0 and f = f+ − f−. See Exercise 28. If f± are integrable we say that f is

integrable and define its integral as∫
f =

∫
f+ −

∫
f−.

38 Proposition The set of measurable functions f : R → R is a vector space, the

set of integrable functions is a subspace, and the integral is a linear map from the

latter into R.

The proof is left to the reader as Exercise 32.

7 Italian Measure Theory
In Chapter 5 the slice method is developed in terms of Riemann integrals. Here we

generalize to Lebesgue integrals. If E ⊂ Rk×Rn and x ∈ Rk then the x-slice through

a point x ∈ Rk is

Ex = {y ∈ Rn : (x, y) ∈ E}.
The y-slice is Ey = {x : (x, y) ∈ E}. Similarly, the x-slice and y-slice of a function

f : E → R are fx : y �→ f(x, y) and fy : x �→ f(x, y).

Remark In this section we frequently write dx and dy to indicate which variable is

the integration variable.

39 Cavalieri’s Principle If E is measurable then almost every slice Ex of E is

measurable, the function x �→ m(Ex) is measurable, and its integral is

mE =

∫
m(Ex) dx.(4)

(Note that mE refers to (k + n)-dimensional measure while m(Ex) refers to n-

dimensional measure.)

See Figure 148.

Proof We take k = 1 = n. The proof of the Zero Slice Theorem (Theorem26)

contains the hard work; if E is a zero set then it asserts that almost every slice Ex

is a zero set, and since the integral of a function that vanishes almost everywhere is

zero we get (4) for zero sets.
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Figure 148 Slicing a planar set

(4) is obvious for boxes, and hence it holds also for open sets. After all, an open

set is the disjoint union of boxes and a zero set, and slicing preserves disjointness.

The Dominated Convergence Theorem promotes (4) from open sets to bounded

Gδ-sets.

(4) holds for bounded measurable sets since each is a bounded Gδ-set minus a

zero set. The general measurable set E is a disjoint union of bounded measurable

sets, E = |Ei, so countable additivity gives (4) for E.

The proof of Cavalieri’s Principle in higher dimensions differs only notationally

from the proof in R2. See also Appendix B of Chapter 5 and Exercise 44.

40 Corollary The y-slices of an undergraph decrease monotonically as y increases,

and the following formulas hold:

(Uf)a = >
y>a

(Uf)y (Ûf)a = <
y<a

(Ûf)y.

Every horizontal slice of a measurable undergraph is measurable.

Proof Monotonicity and the formulas follow from

(Uf)a = {x : a < fx} = {x : ∃y > a such that y < fx}
(Ûf)a = {x : a ≤ fx} = {x : ∀y < a we have y ≤ fx}.
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We fix an arbitrary a and ask: Are the slices (Uf)a and (Ûf)a measurable? Cava-

lieri’s Principle implies that almost every horizontal slice of a measurable undergraph

is measurable. Thus, there exist yn ↓ a such that (Uf)yn is measurable. By mono-

tonicity, (Uf)a = >n(Uf)yn gives measurability of (Uf)a. Similarly for the completed

undergraph.

41 Corollary Undergraph measurability is equivalent to the more common definition

using preimages.

Proof We say that f : R → [0,∞) is preimage measurable if for each a ∈ [0,∞)

the preimage fpre[a,∞) = {x : fx ≥ a} is a measurable subset of the line. (See also

AppendixA.) Since

fpre[a,∞) = {x : a ≤ fx} = (Ûf)a

by Corollary 40, we see that undergraph measurability implies preimage measurabil-

ity. The converse follows from the equation

Uf = >
0≤a∈Q

fpre[a,∞)× [0, a).

As a consequence of Cavalieri’s Principle in 3-space we get the integral theorems

of Fubini and Tonelli. It is standard practice to refer to the integral of a function f

on R2 as a double integral and to write it as∫
f =

∫∫
f(x, y) dxdy.

It is also standard to write the iterated integral as∫ [∫
fx(y) dy

]
dx =

∫ [∫
f(x, y) dy

]
dx.

42 Fubini-Tonelli Theorem If f : R2 → [0,∞) is measurable then almost every

slice fx(y) is a measurable function of y, the function x �→ ∫ fx(y) dy is measurable,

and the double integral equals the iterated integral,∫∫
f(x, y) dxdy =

∫ [∫
f(x, y) dy

]
dx.

Proof The result follows from the simple observation that the slice of the undergraph

is the undergraph of the slice,

(5) (Uf)x = Ufx.
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Figure 149 Slicing the undergraph

See Figure 149. For (5) implies that m2((Uf)x) = m2(Ufx) =
∫
f(x, y) dy, and then

Cavalieri gives ∫∫
f(x, y) dxdy = m3(Uf) =

∫
[m2 ((Uf)x)] dx

=

∫ [∫
f(x, y) dy

]
dx.

43 Corollary When f : R2 → [0,∞) is measurable the order of integration in the

iterated integrals is irrelevant,∫ [∫
f(x, y) dy

]
dx =

∫∫
f(x, y) dxdy =

∫ [∫
f(x, y) dx

]
dy.

(In particular if one of the three integrals is finite then so are the other two and all

three are equal.)

Proof The difference between “x” and “y” is only notational. In contrast to the

integration of differential forms, the orientation of the plane or 3-space plays no role

in Lebesgue integration so the Fubini-Tonelli Theorem applies equally to x-slicing

and y-slicing, which implies that both iterated integrals equal the double integral.
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The multidimensional version of Cavalieri’s Principle yields similar multi-integral

results. See Exercise 54.

When f takes on both signs a little care must be taken to avoid subtracting ∞
from ∞.

44 Theorem If f : R2 → R is integrable (the double integral of f exists and is finite)

then the iterated integrals exist and equal the double integral.

Proof Split f into its positive and negative parts, f = f+ − f−, and apply the

Fubini-Tonelli Theorem to each separately. Since the integrals are finite, subtraction

is legal and the theorem follows for f.

See Exercise 53 for an example in which trouble arises if you forget to assume

that the double integral is finite.

8 Vitali Coverings and Density Points
The fact that every open covering of a closed and bounded subset of Euclidean space

reduces to a finite subcovering is certainly an important component of basic analysis.

In this section we present another covering theorem, this time the accent being on

disjointness of the sets in the subcovering rather than on finiteness. The result is

used to differentiate Lebesgue integrals.

Definition A covering V of a set A in a metric space M is a Vitali covering if for

each point p ∈ A and each r > 0 there is V ∈ V such that p ∈ V ⊂ Mrp and V is not

merely the singleton set {p}.

For example, if A = [a, b], M = R, and V consists of all intervals [α, β] with α ≤ β

and α, β ∈ Q then V is a Vitali covering of A.

45 Vitali Covering Lemma A Vitali covering of a bounded set A ⊂ Rn by closed

balls reduces to an efficient disjoint subcovering of almost all of A.

More precisely, given ε > 0, V reduces to a countable subcollection {Vk} such that

(a) The Vk are disjoint.

(b) mU ≤ m∗A + ε, where U = |∞
k=1 Vk.

(c) A�U is a zero set.
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Condition (b) is what we mean by {Vk} being an “efficient” covering – the extra

points covered form an ε-set. The sets UN = V1 � · · · � VN “nearly” cover A in the

sense that given ε > 0, if N is large then UN contains A except for an ε-set. After

all, U = >UN contains A except for a zero set. See also AppendixE.

Boundedness of A is an unnecessary hypothesis. Also, the assumption that the

sets V ∈ V are closed balls can be weakened somewhat. We discuss these improve-

ments after the proof of the result as stated.

Proof of the Vitali Covering Lemma Given ε > 0, there is a bounded open set

W ⊃ A such that mW ≤ m∗A+ ε. Define

V1 = {V ∈ V : V ⊂ W} and d1 = sup{diamV : V ∈ V1}.
V1 is still a Vitali covering of A. Since W is bounded d1 is finite. Choose V1 ∈ V1
with diamV1 ≥ d1/2 and define

V2 = {V ∈ V1 : V ∩ V1 = ∅} and d2 = sup{diamV : V ∈ V2}.
Choose V2 ∈ V2 with diamV2 ≥ d2/2. In general,

Vk = {V ∈ Vk−1 : V ∩ Uk−1 = ∅}
dk = sup{diamV : V ∈ Vk}
Vk ∈ Vk has diamVk ≥ dk

2

where Uk−1 = V1 � . . . � Vk−1. This means that Vk has roughly maximal diameter

among the V ∈ V that do not meet Uk−1. By construction, the balls Vk are disjoint

and since they lie in W we have m(|Vk) ≤ mW ≤ m∗A + ε, verifying (a) and (b).

It remains to check (c).

If at any stage in the construction Vk = ∅ then we have covered A with finitely

many sets Vk, so (c) becomes trivial. We therefore assume that V1, V2, . . . form an

infinite sequence. Additivity implies that m(|Vk) =
∑

mVk. Since each Vk is

contained in W the series converges. This implies that diamVk → 0 as k → ∞; i.e.,

(6) dk → 0 as k → ∞.

For each N ∈ N we claim that

(7)
∞
>

k=N
5Vk ⊃ A�UN−1

where 5Vk denotes the ball Vk dilated from its center by the factor 5. (These dilated

balls need not belong to V.)

is
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Take any a ∈ A� UN−1. Since UN−1 is compact and V1 is Vitali, there is a ball

B ∈ V1 such that a ∈ B and B∩UN−1 = ∅. That is, B ∈ VN . Assume that (7) fails.

Then, for all k ≥ N we have

a �∈ 5Vk.

Therefore B �⊂ 5VN . Figure 150 shows that due to the choice of VN with roughly

maximal diameter, the fact that 5VN fails to contain B implies that VN is disjoint

from B, so B ∈ VN+1. This continues for all k > N ; namely for all k > N we have

B ∈ Vk.

Figure 150 The unchosen ball B

Aha!

B was available for choice as the next Vk, k > N , but it was never chosen.

Therefore the chosen Vk has a diameter at least half as large as that of B. The latter

diameter is fixed, but (6) states that the former diameter tends to 0 as k → ∞, a

contradiction. Thus (7) is true.

It is easy to see that (7) implies (c). For let δ > 0 be given. Choose N so large

that
∞∑

k=N

m(Vk) <
δ

5n
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where n = dimRn. Since the series
∑

m(Vk) converges this is possible. By (7) and

the scaling law m(tE) = tnmE for n-dimensional measure we have

m∗(A�UN−1) ≤
∞∑

k=N

m(5Vk) = 5n
∞∑

k=N

m(Vk) < δ.

Since δ is arbitrary, A�U = <k(A
�Uk) is a zero set.

Remark A similar strategy of covering reduction appears in the proof in Chapter

2 that sequential compactness implies covering compactness. Formally, the proof is

expressed in terms of the Lebesgue number of the covering but the intuition is this:

Given an open covering U of a sequentially compact set K, you choose a subcovering

by first taking a U1 ∈ U that covers about as much of K as possible, then taking

U2 ∈ U that covers about as much of the remainder of K as possible, and so on.

If finitely many of these sets Un fail to cover K then you take a sequence xn ∈
K� (U1 ∪ · · · ∪ Un−1) and prove that it has no subsequence which converges in K.

(The contradiction shows that in fact finitely many of the Un you chose actually did

cover K.) In short, when reducing a covering it is a good idea to choose the biggest

sets first. This is exactly the Vitali outlook.

Removing the assumption that A is bounded presents no problem. Express Rn

as |Di ∪ Z, where the Di are the open unit dyadic cubes and Z is the zero set of

hyperplanes having at least one integer coordinate. If A ⊂ Rn is unbounded then

A = |Ai ∪ (A ∩ Z), where Ai = A ∩Di. Given a Vitali covering V of A by closed

balls, we set

Vi = {V ∈ V : V ⊂ Di}.
It is a Vitali covering of the bounded set Ai and therefore reduces to a disjoint (ε/2i)-

efficient covering {Vi,k : k ∈ N} of almost all of Ai. Thus V reduces to a disjoint

ε-efficient covering {Vi,k : i, k ∈ N} of almost all of A.

A further generalization involves the shapes of the sets V ∈ V. If | |∗ is any norm

on Rn then its closed ball of radius r at p is

B∗(r, p) = {x ∈ Rn : |x|∗ ≤ r}.

The preceding proof of the Vitali Covering Lemma goes through word for word when

we substitute balls with respect to the norm | |∗ for Euclidean balls. Even the factor

5 remains the same. If | |∗ is the taxicab norm then this gives the following result.

See also Exercise 61.

dyadic
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46 Vitali Covering Lemma for Cubes A Vitali covering of A ⊂ Rn by closed

cubes†reduces to an efficient disjoint subcovering of almost all of A.

Density Points

Let E ⊂ Rn be measurable. For p ∈ Rn, define the density of E at p as

δ(p,E) = lim
Q↓x

m(E ∩Q)

mQ
,

if the limit exists, m being Lebesgue measure on Rn. The notation Q ↓ p indicates

that Q is a cube which contains p and shrinks down to p. It need not be centered

at p. Clearly 0 ≤ δ ≤ 1. Points with δ = 1 are called density points of E. The

fraction that we’re taking the limit of is the “relative measure” or concentration of

E in Q. I like to write the concentration of E in Q as in chemistry,

m(E ∩Q)

mQ
= [E : Q].

Existence of δ(p,E) means that for each ε > 0 there exists an � > 0 such that if Q is

any cube of edgelength < � that contains p then the concentration of E in Q differs

from δ(p,E) by < ε.

Remark Demanding that that the cubes be centered at p produces the concept of

balanced density. Balls or certain other shapes can be used instead of cubes. See

Exercise 58, Exercise 61, the end of the preceding section, and Figure 151.

47 Lebesgue Density Theorem If E is measurable then almost every p ∈ E is a

density point of E.

Interior points of E are obviously density points of E, although sets like the

irrationals or a fat Cantor set have empty interior, while still having plenty of density

points.

Proof of the Lebesgue Density Theorem Without loss of generality we assume

E is bounded. Take any a, 0 ≤ a < 1, and consider

Ea = {p ∈ E : δ(E, p) < a}
†The cubes are Cartesian products I1 × · · · × In, where the Ii are closed intervals, all of the same

length.
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Nick Pugh

Figure 151 An artist’s rendering of a density point

where δ is the lower density, lim inf
Q↓p

[E : Q]. We will show that Ea has outer measure

zero.

By assumption, at every p ∈ Ea there are arbitrarily small cubes in which the

concentration of E is < a. These cubes form a Vitali covering of Ea and by the

Vitali Covering Lemma we can select a subcollection Q1, Q2, . . . such that the Qk are

disjoint, cover almost all of Ea, and nearly give the outer measure of Ea in the sense

that ∑
k

m(Qk) < m∗(Ea) + ε.

(Ea turns out to be measurable but the Vitali Covering Lemma does not require us

to know this in advance.) We get

m∗(Ea) =
∑
k

m∗(Ea ∩Qk)

≤
∑
k

m(E ∩Qk) < a
∑
k

m(Qk) ≤ a(m∗(Ea) + ε)

which implies that m∗(Ea) ≤ aε/(1−a). Since ε > 0 is arbitrary we have m∗(Ea) = 0.
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The Ea are monotone increasing zero sets as a ↑ 1. Letting a = 1 − 1/� with

� = 1, 2, . . ., we see that the union of all the Ea with a < 1 is also a zero set, say Z.

Points p ∈ E� Z have the property that as Q ↓ p, the lim inf of the concentration

of E in Q is ≥ a for all a < 1. Since the concentration is always ≤ 1 this means

the limit of the concentration exists and equals 1 for all p ∈ E�Z; i.e., almost every

point of E is a density point of E.

48 Corollary If E is measurable then E
◦
= dp(E), i.e., for almost every p we have

χE(p) = lim
Q↓p

[E : Q].

Proof For almost every p ∈ E we have lim
Q↓p

[E : Q] = 1 and for almost every q ∈ Ec

we have lim
Q↓q

[Ec : Q] = 1. Measurability of E implies [E : Q] + [Ec : Q] = 1, which

completes the proof.

A consequence of the Lebesgue Density Theorem is that measurable sets are not

“diffuse” – a measurable subset of R can not meet every interval (a, b) in a set of

measure c · (b− a) where c is a constant, 0 < c < 1. Instead, a measurable set must

be “concentrated” or “clumpy.” See Exercise 56. Also, looking at the complement

Ec of E, we see that almost every point x ∈ Ec has δ(E, x) = 0. Thus, almost every

point of E is a density point of E and almost every point of Ec is not.

As you might expect, Cavalieri’s Principle meshes well with density points.

49 Theorem For a measurable set E ⊂ Rk × R�, we have (dp(E))x
◦
= dp(Ex) for

almost all x ∈ Rk.

Proof The Zero Slice Theorem25 implies there is a zero set Z1 ⊂ Rk such that

for all x /∈ Z1, Ex is m�-measurable. The Lebesgue Density Theorem47 implies

dp(E) = E up to a zero set: mn(EΔ dp(E)) = 0. Theorem25 implies there is a

second zero set Z2 ⊂ Rk such that for all x /∈ Z2, m�((EΔ dp(E))x) = 0. Since

(EΔ dp(E))x = ExΔ(dp(E))x for all x, we conclude that for all x /∈ Z = Z1∪Z2 we

have (dp(E))x = dp(Ex) up to a slice zero set, which is what the theorem asserts.

Recall the measure theoretic boundary of a set A ⊂ Rn, ∂m(A) = HA
�KA, as

discussed on page 401. In the same vein we can define ∂d(A) = dp∗(A)� (dp∗(Ac))c

where dp∗ indicates the set of outer density points

dp∗(A) = {p : lim
Q↓p

m∗(A ∩Q)

mQ
= 1}.

49 Theorem For a measurable set E ⊂ Rk × R�, we have (dp(E))x
◦
= dp(
◦

ExE ) for

almost all x ∈ R .almost all x ∈ Rk

Proof The Zero Slice Theorem25 implies there is a zero set Z1 ⊂ Rk such that

for all x /∈// Z1, ExE is m�-measurable. The Lebesgue Density Theorem47 impliesfor all x /∈// Z1 E is m�-measurable The Lebesgue Density Theorem47 implies

dp(E) = E up to a zero set: mn(EΔ dp(E)) = 0. Theorem25 implies there is adp(E) = E up to a zero set: m (EΔ dp(E)) = 0 Theorem25 implies there is a

second zero set Z2ZZ ⊂ Rk such that for all x /∈// Z2ZZ , m�((EΔ dp(E))x) = 0. Since

(EΔ dp(E))x = ExE Δ(dp(E))x for all x, we conclude that for all x /∈// Z = Z1∪Z2ZZ we(EΔ dp(E)) = E Δ(dp(E)) for all x we conclude that for all x /∈// Z = Z1∪Z2ZZ we

have (dp(E))x = dp(ExE ) up to a slice zero set, which is what the theorem asserts.have (dp(E)) = dp(E ) up to a slice zero set which is what the theorem asserts

Recall the measure theoretic boundary of a set A ⊂ Rn, ∂m∂∂ (A) = HAH �KAK , as

discussed on page 401. In the same vein we can define ∂d∂∂ (A) = dp (A)� (dp (A ))

R y ⊂ , ∂m∂ ( ) A A,

cussed on page 401 In the same vein we can define ∂d∂ (A) = dp∗(A)� (dp∗(Ac))c

where dp∗ indicates the set of outer density points

p g 0

h d ∗ i di h f d i i

dp∗(A) = {p : lim
m∗(A ∩Q)

= 1}.lim
Q↓p↓↓ mQ



Section 8 Vitali Coverings and Density Points 425

50 Theorem Up to a zero set, ∂m(A) = ∂d(A).

Proof Taking enough complements, it suffices to check that HA = dp∗(A) up to a

zero set. Since A ⊂ HA, it is clear that

dp∗(A) ⊂ dp∗(HA) = dp(HA).

On the other hand, if Q is a cube at p then m∗(A ∩ Q) ≥ m(HA ∩ Q). Otherwise

m∗(A∩Q) < m(HA ∩Q) and there is an open set U ⊂ Q such that U ⊃ (A∩Q) and

mU < m(HA ∩Q). See Figure 152. But then G = (HA
�Q)∪∂Q∪U is a Gδ-set that

Q

A

HA

U

Figure 152 The sets HA and dp∗(A) differ by a zero set. They differ from

A by a zero set if and only if A is measurable.

contains A and is measure theoretically smaller than HA, a contradiction. Thus

m∗(A ∩Q)

mQ
≥ m(HA ∩Q)

mQ
,

which implies that dp∗(A) ⊃ dp(HA), and we get equality: dp∗(A) = dp(HA). The

Lebesgue Density Theorem47 implies dp(HA)
◦
= HA, which completes the proof.

Remark HA is only defined up to a zero set, while dp∗(A) is uniquely defined.

However, HA ⊃ A while dp∗(A) need not contain A. Neither is a perfect analog of

the closure of A.

50 Theorem Up to a zero set, ∂m∂∂ (A) = ∂d∂∂ (A).

Proof Taking enough complements, it suffices to check that HAH = dp∗(A) up to a

zero set. Since A ⊂ HAH , it is clear thatSi A H i i l h
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contains A and is measure theoretically smaller than HAH , a contradiction. Thus

m∗(A ∩Q) ≥ m(HAH ∩Q)
,

y

mQ
≥

mQ

which implies that dp∗(A) ⊃ dp(HAH ), and we get equality: dp∗(A) = dp(HAH ). The

Lebesgue Density Theorem47 implies dp(HAH ) = HAH , which completes the proof.

p p ( ) p( A), g q y p ( ) p( A)

Lebesgue Density Theorem47 implies dp(HAH )
◦
= HAH which completes the proof

Remark HAH is only defined up to a zero set, while dp∗(A) is uniquely defined.

However, HAH ⊃ A while dp∗(A) need not contain A. Neither is a perfect analog of

the closure of A.the closure of Ath l f A
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9 Calculus à la Lebesgue

In this section we write the integral in dimension 1 as
∫
A f(t) dt or as

∫ β
α f(t) dt when

A = (α, β).

Definition The average of a locally integrable function f : Rn → R over a measur-

able set A ⊂ Rn with finite positive measure is

−
∫

A
f =

1

mA

∫

A
f = [f : A].

The notation [f : A] suggests that we are looking at the concentration of f on A.

It corresponds to the fact that [E : A] = m(E ∩ A)/mA = [χE : A]. By “locally

integrable” we mean “integrable on a small enough neighborhood of each point in

Rn.” Of course we assume that A lies in such a neighborhood. The density of f at

p is

δ(p, f) = lim
Q↓p

[f : Q]

if the limit exists. Otherwise we use the lower and upper densities

δ(p, f) = lim inf
Q↓p

[f : Q] δ(p, f) = lim sup
Q↓p

[f : Q].

As above, Q ↓ p means that Q is a cube which contains p and shrinks down to p.

The following result is also called Lebesgue’s Fundamental Theorem of Cal-

culus.

51 Average Value Theorem If f : Rn → R is locally integrable then for almost

every p ∈ Rn the density of f at p exists and

f(p) = δ(p, f) = lim
Q↓p

−
∫

Q
f.

Remark A more advanced way of understanding this theorem is to consider a new

measure μ(E) =
∫
E f . The assertion is that the new measure has a Vitali property.

52 Lemma If g : Rn → [0,∞) is integrable then for every small α > 0 the set

X(α, g) = {p : δ(p, g) > α} has outer measure

m∗(X(α, g)) ≤ 1

α

∫
g.

∫
−−
A

∫∫
f =

1

mA

∫

A

∫∫
f = [f : A].

The notation [f : A] suggests that we are looking at the concentration of f on A.

It corresponds to the fact that [E : A] = m(E ∩ A)/mA = [χE : A]. By “locally

integrable we mean integrable on a small enough neighborhood of each point inintegrable” we mean “integrable on a small enough neighborhood of each point in

Rn.” Of course we assume that A lies in such a neighborhood. The density of f at

p is

δ(p, f) = lim[f : Q]
Q↓p↓↓
lim
Q↓

[

if the limit exists. Otherwise we use the lower and upper densities

δ(p, f) = lim inf[f : Q] δ(p, f) = lim sup[f : Q].
Q↓p↓↓
m in
Q↓

As above, Q ↓ p means that Q is a cube which contains p and shrinks down to p.

51 Average Value Theorem If f : Rn → R is locally integrable then for almost

every p ∈ R the density of f at p exists and

∫

51 Average Value Theorem If f : R → R is loc

every p ∈ Rn the density of f at p exists and

f.f(p) = δ(p, f) = lim

∫
−−
Q

lim
Q↓p↓↓

∫

Q

∫∫

Remark A more advanced way of understanding this theorem is to consider a new

measure μ(E) =
∫
E

∫∫
f . The assertion is that the new measure has a Vitali property.

52 Lemma If g : R → [0,∞) is integrable then for every small α > 0 the set52 Lemma If g : Rn → [0,∞) is integrable then for every small α > 0 the set

X(α, g) = {p : δ(p, g) > α} has outer measure

f g [ , ) g

X(α g) = {p : δ(p g) > α} has outer measure

g.m∗(X(α, g)) ≤ 1
∫

α
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Proof The set X(α, g) is covered by arbitrarily small cubes on which the average

value of g exceeds α. By Vitali’s Covering Lemma we have disjoint cubes Qi with

|Qi ⊃ X(α, g)

up to a zero set, where the average of g on Qi is > α. Hence α ·m(Qi) ≤
∫

Qi

g and

α ·m∗(X(α, g)) ≤
∑

α ·m(Qi) ≤
∑∫

Qi

g ≤
∫

g.

Dividing the first and last terms by α gives the assertion.

Proof of the Average Value Theorem Since the theorem is local, we can assume

f is integrable on some cube X and zero off X. Similarly, we can assume f ≥ 0.

Fix α > 0 and partition [0,∞) by intervals Ik = [kα, (k + 1)α), k = 0, 1, . . . .

The sets Xk = fpre(Ik) are measurable, X = |k Xk, and since they are measurable,

Xk
◦
= dp(Xk). Fix k, set A = >j<k Xj , B = Xk, C = >j>k

[f : Q] = −
∫

Q
f =

1

mQ

(∫

A∩Q
f +

∫

B∩Q
f +

∫

C∩Q
f

)
.

We claim that for almost every p ∈ B, the interval [kα, (k+2)α] contains f(p), δ(p, f),

and δ(p, f), which is nearly what the theorem asserts.

The first two terms behave very nicely since [A : Q] → 0 and [B : Q] → 1 as

Q ↓ p ∈ B∩dp(B). In fact, the first term tends to zero since f is bounded (by kα) on

A, while the second has liminf and limsup between kα and (k+1)α. Unboundedness

of f on C creates the only problem.

Define fn by chopping off the top of the graph of f ,

fn(x) =

{
f(x) if f(x) ≤ n

n if f(x) ≥ n.

Then f = fn + gn where fn is bounded (by n) and f ≥ g1 ≥ g2 ≥ . . . . Since the

functions gn tend pointwise to zero and are dominated by f ,
∫
gn → 0 as n → ∞.

Since α is fixed, Lemma52 implies that the outer measure of

X(α, gn) = {x : δ(x, gn) > α}
tends to zero as n → ∞. These sets nest downward as n → ∞, so their intersection

X(α) = <X(α, gn) is a zero set. Taking complements, we get a set of full measure

G(α) = >G(α, gn) ⊂ X where G(α, gn) = (X(α, gn))
c and G(α) = (X(α))c.

(α, g

α, g

α, g
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◦
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∫
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∫
f

)
.
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Q

∫∫
f =

mQ

(∫

A
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∫

C
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f(x) if f(x) ≤ n

p g p f ,
{

n if f(x) ≥ n.

Then f = fnff + gn where fnff is bounded (by n) and f ≥ g1 ≥ g2 ≥ . . . . Since the

functions gn tend pointwise to zero and are dominated by f ,
∫
gn → 0 as n → ∞.

Since α is fixed, Lemma52 implies that the outer measure ofSi i fi d L 52 i li h h f

X(α, gn) = {x : δ(x, gn) > α}
tends to zero as n → ∞. These sets nest downward as n → ∞, so their intersection

X(α) = <X(α, gn) is a zero set. Taking complements, we get a set of full measureX(α) = <X(α g ) is a zero set Taking complements we get a set of full measure

G(α) = >G(α, gn) ⊂ X where G(α, gn) = (X(α, gn))
c and G(α) = (X(α))c.G( ) >G( ) X h G( ) (X( ))c d G( ) (X( ))c

, and writeXj
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We will verify our claim by showing that for each p ∈ B∩dp(B)∩G(α), the third

term has limsup ≤ α. Such a point p belongs to some G(α, gn), so it does not belong

to X(α, gn). That is, δ(p, gn) ≤ α. Fix this n = n(p). The third term is

1

mQ

∫

C∩Q
fn +

1

mQ

∫

C∩Q
gn =

m(C ∩Q)

mQ

1

m(C ∩Q)

∫

C∩Q
fn +

1

mQ

∫

C∩Q
gn

≤ [C : Q] · n+
1

mQ

∫

Q
gn

As Q ↓ p, [C : Q] → 0 and the last term is [gn : Q] which has limsup δ(p, gn) ≤ α.

All together this shows that for each α > 0 and each k there is a set of full measure

G(α, k) ⊂ X such that for all p ∈ Xk∩G(α, k), the numbers f(p), δ(p, f), and δ(p, f)

are all contained in the interval [kα, (k + 2)α]. Let G be the intersection of the sets

G(α, k) for k = 0, 1, 2, . . . and 1/α ∈ N. It has full measure and for all points p ∈ G

and all α > 0, the distance between f(p), δ(p, f), and δ(p, f) is ≤ 2α. Since α is

arbitrary, this implies that for almost every p we have f(p) = δ(p, f) = δ(p, f), which

completes the proof.

53 Corollary If f : [a, b] → R is Lebesgue integrable and

F (x) =

∫ x

a
f(t) dt

is its indefinite Lebesgue integral then for almost every x ∈ [a, b] the derivative F ′(x)
exists and equals f(x).

Remark Here and below the domain of our function is R and we make essential use

of its one-dimensionality.

Proof In dimension 1, a cube is a segment, so Theorem 51 gives

F (x+ h)− F (x)

h
= −
∫

[x,x+h]
f(t) dt → f(x)

almost everywhere as h ↓ 0. The same holds for [x− h, x].

Corollary 53 does not characterize indefinite integrals. Mere knowledge that a

continuous function G has a derivative almost everywhere and that its derivative is

an integrable function f does not imply that G differs from the indefinite integral of

f by a constant. The Devil’s staircase function H is a counterexample. Its derivative

exists almost everywhere, H ′(x) is almost everywhere equal to the integrable function

f(x) = 0, and yet H does not differ from the indefinite integral of 0 by a constant.

The missing ingredient is a subtler form of continuity.
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Q
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continuous function G has a derivative almost everywhere and that its derivative is

an integrable function f does not imply that G differs from the indefinite integral offfff

f by a constant. The Devil’s staircase function H is a counterexample. Its derivative

exists almost everywhere, H ′(x) is almost everywhere equal to the integrable function

f(x) = 0, and yet H does not differ from the indefinite integral of 0 by a constant.ffff

The missing ingredient is a subtler form of continuity.
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Definition A function G : [a, b] → R is absolutely continuous if for each ε > 0

there exists δ > 0 such that whenever I1, . . . , In are disjoint intervals in [a, b] we have

n∑
i=1

bi − ai < δ ⇒
n∑

i=1

|G(bi)−G(ai)| < ε.

54 Proposition Every absolutely continuous function is uniformly continuous. If

(Ii) is a sequence of disjoint intervals (ai, bi) ⊂ [a, b] then the following are equivalent

for a continuous function G : [a, b] → R.

(a) ∀ε > 0 ∃ δ > 0 such that
n∑

i=1

bi − ai < δ ⇒
n∑

i=1

|G(bi)−G(ai)| < ε.

(b) ∀ε > 0 ∃ δ > 0 such that

∞∑
i=1

bi − ai < δ ⇒
∞∑
i=1

|G(bi)−G(ai)| < ε.

(c) ∀ε > 0 ∃ δ > 0 such that

n∑
i=1

m(Ii) < δ ⇒
n∑

i=1

m(G(Ii)) < ε.

(d) ∀ε > 0 ∃ δ > 0 such that
∞∑
i=1

m(Ii) < δ ⇒
∞∑
i=1

m(G(Ii)) < ε.

Also, if G is absolutely continuous and Z is a zero set then GZ is a zero set. Finally,

if G is absolutely continuous then it is measure continuous in the sense that given

ε > 0, there exists δ > 0 such that mE < δ implies m(GE) < ε.

Proof Assume G is absolutely continuous. Apply the definition with just one interval

(t, x). Then |t− x| < δ implies |G(t)−G(x)| < ε, which is uniform continuity.

(a) ⇒ (b). (a) is the definition of absolute continuity. In the definition take ε/2 in

place of ε. The resulting δ depends on ε but not on n. Thus
∑∞

i=1 bi − ai < δ implies∑n
i=1 bi − ai < δ implies

∑n
i=1 |G(bi)−G(ai)| < ε/2 implies

∑∞
i=1 |G(bi)−G(ai)| ≤

ε/2 < ε, which is (b).

(b) ⇒ (c). m(G(Ii)) = |G(ti)−G(si)|, where G(ti) and G(si) are the maximum

and minimum of G on [ai, bi]. Let Ji be the interval between si and ti. Then Ji ⊂ Ii
implies m(Ji) ≤ m(Ii) implies

∑n
i=1m(Ji) < δ implies

∑n
i=1 |G(ti)−G(si)| < ε.

Thus
∑n

i=1 |G(ti)−G(si)| =
∑n

i=1m(G(Ji)) < ε, which is (c).

(c) ⇒ (d). This is just like (a) ⇒ (b).

(d) ⇒ (a). Since m(Ii) = bi−ai and |G(bi)−G(ai)| ≤ m(G(Ii)) this is immediate

from continuity of G..

Assume Z ⊂ [a, b] is a zero set and G is absolutely continuous according to (d).

For each ε > 0 there exists δ > 0 such that
∑

m(Ii) < δ implies
∑

m(G(Ii)) < ε.

Definition A function G : [a, b] → R is absolutely continuous if for each ε > 0

there exists δ > 0 such that whenever I1, . . . , InII are disjoint intervals in [a, b] we havethere exists δ > 0 such that whenever I1 I are disjoint intervals in [a b] we have

n∑
(a) ∀ε > 0 ∃ δ > 0 such thatt

i=1

bi − ai < δ ⇒
n∑

i=1

|G(bi)−G(ai)| < ε.

n∑
i=1

bi − ai < δ ⇒
n∑

i=1

|G(bi)−G(ai)| < ε.

54 Proposition Every absolutely continuous function is uniformly continuous. IfE

(IiII ) is a sequence of disjoint intervals (ai, bi) ⊂ [a, b] then the following are equivalent

for a continuous function G : [a, b] → R.

n

for a continuous function G : [a b] → R

(b) ∀ε > 0 ∃ δ > 0 such that
∑

bi − ai < δ ⇒
∑

|G(bi)−G(ai)| < ε.

( )
∑

( )

n∑
( ( ))

∞∑
i=1

∞∑
i=1

i=1 i=1

t
∑
i=1
∞∑

n∑
i=1

i=1 i=1

Also, if G is absolutely continuous and Z is a zero set then GZ is a zero set. Finally,

if G is absolutely continuous then it is measure continuous in the sense that given

ε > 0, there exists δ > 0 such that mE < δ implies m(GE) < ε.

Proof Assume G is absolutely continuous. Apply the definition with just one interval

(t, x). Then |t− x| < δ implies |G(t)−G(x)| < ε, which is uniform continuity.

(a) ⇒ (b). (a) is the definition of absolute continuity. In the definition take ε/2 in( ) (b) ( ) i h d fi i i f b l i i I h d fi i i k

l

( ) ( ) ( ) y /

f Th lti δ d d b t t Th
∑∞ b < δ i li∑

ii=1 bi ai < δ implies
∑

i=1 |G(bi) G(ai)| < ε/2 implies
∑

i=1 |G(bi) G(ai)| ≤
pla∑n
ace of ε. The resulting δ depends on ε but not on n. Thus

∑∞
i=1 bi − ai < δ implies

n bi − ai < δ implies
∑n |G(bi)−G(ai)| < ε/2 implies

∑∞ |G(bi)−G(ai)| ≤
ε/2 < ε, which is (b).2 < ε, which is (b).

(b) ⇒ (c). m(G(IiII )) = |G(ti)−G(si)|, where G(ti) and G(si) are the maximum(b) ( ) (G(I )) |G(t ) G( )| h G(t ) d G( ) th i

dd i i f G [ b ] L t J b th i t l b t d t Th J ⊂ I

1 |G(ti)−G(si)| < ε.

and minimum of G on [ai, bi]. Let JiJJ be the interval between si and ti. Then JiJJ ⊂ IiII

i li (J ) ≤ (I ) i li
∑n (J ) < δ i li

∑n |G(ti)−G(si)| < ε

d minimum of G on [ai bi] Let JiJ be the interval between si and ti Then JiJ ⊂ IiI

implies m(JiJJ ) ≤ m(IiII ) implies
∑

i=1m(JiJJ ) < δ implies
∑

i=

Thus
∑n

i=1 |G(ti)−G(si)| =
∑n

i=1m(G(JiJJ )) < ε, which is (c).

implies m(JiJ ) ≤ m(IiI ) implies
∑n m(JiJ ) < δ implies

∑n

(c) ⇒ (d). This is just like (a) ⇒ (b).( ) (d) Thi i j t lik ( ) (b)

(d) ⇒ (a). Since m(IiII ) = bi−ai and |G(bi)−G(ai)| ≤ m(G(IiII )) this is immediate(d) ( ) Si (I ) b d |G
from continuity of G.m continuity of G

A Z ⊂ [ b] i t d G i b l t l ti di t (d)

For each ε > 0 there exists δ > 0 such that
∑

m(IiII ) < δ implies
∑

m(G(IiII )) < ε.

Assume Z ⊂ [a, b] is a zero set and G is absolutely continuous according to (d).

r each ε > 0 there exists δ > 0 such that
∑

m(IiI ) < δ implies
∑

m(G(IiI )) < ε
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There is an open U ⊂ [a, b] of measure < δ that contains Z. Every U is a countable

disjoint union of open intervals Ii. Their total length is mU < δ. Thus GZ ⊂ >G(Ii)

and by (d) we have m(GZ) ≤ ∑
m(G(Ii)) < ε so m(GZ) = 0.

Assume E ⊂ [a, b] is measurable and G is absolutely continuous according to (d)

with ε, δ as above. Regularity of Lebesgue measure implies there are compact subsets

Kn ⊂ E such that Kn ↑ F ⊂ E, where Z = E� F is a zero set. (F is an Fσ-set.)

Continuity implies G(Kn) is compact. Since G(Kn) ↑ GF , GF is measurable. Since

GZ is a zero set, GE = GF ∪ GZ is measurable. If mE < δ then there is an open

U = | Ii ⊃ E with mU =
∑

m(Ii) < δ. Then GE ⊂ >G(Ii) and by (d) we have

m(GE) ≤ ∑
m(G(Ii)) < ε as desired.

Remark Here are some additional facts about absolute continuity. None is very

hard to check.

(i) Disjointness of the intervals {Ii} was assumed throughout the proof of Propo-

sition 54. It is necessary since
√
x is absolutely continuous, but repeating an

interval (0, t) n times produces a sum nt that can be small, despite n
√
t being

for non-disjoint intervals Ii whose total length is small.

(ii) Like
√
x, any continuous monotone function that is smooth except at one point

is absolutely continuous.

(iii) The function
√
x sin(1/x) is continuous, measure continuous, not absolutely

continuous, but sends zero sets to zero sets.

(iv) Lipschitz implies absolute continuity, but not vice versa. The example is
√
x

again.

55 Theorem Let f : [a, b] → R be Lebesgue integrable and let F be its indefinite

integral F (x) =

∫ x

a
f(t) dt.

(a) For almost every x the derivative F ′(x) exists and equals f(x).

(b) F is absolutely continuous.

(c) If G is an absolutely continuous function and G′(x) = f(x) for almost every x

then G differs from F by a constant.

As we show in the next section (Corollary 62), the tacit assumption in (c) that

G′(x) exists is redundant. Theorem 55 then gives the following characterization of

indefinite integrals. It is also called Lebesgue’s Main Theorem.

There is an open U ⊂ [a, b] of measure < δ that contains Z. Every U is a countable

disjoint union of open intervals IiII . Their total length is mU < δ. Thus GZ ⊂ >G(IiII )
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√

55 Theorem Let f : [a, b] → R be Lebesgue integrable and let F be its indefinite

integral F (x) =

∫ x

a
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f(t) dt.

x
√
x

(a) For almost every x the derivative F ′(x) exists and equals f(x).( ) F l t th d i ti F ′( ) i t d l f( )

(b) F is absolutely continuous.

(c) If G is an absolutely continuous function and G′(x) = f(x) for almost every x

then G diffi ers fromffff F by a constant.

As we show in the next section (Corollary 62), the tacit assumption in (c) that

G′(x) exists is redundant. Theorem 55 then gives the following characterization of

indefinite integrals. It is also called Lebesgue’s Main Theorem.

G largelarge. Thus, an absolutely continuous function can have |G(bi)−G(ai)|
∑
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56 Lebesgue’s Antiderivative Theorem Every indefinite integral is absolutely con-

tinuous and conversely, every absolutely continuous function has a derivative almost

everywhere and up to a constant it is the indefinite integral of its derivative.

Proof of Theorem 55 (a) This is Corollary 53.

(b) Without much loss of generality we assume f ≥ 0. We first suppose that f is

bounded, say 0 ≤ f(x) ≤ M for all x. For each ε > 0 the choice of δ = ε/M gives∑
m(F (Ii)) ≤

∑
Mm(Ii) < ε

whenever Ii are disjoint subintervals of [a, b] having total length < δ. Proposition 54

implies that F is absolutely continuous.

Now assume f is unbounded and ε > 0 is given. Choose M so large that

m({(x, y) ∈ Uf : fx ≥ M}) < ε/2.

Define the functions

g(x) =

{
fx if fx ≥ M

0 otherwise

and fM = f − g. The integral of g is < ε/2 since it is the measure of Uf outside

the rectangle [a, b] × [0,M ]. Let FM and G be the indefinite integrals of fM and g.

Clearly f = fM + g implies F = FM +G. See Figure 153.

M

Ug

U(fM ) U(fM )

Figure 153
∫
g = m(Ug) and

∫
f =
∫
g +
∫
fM = m(Ug) +m(U(fM )).

Since fM is bounded there exists δ > 0 such that∑
m(Ii) < δ ⇒

∑
m(FM (Ii)) < ε/2

where the Ii are disjoint intervals in [a, b]. Then
∑

m(Ii) < δ implies∑
m(F (Ii)) =

∑∫
Ii

(fM + g) =
∑∫

Ii

fM +
∑∫

Ii

g

=
∑

m(FM (Ii)) +
∑

m(G(Ii))

< ε/2 +

∫ b

a
g < ε,
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which completes the proof that F is absolutely continuous.

(c) The Lebesgue proof resembles the Riemann proof in Chapter 3 – the Vitali

Covering Lemma replaces the Lebesgue Number Lemma. We assume G is absolutely

continuous and G′(x) = f(x) almost everywhere. When F is the indefinite integral

of f we want to show that H = F −G is constant.

It is easy to see that sums and differences of absolutely continuous functions are

absolutely continuous, so H is absolutely continuous and H ′(x) = 0 almost every-

where. Fix any x∗∈ [a, b] and define

X = {x ∈ [a, x∗] : H ′(x) exists and H ′(x) = 0}.

By assumption mX = x∗− a.

It is enough to show that for each ε > 0 we have

|H(x∗)−H(a)| < ε.

Absolute continuity implies there is a δ > 0 such that if Ii = [ai, bi] ⊂ [a, b] are

disjoint intervals then∑
i

bi − ai < δ ⇒
∑
i

|H(bi)−H(ai)| < ε/2.

Fix such a δ. Each x ∈ X is contained in arbitrarily small intervals [x, x+h] ⊂ [a, x∗]
such that ∣∣∣∣H(x+ h)−H(x)

h

∣∣∣∣ <
ε

2(b− a)
.

These intervals form a Vitali covering V of X and the Vitali Covering Lemma implies

that countably many of them, say Vj = [xj , xj + hj ], disjointly cover X up to a zero

set. Thus their total length is
∑

hj = x∗− a and it follows that there is an N such

that
N∑
j=1

hj > x∗− a− δ.

Since |H(x+ h)−H(x)| < hε/2(b− a) on each V-interval we have

N∑
j=1

|H(xj + hj)−H(xj)| <
ε

2(b− a)

N∑
j=1

hj ≤ ε (x∗− a)

2(b− a)
≤ ε/2.



Section 10 Lebesgue’s Last Theorem 433

The N + 1 intervals Ij = [aj , bj ] complementary to the (interiors of the) intervals

V1, . . . , VN have total length < δ so
∑N

j=0 |H(bj)−H(aj)| < ε/2 by absolute conti-

nuity. Thus

H(x∗)−H(a) =

N∑
j=1

H(xj + hj)−H(xj) +

N∑
j=0

H(bj)−H(aj)

≤
N∑
j=1

|H(xj + hj)−H(xj)|+
N∑
j=0

|H(bj)−H(aj)|

< ε

which completes the proof that G differs from F by a constant.

See Figure 154.

a b

bjaj

xj xj + hj

bj+1

Ij

Vj+1Vj

x∗

Ij+1

aj+1

Figure 154 The complementary intervals Vj and Ij

10 Lebesgue’s Last Theorem
The final theorem in Lebesgue’s groundbreaking book, Leçons sur l’intégration, is

extremely concise and quite surprising.

57 Theorem A monotone function has a derivative almost everywhere.

Note that no hypothesis is made about continuity of the monotone function.

Considering the fact that a monotone function [a, b] → R has only a countable number

of discontinuities, all of jump type, this may seem reasonable, but remember – the

discontinuities may be dense in [a, b]. If the monotone function happens to be an

indefinite integral then differentiability was proved in Theorem55.

We assume henceforth that f is nondecreasing since the nonincreasing case can

be handled by looking at −f .
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Lebesgue’s proof of Theorem 57 used the full power of the machinery he had

developed for his new integration theory. In contrast, the proof given below is more

direct and geometric. It relies on the Vitali Covering Lemma and the following form

of Chebyshev’s inequality from probability theory.

The slope of f over [a, b] is

s =
f(b)− f(a)

b− a
.

58 Chebyshev Lemma Assume that f : [a, b] → R is nondecreasing and has slope

s over I = [a, b]. If I contains countably many disjoint subintervals Ik and the slope

of f over Ik is ≥ S > s then ∑
k

|Ik| ≤ s

S
|I| .

Proof Write Ik = [ak, bk]. Since f is nondecreasing we have

f(b)− f(a) ≥
∑
k

f(bk)− f(ak) ≥
∑
k

S(bk − ak).

Thus s |I| ≥ S
∑ |Ik| and the lemma follows.

Remark An extreme case of this situation occurs when the slope is concentrated in

the three subintervals drawn in Figure 155.

Proof of Lebesgue’s Last Theorem Not only will we show that f ′(x) exists al-

most everywhere, but we will also show that f ′(x) is a measurable function of x

and

(8)

∫ b

a
f ′(x) dx ≤ f(b)− f(a).

To estimate differentiability one introduces upper and lower limits of slopes called

derivates. If h > 0 then [x, x+ h] is a “right interval” at x and (f(x+ h)− f(x))/h

is a “right slope” at x. The lim sup of the right slopes as h → 0 is called the

right maximum derivate of f at x. It is denoted as Dright maxf(x). The lim inf

of the right slopes is the right minimum derivate of f at x and is denoted as

Dright minf(x). Similar definitions apply to the left of x. Think of Dright maxf(x) as

the steepest slope at the right of x and Dright minf(x) as the gentlest. See Figure 156.
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Figure 155 Chebyshev’s Inequality for slopes

Figure 156 Left and right slopes
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There are four derivates. They exist at all points of [a, b] but they can take the

value ∞. We first show that two are equal almost everywhere, say the left min and

the right max. Fix any s < S and consider the set

E = EsS = {x ∈ [a, b] : Dleft minf(x) < s < S < Dright maxf(x)}.

We claim that

(9) m∗E = 0.

At each x ∈ E there are arbitrarily small left intervals [x − h, x] over which the

slope is < s. These left intervals form a Vitali covering L of E. (Note that the point x

is not the center of its L-interval, but rather it is an endpoint. Also, we do not know

a priori that E is measurable. Luckily, Vitali permits this.) Let ε > 0 be given. By

the Vitali Covering Lemma there are countably many disjoint left intervals Li ∈ L
that cover E, modulo a zero set, and they do so ε-efficiently. That is, if we write

L = |
i
intLi

then E�L is a zero set and mL ≤ m∗E + ε.

Every y ∈ L∩E has arbitrarily small right intervals [y, y+ t] ⊂ L over which the

slope is > S. (Here it is useful that L is open.) These right intervals form a Vitali

covering R of L ∩ E, and by the Vitali Covering Lemma we can find a countable

number of disjoint intervals Rj ∈ R that cover L ∩ E modulo a zero set. Since

L ∩ E = E modulo a zero set, R = |Rj also covers E modulo a zero set. By the

Chebyshev Lemma we have

m∗E ≤ mR =
∑
i

∑
Rj⊂Li

|Rj | ≤
∑
i

s

S
|Li| ≤ s

S
(m∗E + ε).

Since the inequality holds for all ε > 0, it holds also with ε = 0 which implies that

m∗E = 0 and completes the proof of (9). Then

{x : Dleft minf(x) < Dright maxf(x)} = >
{(s,S)∈Q×Q : s<S}

EsS

is a zero set. Symmetrically, {x : Dleft minf(x) > Dright maxf(x)} is a zero set, and

therefore Dleft minf(x) = Dright maxf(x) almost everywhere. Mutual equality of the

other derivates, almost everywhere, is checked in the same way. See Exercise 64.

So far we have shown that for almost every x ∈ [a, b] the derivative of f at x

exists although it may equal ∞. Infinite slope is not really acceptable and that is
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the purpose of (8) – for an integrable function takes on a finite value at almost every

point.

The proof of (8) uses a cute trick reminiscent of the traveling secant method from

Chapter 3. First extend f from [a, b] to R by setting f(x) = f(a) for x < a and

f(x) = f(b) for x > b. Then define gn(x) to be the slope of the secant from (x, f(x))

to (x+ 1/n, f(x+ 1/n)). That is,

gn(x) =
f(x+ 1/n)− f(x)

1/n
= n(f(x+ 1/n)− f(x)).

See Figure 157. Since f is almost everywhere continuous it is measurable and so is

Figure 157 gn(x) is the slope of the right secant at x.

gn. For almost every x, gn(x) converges to f ′(x) as n → ∞. Hence f ′ is measurable

and clearly f ′ ≥ 0. Fatou’s Lemma gives∫ b

a
f ′(x) dx =

∫ b

a
lim inf
n→∞ gn(x) dx ≤ lim inf

n→∞

∫ b

a
gn(x) dx.

The integral of gn is∫ b

a
gn(x) dx = n

∫ b+1/n

b
f(x) dx − n

∫ a+1/n

a
f(x) dx.
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The first integral equals f(b) since we set f(x) = f(b) for x > b. The second integral

is at least f(a) since f is nondecreasing. Thus∫ b

a
gn(x) dx ≤ f(b)− f(a),

which completes the proof of (8). As remarked before, since the integral of f ′ is finite,
f ′(x) < ∞ for almost all x, and hence f is differentiable (with finite derivative) almost

everywhere.

59 Corollary A Lipschitz function is almost everywhere differentiable.

Proof Suppose that f : [a, b] → R is Lipschitz with Lipschitz constant L. Then for

all x, y ∈ [a, b] we have

|f(y)− f(x)| ≤ L |y − x|.
The function g(x) = f(x) + Lx is nondecreasing. Thus g′ exists almost everywhere

and so does f ′ = g′ − L.

Remark Corollary 59 remains true for a Lipschitz function f : Rn → R, it is

Rademacher’s Theorem, and the proof is much harder.

Definition The variation of a function f : [a, b] → R over a partition X : a =

x0 < · · · < xn = b is the sum
∑n

k=1 |Δkf |, where Δkf = f(xk) − f(xk−1). The

supremum of the variations over all partitions X is the total variation of f . If the

total variation of f is finite then f is said to be a function of bounded variation.

60 Theorem A function of bounded variation is almost everywhere differentiable.

Proof Up to an additive constant, a function of bounded variation can be written

as the difference f(x) = P (x)−N(x), where

P (x) = sup{
∑
k

Δkf : a = x0 < . . . < xn = x and Δkf ≥ 0}

N(x) = − inf{
∑
k

Δkf : a = x0 < . . . < xn = x and Δkf < 0}.

See Exercise 67. The functions P and N are monotone nondecreasing, so for almost

every x we have f ′(x) = P ′(x)−N ′(x) exists and is finite.

61 Theorem An absolutely continuous function is of bounded variation.
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Proof Assume that F : [a, b] → R is absolutely continuous and take ε = 1. There is

a δ > 0 such that if (ai, bi) are disjoint intervals in [a, b] with total length < δ then∑
i

bi − ai < δ ⇒
∑
i

|F (bi)− F (ai)| < 1.

Fix a partitionX of [a, b] withM subintervals of length < δ. For any partition Y : a =

y0 < . . . < yn = b of [a, b] we claim that
∑

k |Δkf | ≤ M , where Δkf = f(yk)−f(yk−1).

We may assume that Y contains X since adding points to a partition increases the

sum
∑ |Δkf |. Then∑

Y

|ΔkF | =
∑
Y1

|ΔkF | + . . . +
∑
YM

|ΔkF |

where Yj refers to the subintervals of Y that lie in the jth subinterval of X. The

subintervals in Yj have total length < δ, so the variation of F over them is < 1 and

the total variation of F is < M .

62 Corollary An absolutely continuous function is almost everywhere differentiable.

Proof Absolute continuity implies bounded variation implies almost everywhere dif-

ferentiability.

As mentioned in Section 9, Theorem 55 plus Corollary 62 express Lebesgue’s

Main Theorem,

Indefinite integrals are absolutely continuous and

every absolutely continuous function has a derivative

almost everywhere of which it is the indefinite integral.
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Appendix A Lebesgue integrals as limits
The Riemann integral is the limit of Riemann sums. There are analogous “Lebesgue

sums” of which the Lebesgue integral is the limit.

Let f : R → [0,∞) be given, take a partition Y : 0 = y0 < y1 < y2 < . . . on the

y-axis, and set

Xi = {x ∈ R : yi−1 ≤ f(x) < yi}.
(We require that yi → ∞ as i → ∞.) If f is measurable we define the lower Lebesgue

sum as

L(f, Y ) =
∞∑
i=1

yi−1 ·mXi.

L represents the measure of “Lebesgue rectangles” Xi × [0, yi−1) in the undergraph.

If f is measurable† then L ↑ ∫ f as the Y -mesh tends to 0. It is natural to define the

upper Lebesgue sum as
∑

yi ·m(Xi) and to expect that it converges down to
∫
f as

the Y -mesh tends to 0. If m({x : fx > 0}) < ∞ then this is true. However, if f(x)

is a function like e−x2
then there’s a problem. The first term in the upper Lebesgue

sum is always ∞ even though the integral is finite. The simplest solution is to split

the domain into cubes Q, work on each separately, and add the results. Then

L(fQ, Y ) ≤
∫
Q
fQ ≤ U(fQ, Y ),

where L(fQ, Y ) =
∑∞

i=1 yi−1 ·m(Xi ∩Q), U(fQ, Y ) =
∑∞

i=1 yi ·m(Xi ∩Q), and fQ is

the restriction of f to Q. As the Y -mesh tends to 0 the lower and upper Lebesgue

sums converge to the integral, just as in the Riemann case.

Upshot Lebesgue sums are like Riemann sums and Lebesgue integration is like Rie-

mann integration, except that Lebesgue partitions the value axis and takes limits

while Riemann does the same on the domain axis.

Appendix B Nonmeasurable sets
If t ∈ R is fixed then t-translation is the mapping x �→ x+ t. It is a homeomorphism

R → R. Think of the circle S1 as R modulo Z. That is, you identify any x with

x + n for n ∈ Z. Equivalently, you take the unit interval [0, 1] and you identify 1

†We are using the undergraph definition of measurability. Corollary 41 implies that the sets Xi

are measurable so the lower Lebesgue sum makes sense.
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with 0. Then t-translation becomes rotation by the angle 2πt, and is denoted as

Rt : S
1 → S1. If t is rational then this rotation is periodic, i.e., for some n ≥ 1, the

nth iterate of R, Rn = R◦ · · · ◦R, is the identity map S1 → S1. In fact the smallest

such n is the denominator when t = m/n is expressed in lowest terms. On the other

hand, if t is irrational then R = Rt is nonperiodic; every orbit O(x) = {Rk(x) : k ∈ Z}
is denumerable and dense in S1.

63 Theorem Let t be irrational and set R = Rt. If P ⊂ S1 contains exactly one

point of each R-orbit then P is nonmeasurable with respect to linear Lebesgue measure

on S1.

Proof The R-orbits are disjoint sets, there are uncountably many of them, and they

divide the circle as S1 = |n∈ZR
n(P ). Translation is a mesisometry. It preserves

outer measure, measurability, and measure. So does rotation. Can P be measurable?

No, because if it is measurable with positive measure then we would get

m(S1) =

∞∑
n=−∞

m(RnP ) = ∞,

a contradiction, while if mP = 0 then m(S1) =
∑∞

−∞m(RnP ) = 0, which contradicts

the fact that m[0, 1) = 1.

But does P exist? The Axiom of Choice states that given any family of nonempty

disjoint sets there exists a set that contains exactly one element from each set. So

if you accept the Axiom of Choice then you apply it to the family of R-orbits and

you get an example of a nonmeasurable set P , while if you don’t accept the Axiom

of Choice then you’re out of luck.

To increase the pathology of P we next discuss translations in more depth.

64 Steinhaus’ Theorem If E ⊂ R is measurable and has positive measure then

there exists a δ > 0 such that for all t ∈ (−δ, δ), the t-translate of E meets E.

See also Exercise 57.

65 Lemma If F ⊂ (a, b) is measurable and disjoint from its t-translate then

2mF ≤ (b− a) + |t|.
Proof F and its t-translate have equal measure, so if they do not intersect then their

total measure is 2mF , and any interval that contains them must have length ≥ 2mF .

If t > 0 then (a, b + t) contains F and its t-translate, while if t < 0 then (a + t, b)

contains them. The length of the interval in either case is (b− a) + |t|.

mesisometry
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Proof of Steinhaus’ Theorem By the Lebesgue Density Theorem (Theorem 47)

E has lots of density points so we can find an interval (a, b) in which E has con-

centration > 1/2. Call F = E ∩ (a, b). Then mF > (b − a)/2. By Lemma65 if

|t| < 2mF − (b− a) then the t-translate of F meets F , so the t-translate of E meets

E, which is what the theorem asserts.

Now we return to the nonmeasurable set P discussed in Theorem63. It contains

exactly one point from each R-orbit, R being rotation by an irrational t. Set

A = >
k∈Z

R2kP B = >
k∈Z

R2k+1P.

The sets A,B are disjoint, their union is the circle, and R interchanges them. Since

R preserves outer measure we have m∗A = m∗B.

The composite R2 = R ◦R is rotation by 2t, also an irrational number. Let ε > 0

be given. Since the orbit of 0 under R2 is dense there is a large integer k with

|R2k(0) − (−t)| < ε.

For R2k is the kth iterate of R2. Thus |R2k+1(0)| < ε so R2k+1 is a rotation by < ε.

Odd powers of R interchange A and B, so odd powers of R translate A and B off

themselves. It follows from Steinhaus’ Theorem that A and B contain no subsets of

positive measure. Their inner measures are zero.

The general formula mC = m∗A + m∗B in Lemma20 implies that m∗B = 1.

Thus we get an extreme type of nonmeasurability expressed in the next theorem.

66 Theorem The circle, or equivalently [0, 1), splits into two nonmeasurable disjoint

subsets that each has inner measure zero and outer measure one.

67 Corollary Every measurable set E ⊂ Rn of positive measure contains a dop-

pelgänger – a nonmeasurable subset N such that m∗N = mE, m∗N = 0, and N

“spreads itself evenly” throughout E in the sense that if E′ ⊂ E is measurable then

m∗(N ∩ E′) = m(E′).

The proof is left to you as Exercise 50.



Appendix C Borel versus Lebesgue 443

Appendix C Borel versus Lebesgue
A valid criticism of Lebesgue theory as described in this chapter is that it conflicts a

bit with topology, and problems arise if you try to think of Lebesgue measure theory

in category terms. For example, not all homeomorphisms are meseomorphisms and

composition of Lebesgue measurable functions can fail to be Lebesgue measurable.

See Exercise 79.

To repair these defects Armand Borel proposed replacing the σ-algebra M of

Lebesgue measurable sets with a smaller one, B ⊂ M, and restricting Lebesgue

measure to it. B is simply the intersection of all σ-algebras that include the open

sets. There is one such σ-algebra, namely M, so B exists and is contained in M.

It includes all Gδ-sets (countable intersections of open sets), all Gδσ-sets (countable

unions of Gδ-sets), etc. Thus Gδ ⊂ Gδσ ⊂ Gδσδ ⊂ · · · ⊂ B, where Gδ is the collection

of all Gδ-sets, Gδσ is the collection of all Gδσ-sets, etc. Likewise Fσ ⊂ Fσδ ⊂ · · · ⊂ B
for Fσ-sets, Fσδ-sets, etc. See Exercise 8.

A set is Borel measurable if it belongs to B, and a nonnegative function is

Borel measurable if its undergraph is a Borel measurable set. Equivalently a function

is Borel measurable if the preimage of a Borel set is always Borel. The measure of

E ∈ B is its Lebesgue measure and the integral of a Borel measurable function is its

Lebesgue integral. All continuous functions are Borel measurable and the composition

of Borel measurable functions is Borel measurable. That’s good.

However, B has its own defects, the main one being that it is not complete. That

is, not all subsets of a zero set are Borel measurable. (Recall that every subset of

a zero set is Lebesgue measurable.) In the same vein, the limit of a sequence of

Borel measurable functions that converge almost everywhere can fail to be Borel

measurable. See Exercise 80.

I chose not to use the Borel approach in this chapter because it adds an extra

layer of complication to the basic Lebesgue theory. You could not state the Monotone

Convergence Theorem as “if fn is (Borel) measurable and fn ↑ f then
∫
fn ↑ ∫ f .”

No. You would also need to assume f is Borel measurable.

But the real reason I chose M over B is that I like pathology. The fact that there

are ugly zero sets – zero sets carried by homeomorphisms to nonmeasurable sets – is

eye-opening. I want you to see them as part of the Lebesgue picture.

Here are a couple of relevant remarks from mathoverflow in answer to the ques-

tion “Why do probabilists take random variables to be Borel (and not Lebesgue)

measurable?”
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Yuval Peres: One reason is that probabilists often consider more than

one measure on the same space, and then a negligible set for one measure

(added in a completion) might be not negligible for the other. The situa-

tion becomes more acute when you consider uncountably many different

measures (such as the distributions of a Markov process with different

starting points.)

Terry Tao: This is also a reason why the Borel sigma algebra on the

domain is often preferred in ergodic theory. (A closely related reason is

because of the connection between ergodic theory and topological dynam-

ics; a topological dynamical system has a canonical Borel sigma algebra

but not a canonical Lebesgue sigma algebra.) On the other hand, a signif-

icant portion of ergodic theory is also concerned with almost everywhere

convergence (wrt some reference invariant measure, of course), and then

it becomes useful for the domain sigma algebra to be complete...

Appendix D The Banach-Tarski Paradox

If the nonmeasurable examples in AppendixB do not disturb you enough, here is a

much worse one. You can read about it in Stan Wagon’s book, The Banach-Tarski

Paradox. Many other paradoxes are discussed there too.

The solid unit ball in 3-space can be divided into five disjoint sets, A1, . . . , A5,

and the Ai can be moved by rigid motions to new disjoint sets A′
i whose union is two

disjoint unit balls. The Axiom of Choice is fundamental in the construction, as is

dimensionality greater than two. The sets Ai are nonmeasurable.

Think of this from an alchemist’s point of view. A one inch gold ball can be cut

into five disjoint pieces and the pieces rigidly re-assembled to make two one inch gold

balls. Repeating the process would make you very rich.

re-assembled
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Appendix E Riemann integrals as undergraphs
The geometric description of the Lebesgue integral as the measure of the undergraph

has a counterpart for Riemann integrals.

68 Theorem A function f : [a, b] → [0,M ] is Riemann integrable if and only if the

topological boundary of its undergraph is a zero set, m(∂(Uf)) = 0.

Remark Recall from page 401 that the measure-theoretic boundary of a set A is

∂m(A) = H�K

where H and K are the hull and kernel of A. Measurability of E is equivalent to

∂m(E) being a zero set. A function f : [a, b] → [0,M ] is Lebesgue integrable if and

only if it is measurable, i.e, if and only if Uf is a measurable set, which is true if and

only if ∂m(Uf) is a zero set. Combined with Theorem68 this gives a nice geometric

parallel between Riemann and Lebesgue integrability of bounded functions:

f is Riemann integrable ⇐⇒ m(∂(Uf)) = 0.

f is Lebesgue integrable ⇐⇒ m(∂m(Uf)) = 0.

Remark Since ∂(Uf) = Uf � int(Uf), equivalent to m(∂(Uf)) = 0 is m(int(Uf)) =
m(Uf).

69 Lemma If X is a metric space, f : X → [0,∞), and

f(x) = lim inf
t→x

f(t) f(x) = lim sup
t→x

f(t)

then Uf = int(Uf) and Ûf = Uf .

Proof Take any (x, y) ∈ Uf . Then y < f(x) and for all (t, s) near (x, y) we have

s < f(t). Thus (t, s) ∈ Uf , (x, y) ∈ int(Uf), and Uf ⊂ int(Uf). The proof of the

reverse inclusion is similar, so Uf = int(Uf). See Figure 158.

The proof that Ûf = Uf is slightly different. If (x, y) ∈ Ûf then y ≤ f(x) so there

exists tn → x such that f(tn) → f(x). Choose yn < f(tn) such that yn → y. Thus

(tn, yn) ∈ Uf , (tn, yn) → (x, y), (x, y) ∈ Uf , and Ûf ⊂ Uf . Conversely, if (x, y) ∈ Uf
then there exists (tn, yn) ∈ Uf such that (tn, yn) → (x, y). Then yn < f(tn) and

lim sup
n→∞

f(tn) ≥ lim
n→∞ yn = y. Thus, y ≤ f(x), (x, y) ∈ Ûf , and Uf ⊂ Ûf , giving

equality, Ûf = Uf . See Figure 158.

Remark Recall from page 401 that the measure-theoretic boundary of a set A is

∂m∂∂ (A) = H�K

where H and K are the hull and kernel of A. M

of bounded functions:
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(t, s) (x, y)

(t, ft)

t x

(x, fx)

(x, y)

x

(x, fx)

(tn, f(tn))

(tn, yn)

tn

Figure 158 The shaded region is contained in the interior of Uf .

Proof of Theorem68 Applying Lemma69 to f : [a, b] → [0,M ] gives

Uf = int(Uf) and Ûf = Uf.

Since open sets and closed sets are measurable, this implies f and f are measurable

functions. Thus

m(∂(Uf)) = m(Uf� int(Uf)) = m(Ûf)−m(Uf) =

∫
[a,b]

f − f.

The integral is zero if and only if f = f almost everywhere, i.e., if and only if f is

continuous almost everywhere, i.e., by the Riemann-Lebesgue Theorem (Theorem23

in Chapter 3) if and only if f is Riemann integrable.

70 Corollary If f is Riemann integrable then it is Lebesgue integrable and the two

integrals are equal.

Proof Since

interiorUf ⊂ Uf ⊂ closureUf,
equality of the measures of its interior and closure implies that Uf is measurable, and

it shares their common measure. Since the Lebesgue integral of f is equals m(Uf)
the proof is complete.

Remark The undergraph definition of integrals has a further expression in terms of

Jordan content: The Riemann integral of a function f : [a, b] → [0,M ] is the Jordan

content of its undergraph, J(Uf), provided that J(Uf) exists. See Exercises 11 - 14.

In brief, Undergraphs lead to natural pictorial ways of dealing with integrals, both

Riemann and Lebesgue.
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Appendix F Littlewood’s Three Principles
In the following excerpt from his book on complex analysis, Lectures on the Theory

of Functions, J.E. Littlewood seeks to demystify Lebesgue theory. It owes some of

its popularity to its prominence in Royden’s classic text, Real Analysis.

The extent of knowledge [of real analysis] required is nothing like as great

as is sometimes supposed. There are three principles, roughly expressible

in the following terms: Every (measurable) set is nearly a finite sum of

intervals; every function (of class Lλ) is nearly continuous; and every

convergent sequence of functions is nearly uniformly convergent. Most of

the results of the present section are fairly intuitive applications of these

ideas, and the student armed with them should be equal to most occasions

when real variable theory is called for. If one of the principles would be

the obvious means to settle a problem if it were “quite” true, it is natural

to ask if the “nearly” is near enough, and for a problem that is actually

soluble it generally is.†

Littlewood’s First Principle expresses the regularity of Lebesgue measure

(Theorem11). Given ε > 0, a measurable E ⊂ [a, b] contains a compact subset

covered by finitely many intervals whose union differs from E by a set of measure

less than ε. In that sense, E is nearly a finite union of intervals. I like very much

Littlewood’s choice of the term “nearly,” meaning “except for an ε-set,” to contrast

with “almost,” meaning “except for a zero set.”

Littlewood’s Second Principle refers to “functions of class Lλ,” although

he might better have said “measurable functions.” He means that if you have a

measurable function and you are given ε > 0 then you can discard an ε-set from

its domain of definition and the result is a continuous function. This is Lusin’s

Theorem: a measurable function is nearly continuous.

Proof of Lusin’s Theorem We assume that f : Rn → R is measurable and ε > 0

is given. Enumerate the set of open intervals with rational endpoints as I1, I2, . . . .

Then Ei = fpre(Ii) is measurable, so there exists a sandwich Ki ⊂ Ei ⊂ Ui where

Ki is closed, Ui is open and m(Ui
�Ki) < ε/2i. Let Si = Ui

�Ki be this “collar” of

Ei. The set S = >Si is open and has measure < ε. Then K = Sc is closed, and we

claim that f |K is continuous. Let xk → x in K. Given σ > 0, we must show there

†Reprinted from Lectures on the Theory of Functions by J.E. Littlewood (1994) by permission of

Oxford University Press.

Proof of Lusin’s Theorem We assume that f : Rn → R is measurable and ε > 0

is given. Enumerate the set of open intervals with rational endpoints as I1, I2II , . . . .is given Enumerate the set of open intervals with rational endpoints as I1 I2II

Then EiEE = fpre(IiII ) is measurable, so there exists a sandwich KiKK ⊂ EiEE ⊂ UiUU where

KiKK is closed, UiUU is open and m(UiUU �KiKK ) < ε/2 . Let SiSS = UiUU �KiKK be this collar ofKiK is closed UiU is open and m(UiU �KiK ) < ε/2i Let SiS = UiU �KiK be this “collar” of

EiEE . The set S = >SiSS is open and has measure < ε. Then K = Sc is closed, and we

claim that f |K is continuous. Let xk → x in K. Given σ > 0, we must show therel i th t f | i ti L t i K Gi 0 t h th
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exists κ such that k ≥ κ implies |f(xk)− f(x)| < σ. (To avoid abuse of notation, σ

is playing the rôle of ε, which was already used in finding S.)

There is an Ii such that fx ∈ Ii and the length of Ii is < σ. Thus x ∈ Ei ⊂ Ui.

Since x ∈ K, x /∈ Si, i.e., x ∈ Ki. Since Ui is open and xk → x, there is a κ such

that k ≥ κ implies xk ∈ Ui. Again, since xk ∈ K, xk /∈ Si, which shows that xk ∈ Ki

when k ≥ κ. Hence f(xk) and f(x) both lie in Ii, so |f(xk)− f(x)| < σ.

Littlewood’s Third Principle concerns a sequence of measurable functions

fn : [a, b] → R that converges almost everywhere to a limit. Except for an ε-set the

convergence is actually uniform, which is Egoroff’s Theorem: Almost everywhere

convergence implies nearly uniform convergence.

Proof of Egoroff’s Theorem Set

X(k, �) = {x ∈ [a, b] : ∀n ≥ k we have |fn(x)− f(x)| < 1/�}.

Fix � ∈ N. Since fn(x) → f(x) for almost every x we have >k X(k, �) ∪ Z(�) = [a, b]

where Z(�) is a zero set.

Let ε > 0 be given. By measure continuity m(X(k, �)) → b − a as k → ∞.

This implies we can choose k1 < k2 < . . . such that for X� = X(k�, �) we have

m(Xc
� ) < ε/2�. Thus m(Xc) < ε where X = <�X�.

We claim that fn converges uniformly on X. Given σ > 0 we choose and fix �

such that 1/� < σ. For all n ≥ k� we have

x ∈ X ⇒ x ∈ X� = X(k�, �) ⇒ |fn(x)− f(x)| < 1/� < σ.

Hence fn converges uniformly to f off the ε-set Xc. (We used σ to avoid writing ε

with two different meanings.)

See also Exercise 83.

exists κ such that k ≥ κ implies |f(xk)− f(x)| < σ. (To avoid abuse of notation, σ

is playing the role of ε, which was already used in finding S.)is playing the rôle of ε which was already used in finding S )

There is an IiII such that fx ∈ IiII and the length of IiII is < σ. Thus x ∈ EiEE ⊂ UiUU .

Since x ∈ K, x /∈// SiSS , i.e., x ∈ KiKK . Since UiUU is open and xk → x, there is a κ suchce x ∈ K x /∈// SiS i e x ∈ KiK Since UiU is open and xk → x there is a κ such

that k ≥ κ implies xk ∈ UiUU . Again, since xk ∈ K, xk /∈// SiSS , which shows that xk ∈ KiKKthat k ≥ κ implies xk ∈ UiU Again since xk ∈ K xk /∈// SiS which shows that xk ∈ KiK

when k ≥ κ. Hence f(xk) and f(x) both lie in IiII , so |f(xk)− f(x)| < σ.when k ≥ κ Hence f(xk) and f(x) both lie in IiI so |f(xk)− f(x)| < σ
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Appendix G Roundness
The density of a set E at p is the limit, if it exists, of the concentration of E in a ball

or cube that shrinks down to p. What if you used another shape such an ellipsoid or

solid torus? Would it matter? The answer is “somewhat.”

Let us say that a neighborhood U of x is K-quasi-round if it can be sandwiched

between balls B ⊂ U ⊂ B′ with diamB′ ≤ K diamB. A ball is 1-quasi-round while

a square is
√
2-quasi-round.

It is not hard to check that if x is a density point with respect to balls then it also

a density point with respect to K -quasi-round neighborhoods of x, provided that

K is fixed as the neighborhoods shrink to x. See Exercises 60 and 61. When the

neighborhoods are not quasi-round, the density point analysis becomes marvelously

complicated. See Falconer’s book, The Geometry of Fractal Sets.

Appendix H Money
Riemann and Lebesgue walk into a room and find a table covered with hundreds of

U.S. coins. (Well, . . . ) How much money is there?

Riemann solves the problem by taking the coins one at a time and adding their

values as he goes. As he picks up a penny, a nickel, a quarter, a dime, a penny, etc.,

he counts: “1 cent, 6 cents, 31 cents, 41 cents, 42 cents, etc.” The final number is

Riemann’s answer.

In contrast, Lebesgue first sorts the coins into piles of the same value (partitioning

the value axis and taking preimages); he then counts each pile (applying counting

measure); and he sums the six terms, “value v times number of coins with value v,”

and that is his answer.

Lebesgue’s answer and Riemann’s answer are of course the same number. It is

their methods of calculating that number which differ.

Now imagine that you walk into the room and behold this coin-laden table. Which

method would you actually use to find out how much money there is – Riemann’s or

Lebesgue’s? This amounts to the question: Which is the “better” integration theory?

As an added twist suppose you have only sixty seconds to make a good guess. What

would you do then?
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Exercises
1. (a) Show that the definition of linear outer measure is unaffected if we demand

that the intervals Ik in the coverings be closed instead of open.

(b) Why does this immediately imply that the middle-thirds Cantor set has
linear outer measure zero?

(c) Show that the definition of linear outer measure is unaffected if we drop
all openness/closedness requirements on the intervals Ik in the coverings.

(d) What about planar outer measure? Specifically, what if we demand that
the rectangles be squares?

2. The volume of an n-dimensional box is the product of the lengths of its edges
and the outer measure of A ⊂ Rn is the infimum of the total volume of countable
coverings of A by open boxes.

(a) Write out the proof of the outer measure axioms for subsets of Rn.

(b) Write out the proof that the outer measure of a box equals its volume.

3. A line in the plane that is parallel to one of the coordinate axes is a planar zero
set because it is the Cartesian product of a point (it’s a linear zero set) and R.

(a) What about a line that is not parallel to a coordinate axis?

(b) What is the situation in higher dimensions?

4. The proof of Lemma11 was done in the plane. The key insight was that a
square S contains a disc Δ such that mΔ/mS > 1/2. Find a corresponding
inequality in n-space and write out the n-dimensional proofs of the lemma and
Theorem9 carefully.

5. Prove that every closed set in R or Rn is a Gδ-set. Does it follow at once that
every open set is an Fσ-set? Why?

6. Complete the proofs of Theorems 16 and 21 in the unbounded, n-dimensional
case. [Hint: How can you break an unbounded set into countably many disjoint
bounded pieces?]

7. Show that inner measure is translation invariant. How does it behave under
dilation? Under affine motions?

*8. Prove that R� Q is an Fσδ-set but not an Fσ-set. [Hint: Baire.] Infer that
Fσ �= Fσδ. You can google “Descriptive Set Theory” for further inequalities like
this.

9. Theorem16 implies that if E is measurable then its inner and outer measures
are equal. Is the converse true? [Proof or counterexample.]

10. For an arbitrary set M define ω : 2M → [0,∞] as ω(S) = #(S), where 2M

is the power set of M (the collection of all subsets of M) and #(S) is the
cardinality of S. Prove that ω is an abstract outer measure and all sets S ⊂ M
are measurable. [This is counting measure. It makes frequent appearances
in counterexamples in abstract measure theory.]

11. The outer Jordan content of a bounded set A ⊂ R is the infimum of the
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total lengths of finite coverings of A by open intervals,

J∗A = inf

{
n∑

k=1

|Ik| : each Ik is an open interval and A ⊂
n

>
k=1

Ik

}
.

The corresponding definitions of outer Jordan content in the plane and n-space
substitute rectangles and boxes for intervals.

(a) Show that outer Jordan content satisfies

(i) J∗(∅) = 0.

(ii) If A ⊂ B then J∗A ≤ J∗B.

(iii) If A = >n
k=1Ak then J∗A ≤

n∑
k=1

J∗Ak.

(b) (iii) is called finite subadditivity. Find an example of a set A ⊂ [0, 1] such
that A = >∞

k=1Ak, J
∗Ak = 0 for all k, and J∗A = 1, which shows that

finite subadditivity does not imply countable subadditivity and that J∗ is
not an outer measure.

(c) Why is it clear thatm∗A ≤ J∗A, and that if A is compact thenmA = J∗A?
What about the converse?

(d) Show that the requirement that the intervals in the covering of A be open
is irrelevant.

12. Prove that
J∗A = J∗A = mA

where A is the closure of A.

13. If A,B are compact prove that

J∗(A ∪B) + J∗(A ∩B) = J∗A + J∗B.

[Hint: Is the formula true for Lebesgue measure? Use Exercise 12.]

14. The inner Jordan content of a subset A of an interval I is

J∗A = |I| − J∗(I�A).

(a) Show that
J∗A = m(interiorA).

(b) A bounded set A with equal inner and outer Jordan content is said to have
content or to be Jordan measurable, and we write J∗A = JA = J∗A,
even though J is not a measure. (Is this any worse than functions with
infinite integrals being nonintegrable?)

(c) Infer from Theorem 68 and the Riemann-Lebesgue Theorem that f :
[a, b] → [0,M ] is Riemann integrable if and only if its undergraph is Jordan
measurable, and in that case its Riemann integral equals J(Uf).
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*15. Construct a Jordan curve (homeomorphic copy of the circle) in R2 that has
positive planar measure. [Hint: Given a Cantor set in the plane, is there a
Jordan curve that contains it? Is there a Cantor set in the plane with positive
planar measure? (Take another look at Section 9 in Chapter 2.)]

16. Write out the proofs of Lemmas 23, 16, and 24 in the n-dimensional case.

17. Write out the proofs of the Measurable Product Theorem (Theorem21) and
the Zero Slice Theorem (Theorem25) in the unbounded, n-dimensional case.

**18. Suppose that E is measurable and bounded.

(a) If E ⊂ R and ε > 0 is given, prove there exists a fat Cantor set F ⊂ E
such that mE ≤ m(F ) + ε. [Hint: Review Exercise 2.151.]

(b) Do the same in Rn.

(c) Do the same in R and Rn if E is nonmeasurable but m∗E > 0. [Hint:
KE .]

**19. Consider linear Lebesgue measure m1 on the interval I and planar Lebesgue
measure m2 on the square I2. Construct a mesisometry I → I2. Thus mesi-
sometry disrespects topology: (I,M(I),m1) is mesisometric to (I2,M(I2),m2).
[Hint: You might use the following outline. The inclusion I�Q → I is injective
and preserves m1. You can convert it to a bijection α : I�Q → I by choosing a
countable set L ⊂ I�Q and then choosing any bijection α0 : L → L ∪ (Q ∩ I).
Then you can set α(x) = α0(x) when x ∈ L and α(x) = x otherwise. Why
is α is a mesisometry? (Already this shows that nonhomeomorphic spaces can
have mesisometric measure spaces.) In the same way there is a mesisometry
β : I2�Q2 → I2. Then let A = I�Q. Express x ∈ A as a base-2 expansion

x = (a1a2a3a4a5a6 . . . )

using the digits 0 and 1. It is unique since x is irrational. Then consider the
function σ : A → I2,

σ(x) = (a1a3a5 . . . , a2a4a6 . . . )

Prove that (up to zero sets) σ sends dyadic intervals of length 1/2n to dyadic
squares of area 1/2n, and that this implies σ preserves measure. Conclude that
T = β ◦ σ ◦ α−1 is a mesisometry I → I2.]

20. Generalize Exercise 19 with R in place of I and then with Rn in place of R.

*21. Suppose that U, V ⊂ Rn are open. If a homeomorphism T : U → V and
its inverse send Lebesgue zero sets to Lebesgue zero sets prove that it is a
Lebesgue meseomorphism (U,M(U),m|U ) → (V,M(V ),m|V ). [Note that the
homeomorphism T : R → R which sends the fat Cantor set to the standard
Cantor set sends zero sets to zero sets but T−1 does not.]

22. If U, V ⊂ Rn are open and T : U → V is a Lipeomorphism (i.e., a Lipschitz
homeomorphism with Lipschitz inverse) use Exercise 21 to show that T is a
meseomorphism with respect to Lebesgue measure.

mesisometry mesi
sometry mesisometric

mesisometry
mesisometric mesisometry

Prove that (up to zero sets) σ sends dyadic intervals of length 1/2n to dyadic
squares of area 1/2n, and that this implies σ preserves measure.

( )

is a mesisometry I
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23. Use Exercise 22 and the n-dimensional Mean Value Theorem to prove that a
diffeomorphism T : U → V is a meseomorphism. [Pay attention to the fact
that U and V are noncompact.]

24. (a) If T : R → R is a continuous mesisometry prove that T is rigid.

(b) What if T is discontinuous?

(c) Find a continuous non-affine mesisometry T : R2 → R2. [Hint: Diver-
gence.]

25. Let f : R → [0,∞) be given.

(a) If f is measurable why is the graph of f a zero set?

(b) If the graph of f is a zero set does it follow that f is measurable?

**(c) Read about transfinite induction and go to stackexchange to see that there
exists a nonmeasurable function f : [a, b] → [0,∞) whose graph is non-
measurable.

(d) Infer that the measurability hypothesis in the Zero Slice Theorem (Theo-
rem25) is necessary since every vertical slice graph of the function in (c)
is a zero set (it is just a single point) and yet the graph has positive outer
measure.

(e) Why can a graph never have positive inner measure?

(f) How does (c) yield an example of uncountably many disjoint subsets of
the plane, each with infinite outer measure?

(g) What assertion can you make from (f) and Exercise 19?

26. Theorem35 states that Tf is a mesisometry when f : R → [0,∞) is integrable.
Prove the same thing when f : R → [0,∞) is measurable. What about a
measurable function Rn → R? [Hint: Express f as

∑
i,k fi,k, where the support

of fi,k is [i − 1, i) ∩ fpre([k − 1, k)). Why is fi,k integrable and how does this
imply that Tf is a mesisometry?]

27. Using the undergraph definition, check linearity of the integral directly for two
measurable characteristic functions, f = χF and g = χG.

28. The total undergraph of f : R → R is Uf = {(x, y) : y < f(x)}.
(a) Using undergraph pictures, show that the total undergraph is measurable

if and only if the positive and negative parts of f are measurable.

(b) Suppose that f : R → (0,∞) is measurable. Prove that 1/f is measurable.
[Hint: The diffeomorphism T : (x, y) �→ (x, 1/y) sends Uf to (Û(1/f))c.]

(c) Suppose that f, g : R → (0,∞) are measurable. Prove that f · g is mea-
surable. [Hint: T : (x, y) �→ (x, log y) sends Uf and Ug to U(log f) and
U(log g). How does this imply log fg is measurable, and how does use of
T−1 : (x, y) �→ (x, ey) complete the proof?]

(d) Remove the hypotheses in (a)-(c) that the domain of f, g is R.

(e) Generalize (c) to the case that f, g have both signs.

non-affine mesisometry

mesisometry

mesisometry

mesisometry

(Û(1/f))c
f · g is me
U(log f) a

(U
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29. A function f : M → R is upper semicontinuous if

lim
k→∞

xk = x ⇒ lim sup
k→∞

f(xk) ≤ f(x).

(M can be any metric space.) Equivalently, lim sup
y→x

fy ≤ fx.

(a) Draw a graph of an upper semicontinuous function that is not continuous.

(b) Show that upper semicontinuity is equivalent to the requirement that for
every open ray (−∞, a), the preimage fpre(−∞, a) is an open set.

(c) Lower semicontinuity is defined similarly. Work backward from the fact
that the negative of a lower semicontinuous function is upper semicontin-
uous to give the definition in terms of lim infs.

30. Given a compact set K ⊂ R× [0,∞) define

g(x) =

{
max{y : (x, y) ∈ K if K ∩ (x× R) 	= ∅
0 otherwise.

Prove that g is upper semicontinuous.

31. Prove that a measurable function f is sandwiched as u ≤ f ≤ v, where u is
upper semicontinuous, v is lower semicontinuous (we permit v(x) = ∞ at some
points), and v − u has small integral. [Hint: Exercise 30 and regularity.]

32. Prove Proposition 38.

33. Suppose that fk : [a, b] → Rn converges almost everywhere to f as k → ∞.

(a) Verify that the Dominated Convergence Theorem fails if there is no inte-
grable dominating function g.

(b) Verify that the inequality in Fatou’s Lemma can be strict.

34. If fn : R → [0,∞) is a sequence of integrable functions, fn ↓ f a.e. as n → ∞,
and

∫
fn ↓ 0. Prove that f = 0 almost everywhere.

35. Find a sequence of integrable functions fk : [a, b] → [0, 1] such that
∫ b
a fk → 0

as k → ∞ but it is not true that fk(x) converges to 0 a.e.

36. Show that the converse to the Dominated Convergence Theorem fails in the
following sense: There exists a sequence of functions fk : [a, b] → [0,∞) such

that fk → 0 almost everywhere and
∫ b
a fk → 0 as k → ∞, but there is no

integrable dominator g. [Hint: Stare at steeples or the graph of f(x) = 1/x.]

37. Suppose that a sequence of integrable functions fk converges almost everywhere
to f as k → ∞ and fk takes on both positive and negative values. If there exists
an integrable function g such that for almost every x we have |fk(x)| ≤ g(x),
prove that

∫
fk → ∫

f as k → ∞.

38. If f and g are integrable prove that their maximum and minimum are integrable.

39. Suppose that f and g are measurable and their squares are integrable. Prove

(we permit v(x) = ∞ at some
ercise 30 and regularity ]points),

steeplesat
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that fg is measurable, integrable, and

∫
fg ≤

√∫
f2

√∫
g2.

[Hint: Exercise 28 helps.]

40. Find an example where Exercise 39 fails if “square integrable” is replaced with

41. Suppose that fk is a sequence of integrable functions and
∑∫ |fk| < ∞. Prove

that
∑

fk is integrable and

∫ ∞∑
k=1

fk =
∞∑
k=1

∫
fk.

*42. Prove that

∫ ∞

0
e−x cos

√
x dx = 1− 1

2
+

2!

4!
− 3!

6!
+

4!

8!
− 5!

10!
+ . . .

43. Prove that g(y) =
∫∞
0 e−x sin(x+ y) dx is differentiable and find g′(y).

44. Write out the proof of the multidimensional Cavalieri’s Principle (Theorem39).

45. As in Corollary 41 we say that a function f : R → R is preimage measurable
if for each a ∈ R the set fpre([a,∞)) = {x ∈ R : a ≤ f(x)} is Lebesgue
measurable. This is the standard definition for measurability of a function.
Prove that the following are equivalent conditions for preimage measurability
of f : R → R.

(a) The preimage of every closed ray [a,∞) is measurable.

(b) The preimage of every open ray (a,∞) is measurable.

(c) The preimage of every closed ray (−∞, a] is measurable.

(d) The preimage of every open ray (−∞, a) is measurable.

(e) The preimage of every half-open interval [a, b) is measurable.

(f) The preimage of every open interval (a, b) is measurable.

(g) The preimage of every half-open interval (a, b] is measurable.

(h) The preimage of every closed interval [a, b] is measurable.

(i) The preimage of every open set is measurable.

(j) The preimage of every closed set is measurable.

(k) The preimage of every Gδ-set is measurable.

(l) The preimage of every Fσ-set is measurable.

√
x dx

and find g′(y).

“integrable.”
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*46. Here is a trick question: “Are there any functions for which the Riemann in-
tegral converges but the Lebesgue integral diverges?” Corollary 70 would sug-
gest the answer is “no.” Show, however, that the improper Riemann integral∫ 1
0 f(x) dx of

f(x) =

⎧⎪⎨⎪⎩
π

x
sin

π

x
if x �= 0

0 if x = 0

exists (and is finite) while the Lebesgue integral is infinite. [Hint: Integration
by parts gives ∫ 1

a

π

x
sin

π

x
dx = x cos

π

x

∣∣∣1
a
−
∫ 1

a
cos

π

x
dx.

Why does this converge to a limit as a → 0+? To check divergence of the
Lebesgue integral, consider intervals [1/(k + 1), 1/k]. On such an interval the
sine of π/x is everywhere positive or everywhere negative. The cosine is +1 at
one endpoint and −1 at the other. Now use the integration by parts formula
again and the fact that the harmonic series diverges.]

*47. A nonnegative linear combination of measurable characteristic functions is a
simple function. That is,

φ(x) =
n∑

i=1

ci · χEi(x)

where E1, . . . , En are measurable sets and c1, . . . , cn are nonnegative constants.
We say that

∑
ciχEi “expresses” φ. If the sets Ei are disjoint and the coefficients

ci are distinct and positive then the expression for φ is called canonical.

(a) Show that a canonical expression for a simple function exists and is unique.

(b) It is obvious that the integral of φ =
∑

ciχEi (the measure of its un-
dergraph) equals

∑
cim(Ei) if the expression is the canonical one. Prove

carefully that this remains true for every expression of a simple function.

(c) Infer from (b) that
∫
φ+ ψ =

∫
φ+
∫
ψ for simple functions.

(d) Given measurable f, g : R → [0,∞), show that there exist sequences of
simple functions φn ↑ f and ψn ↑ g as n → ∞.

(e) Combine (c) and (d) to revalidate linearity of the integral.

In fact this is often how the Lebesgue integral is developed. A “preintegral”
is constructed for simple functions, and the integral of a general nonnegative
measurable function is defined to be the supremum of the preintegrals of lesser
simple functions.

*48. The Devil’s ski slope. Recall from Chapter 3 that the Devil’s staircase function
H : [0, 1] → [0, 1] is continuous, nondecreasing, constant on each interval com-
plementary to the standard Cantor set, and yet is surjective. For n ∈ Z and
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x ∈ [0, 1] we define Ĥ(x + n) = H(x) + n. This extends H to a continuous
surjection R → R. Then we set

Hk(x) = Ĥ(3kx) and J(x) =
∞∑
k=0

Hk(x)

4k
.

Prove that J is continuous, strictly increasing, and yet J ′ = 0 almost every-
where. [Hint: Fix a > 0 and let

Sa = {x : J ′(x) exists, J ′(x) > a, and

x belongs to the constancy intervals of every Hk}.

Use the Vitali Covering Lemma to prove that m∗(Sa) = 0.]

*49. Prove that f : R → R is Lebesgue measurable if and only if the preimage of
every Borel set is a Lebesgue measurable. What about f : Rn → R?

*50. (a) Prove Corollary 67: Each measurable E ⊂ R with mE > 0 contains a
nonmeasurable setN withm∗N = mE, m∗N = 0, and for each measurable
E′ ⊂ E we have m(E′) = m∗(N ∩ E′). (N is a “doppelgänger” of E.)
[Hint: Try N = P ∩ E when E ⊂ [0, 1) and P is the nonmeasurable set
from Theorem66.]

(b) Is N uniquely determined (modulo a zero set) by E?

51. Generalize Theorem66 and Exercise 50 to Rn. [Hint: Think about P × P and
its complement in I2.]

Remark There are even worse situations. Rn is the disjoint union of #R sets
like P . This fact involves “Bernstein sets” and transfinite induction. See also
Exercise 25.

52. If T : Rn → Rn is a meseomorphism prove that mZ = 0 implies m(TZ) = 0.
[Hint: doppelgängers.]

53. Consider the function f : R2 → R defined by

f(x, y) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

y2
if 0 < x < y < 1

−1

x2
if 0 < y < x < 1

0 otherwise.

(a) Show that the iterated integrals exist and are finite (calculate them) but
the double integral does not exist.

(b) Explain why (a) does not contradict Corollary 43.

doppelgänger

If T : Rn → Rn is a meseomorphism prove that mZ = 0 implies m(TZ) = 0.
[Hint: doppelgangers.][Hint: doppelgängers.]
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54. Do (A) or (B), but not both.

(A) (a) State and prove Cavalieri’s Principle in dimension 4.

(b) Formulate the Fubini-Tonelli theorem for triple integrals and use (a)
to prove it.

(B) (a) State Cavalieri’s Principle in dimension n+ 1.

(b) State the Fubini-Tonelli Theorem for multiple integrals and use (a) to
prove it.

How short can you make your answers?

55. (a) What are the densities (upper, lower, balanced, and general) of the disc
in the plane and at which points do they occur?

(b) What about the densities of the square?

***(c) What about the densities of the fat Cantor set?

56. Suppose that P ⊂ R has the property that for every interval (a, b) ⊂ R we have

m∗(P ∩ (a, b))

b− a
=

1

2
.

(a) Prove that P is nonmeasurable. [Hint: This is a one-liner.]

(b) Is there anything special about 1/2?

57. Formulate and prove Steinhaus’ Theorem (Theorem64) in n-space.

58. The balanced density of a measurable set E at x is the limit, if exists, of the
concentration of E in B where B is a ball centered at x that shrinks down to
x. Write δbalanced(x,E) to indicate the balanced density, and if it is 1, refer to
x as a balanced density point.

(a) Why is it immediate from the Lebesgue Density Theorem that almost
every point of E is a balanced density point?

(b) Given α ∈ [0, 1], construct an example of a measurable set E ⊂ R that
contains a point x with δbalanced(x,E) = α.

(c) Given α ∈ [0, 1], construct an example of a measurable set E ⊂ R that
contains a point x with δ(x,E) = α.

**(d) Is there a single set that contains points of both types of density for all
α ∈ [0, 1]?

59. Prove that the density points of a measurable set are the same as its balanced
density points. [Hint: Exercise 62 is relevant.]

*60. Density is defined using cubes Q that shrink down to p. What if p need not
belong to Q, but its distance to Q is on the order of the edgelength � of Q?
That is, d(p,Q) ≤ K� for some constant K as � → 0. (Q is a satellite of p.)
Do we get the same set of density points?

*61. As indicated in Appendix G, U ⊂ Rn is K-quasi-round if it can be sandwiched
between balls B ⊂ U ⊂ B′ such that diamB′ ≤ K diamB.

(a) Prove that in the plane, squares and equilateral triangles are (uniformly)

G
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quasi-round. (The same K works for all of them.)

(b) What about isosceles triangles?

(c) What about annuli of inner radius r and outer radius R such that R/r ≤
10, and what about balanced density for such annuli? [Hint: Draw a
picture.]

(d) Formulate a Vitali Covering Lemma for a Vitali covering V of A ⊂ R2 by
uniformly quasi-round sets instead of discs.

(e) Prove it.

(f) Generalize to Rn.

[Hint: Review the proof of the Vitali Covering Lemma.]

*62. Consider a measure-theoretic definition of K-quasi-roundness of a measurable
W ⊂ Rn as

diam(W )n

mW
≤ K.

(a) What is the relation between the two definitions of quasi-roundness?

(b) Fix a point p ∈ Rn and letWK be the family of measurable sets containing
p which are K-quasi-round in the measure-theoretic sense. Prove that p
is a density point of a measurable set E if and only if the concentration of
E in W tends to 1 as W ∈ WK shrinks to p. [Hint: Each W could be a
fat Cantor set, but take heart from the realization that if 99% of a set is
red then any 10% of it is quite pink.]

63. Let E ⊂ Rn be measurable and let x be a point of ∂E, the topological boundary
of E. (That is, x lies in both the closure of E and the closure of Ec.)

(a) Is it true that if the density δ = δ(x,E) exists then 0 < δ < 1? Proof or
counterexample.

(b) Is it true that if δ = δ(x,E) exists and 0 < δ < 1 then x lies in ∂E? Proof
or counterexample.

(c) What about balanced density?

64. Choose a pair of derivates other than the right max and left min. If f is
monotone write out a proof that these derivates are equal almost everywhere.

65. Exercise 3.34 asks you to prove that the set of critical values of a C1 function
f : R → R is a zero set. (A critical point of f is a point p such that f ′(p) = 0
and a critical value of f is a q ∈ R such that fp = q for some critical point p.)
Give it another try. In (a), (b), (c), f : [a, b] → R is C1.

(a) What are the critical points and critical values of the function sinx?

(b) If f : [a, b] → R is C1 why are the sets of critical points and critical values,
cp(f) and cv(f), compact?

(c) How can you cover cv(f) with finitely many intervals of small total length?
[Hint: Mean Value Theorem as an inequality.]

(d) How can you go from [a, b] to R?

any

In (a), (b), (c), f : [a, b] → R is C1.

ritical points and critical values of t

cv
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66. Construct a monotone function f : [0, 1] → R whose discontinuity set is exactly
the set Q ∩ [0, 1], or prove that such a function does not exist.

*67. In Section 10 the total variation of a function f : [a, b] → R is defined as the
supremum of all sums

∑n
i=1 |Δif |, where P partitions [a, b] into subintervals

[xi−1, xi] and Δif = f(xi) − f(xi−1). Assume that the total variation of f is
finite (i.e., f is of bounded variation) and define

T x
a = sup

P

{∑
k

|Δif |
}

P x
a = sup

P

{∑
k

Δif : Δif ≥ 0

}

Nx
a = − inf

P

{∑
k

Δif : Δif ≤ 0

}

where P ranges through all partitions of [a, x]. Prove that

(a) f is bounded.

(b) T x
a , P x

a , Nx
a are monotone nondecreasing functions of x.

(c) T x
a = P x

a +Nx
a .

(d) f(x) = f(a) + P x
a −Nx

a .

*68. Assume that f : [a, b] → R has bounded variation. The Banach indicatrix is
the function

y �→ Ny = #fpre(y).

Ny is the number of roots of f = y. The horizontal line [a, b] × y meets the
graph of f in Ny points.

(a) Prove that Ny < ∞ for almost every y.

(b) Prove that y �→ Ny is measurable.

(c) Prove that

T b
a =

∫ d

c
Ny dy

where c ≤ min f and max f ≤ d.

*69. (a) Assume that An ↑ A as n → ∞ but do not assume that An is measurable.
Prove that m∗An → m∗A as n → ∞. (This is upward measure continuity
for outer measure. [Hint: Regularity gives Gδ-sets Gn ⊃ An with m(Gn) =
m∗(An). Can you make sure that Gn increases as n → ∞? If so, what can
you say about G = >Gn?])

(b) Is upward measure continuity true for inner measure? [Proof or counterex-
ample.]

(c) What about downward measure continuity of inner measure? Of outer
measure?
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*70. Let A ⊂ Rn be arbitrary, measurable or nonmeasurable.

(a) Prove that the hull and kernel of A are unique up to zero sets.

(b) Prove that A “spreads itself evenly” through its hull in the sense that for
each measurable E we have m∗(A ∩ E) = m(HA ∩ E).

(c) Prove the following version of the Lebesgue Density Theorem. For almost
every p ∈ HA we have

lim
Q↓p

m∗(A ∩Q)

mQ
= 1.

[Hint: Review the proof of the Lebesgue Density Theorem. Taking E = Q
in (b) is useful in proving (c).]

71. True or false: If HA is a hull of A then HA
�A is a zero set.

72. If N is a doppelgänger of a measurable set E (Corollary 67 and Exercise 50)
prove that E is a measurable hull of N . (Thus N is something like a “nonmea-
surable kernel of E.”)

*73. Prove that the outer measure of the Cartesian product of sets which are not
necessarily measurable is the product of their outer measures. [Hint: If HA and
HB are hulls of A and B use the Zero Slice Theorem to show that their product
is a hull of A×B.]

*74. What about the inner measure of a product?

75. Observe that under Cartesian products, measurable and nonmeasurable sets
act like odd and even integers respectively.

(a) Which theorem asserts that the product of measurable sets is measurable?
(Odd times odd is odd.)

(b) Is the product of nonmeasurable sets nonmeasurable? (Even times even is
even.)

(c) Is the product of a nonmeasurable set and a measurable set having nonzero
measure always nonmeasurable? (Even times odd is even.)

(d) Zero sets are special. They correspond to the number zero, an odd number
in this imperfect analogy. (Zero times anything is zero.)

*76. Exercise 3.18 asks you to prove that given a closed set L ⊂ R, there is a C∞

function β : R → [0,∞) whose zero locus {x : β(x) = 0} equals L. Give it
another try. Can you also do it in Rn?

77. Suppose that F ⊂ [0, 2] is a fat Cantor set of measure 1. Prove that there is
a C∞ homeomorphism h : R → R that carries [0, 2] to [0, 1] and sends F to a
Cantor set hF of measure zero. [Hint: Use a β from Exercise 76 and a constant
c to define hx as c

∫ x
0 β(t) dt. How does Exercise 3.34 help?]

78. Suppose that f : R → [0,∞) is Lebesgue measurable and g : [0,∞) → [0,∞) is
monotone or continuous. Prove that g ◦ f is Lebesgue measurable. [Hint: Use
the preimage definition of measurability and Exercise 45.]

doppelgänger
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79. (a) For a bijection h verify that χA = χhA ◦ h.
(b) Let h : R → R be the smooth homeomorphism supplied by Exercise 77.

Why does F contain a nonmeasurable set P and why is hP measurable?

(c) Why is the nonmeasurable function χP the composition χhP ◦ h.
(d) Infer that a continuous function following a Lebesgue measurable function

is Lebesgue measurable (Exercise 78) but a Lebesgue measurable function
following a continuous (or even smooth) function may fail to be Lebesgue
measurable.

80. Let h : [0, 2] → [0, 1] be the smooth homeomorphism supplied by Exercise 77
and let P ⊂ F be nonmeasurable. Set fn(x) = 0 for all n, x.

(a) Is it true that the functions fn are Borel measurable and converge almost
everywhere to χhP ?

(b) Is χhP Lebesgue measurable?

(c) Is χhP Borel measurable?

(d) Infer that if a sequence of Borel measurable functions converges almost
everywhere to a limit function then that limit function may fail to be Borel
measurable.

81. Improve the Average Value Theorem to assert that not only is it true that for
almost every p the average −

∫
Q f dm → f(p) as Q ↓ p, but actually for almost

every p we have

lim
Q↓p

−
∫
Q
|f − fp| dm = 0.

[Hint: Apply the Average Value Theorem to each of the countably many func-
tions |f − r| where r ∈ Q.]

**82. Use the Improved Average Value Theorem from Exercise 81 to give a second
proof of Lusin’s Theorem that does not use countable bases or preimage mea-
surability.

83. Suppose that (fk) is a sequence of measurable functions that converge almost
everywhere to f as k → ∞.

(a) Formulate and prove Egoroff’s Theorem if the functions are defined on a
box in n-space.

(b) Is Egoroff’s Theorem true or false for a sequence of functions defined on
an an unbounded set having finite measure?

(c) Give an example of a sequence of functions defined on R for which Egoroff’s
Theorem fails.

(d) Prove that if the functions are defined on Rn and ε > 0 is given then there
is an ε-set S ⊂ Rn such that for each compact K ⊂ Rn, the sequence of
functions restricted to K ∩ Sc converges uniformly.
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84. Why does Lusin’s Theorem imply that if f : B → R is measurable and B ⊂ Rn

is bounded then f is nearly uniformly continuous? What if B is unbounded
but has finite measure?

*85. Show that nearly uniform convergence is transitive in the following sense. As-
sume that fn converges nearly uniformly to f as n → ∞, and that for each fixed
n there is a sequence fn,k which converges nearly uniformly to fn as k → ∞.
(All the functions are measurable and defined on [ab].)

(a) Show that there is a sequence k(n) → ∞ as n → ∞ such that fn,k(n)
converges nearly uniformly to f as n → ∞. In symbols

nulim
n→∞ nulim

k→∞
fn,k = f ⇒ nulim

n→∞ fn,k(n) = f.

(b) Why does (a) remain true when almost everywhere convergence replaces
nearly uniform convergence? [Hint: The answer is one word.]

(c) Is (a) true when R replaces [a, b]?

(d) Is (b) true when R replaces [a, b]?

86. Consider the continuous functions

fn,k(x) = (cos(πn!x))k

for k, n ∈ N and x ∈ R.

(a) Show that for each x ∈ R,

lim
n→∞ lim

k→∞
fn,k(x) = χQ(x),

the characteristic function of the rationals.

(b) Infer from Exercise 24 in Chapter 3 that there can not exist a sequence
fn,k(n) converging everywhere as n → ∞.

(c) Interpret (b) to say that everywhere convergence can not replace almost
everywhere convergence or nearly uniform convergence in Exercise 85.

87. (a) Prove that, up to a zero set, the measure-theoretic boundary of a measur-
able set E is contained in its topological boundary, ∂m(E) ⊂ ∂E.

(b) Construct an example of a continuous function f : [a, b] → [0,M ] such
that ∂(Uf) �= ∂m(Uf). [Hint: A picture is worth a thousand formulas.]

88. Generalize Theorem68 to functions of several variables. That is, prove that a
bounded nonnegative function defined on a box in n-space is Riemann integrable
if and only if the topological boundary of its undergraph is a zero set.

, up to a zero set,
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**89. The L1-norm of the integrable function f : [a, b] → R is ‖f‖ =
∫ |f |. This gives

a metric on the set L of integrable functions [a, b] → R as dL1(f, g) = ‖f − g‖.
We say that fn → g L1-converges to g if ‖fn − g‖ → 0.

(a) Prove that L is a complete metric space.

(b) Prove that R is dense in L where R is the set of Riemann integrable
functions.

(c) Infer that L is the completion of R with respect to the L1-metric. (This
constructs Lebesgue integrals with minimal reference to Lebesgue mea-
sure.)

(d) What happens if we replace [a, b] with a box in Rn?

**90. A theory of integration more general than Lebesgue’s is due to Arnaud Den-
joy. Rediscovered by Ralph Henstock and Jaroslav Kurzweil, it is described
in Robert McLeod’s book, The Generalized Riemann Integral. The definition
is deceptively simple. Let f : [a, b] → R be given. The Denjoy integral of
f , if it exists, is a real number I such that for each ε > 0 there is a function
δ : [a, b] → (0,∞) and ∣∣∣∣∣

n∑
k=1

f(tk)Δxk − I

∣∣∣∣∣ < ε

for all Riemann sums with Δxk < δ(tk), k = 1, . . . , n. (McLeod refers to the
function δ as a “gauge” and to the intermediate points tk as “tags”.)

(a) Verify that if we require the gauge δ(t) to be continuous then the Denjoy
integral reduces to the Riemann integral.

(b) Verify that the function

f(x) =

⎧⎨⎩
1√
x

if 0 < x ≤ 1

100 if x = 0

has Denjoy integral 2. [Hint: Construct gauges δ(t) such that δ(0) > 0
but lim

t→0+
δ(t) = 0.]

(c) Generalize (b) to include all functions defined on [a, b] for which the im-
proper Riemann integral is finite.

(d) Infer from (c) and Exercise 46 that some functions are Denjoy integrable
but not Lebesgue integrable.

(e) Read McLeod’s book to verify that every nonnegative Denjoy integrable
function is Lebesgue integrable and the integrals are equal; and every
Lebesgue integrable function is Denjoy integrable and the integrals are
equal. Infer that the difference between Lebesgue and Denjoy corresponds
to the difference between absolutely and conditionally convergent series
– if f is Lebesgue integrable, so is |f |, but this is not true for Denjoy
integrals.
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**91. Four types of convergence of a sequence of measurable functions (fn) are: Al-
most everywhere convergence, L1 convergence, nearly uniform convergence, and
convergence in measure. This last type of convergence requires that for each
ε > 0 we have

m({x : |fn(x)− g(x)| > ε}) → 0

as n → ∞. Consulting the tetrahedron in Figure 159, decide which oriented
edges represent implications for sequences of functions defined on [a, b], on R,
or represent implications on neither [a, b] nor R.

a.e.

in measure

L1

n.u.

Figure 159 You might label an edge that represents implication only for
functions defined on [a, b] with a single arrow, but use a double arrow if the
implication holds for functions defined on R. For example, how should you

label the edge from a.e. to n.u.?

**92. Assume that the (unbalanced) density of E exists at every point of R, not merely
at almost all of them. Prove that up to a zero set, E = R, or E = ∅. (This is a
kind of measure-theoretic connectedness. Topological connectedness of R
is useful in the proof.) Is this also true in Rn?

***93. [Speculative] Density seems to be a first-order concept. To say that the density
of E at x is 1 means that the concentration of E in a ball B containing x tends
to 1 as B ↓ x. That is,

m(B) − m(E ∩ B)

mB
→ 0.

But how fast can we hope it tends to 0? We could call x a double density
point if the ratio still tends to 0 when we square the denominator. Interior
points of E are double density points. Are such points common or scarce in a
measurable set? What about balanced density points? What about fractional
powers of the denominator?



Suggested Reading

There are many books on more advanced analysis and topology. Among my favorites
in the “not too advanced” category are these.

1. Kenneth Falconer, The Geometry of Fractal Sets.
Here you should read about the Kakeya problem: How much area is needed
to reverse the position of a unit needle in the plane by a continuous motion?
Falconer also has a couple of later books on fractals that are good.

2. Thomas Hawkins, Lebesgue’s Theory of Integration.
You will learn a great deal about the history of Lebesgue integration and anal-
ysis around the turn of the last century from this book, including the fact that
many standard attributions are incorrect. For instance, the Cantor set should
be called the Smith set; Vitali hadmany of the ideas credited solely to Lebesgue,
etc. Hawkins’ book is a real gem.

3. John Milnor, Topology from the Differentiable Viewpoint.
Milnor is one of the clearest mathematics writers and thinkers of the twentieth
century. This is his most elementary book, and it is only seventy-six pages long.

4. James Munkres, Topology, a First Course.
This is a first-year graduate text that deals with some of the same material you
have been studying.

5. Robert Devaney, An Introduction to Chaotic Dynamical Systems.
This is the book you should read to begin studying mathematical dynamics. It
is first rate.

One thing you will observe about all these books – they use pictures to convey
the mathematical ideas. Beware of books that don’t.
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C1 Mean Value Theorem, 289

Cr M -test, 297

Cr equivalence, 302

Cr norm, 296

Fσ-set, 201, 395

Gδ-set, 201, 395

L1-convergence, 464

L1-norm, 464

α-Hölder, 265

δ-dense, 265

ε-chain, 131

ε-principle, 21

σ-algebra, 389

σ-compact, 262

σ∗-compact, 268

f -translation, 411

k-chain, 342

p-adic metric, 136

p-series, 194

r-neighborhood, 68

t-advance map, 246

(ε, δ)-condition, 65

absolute continuity, 429

absolute convergence, 192, 217

absolute property, 85

abstract outer measure, 389

abuse of notation, 7

accumulation point, 92

address string, 107

adheres, 65

aleph null, 31

algebraic number, 51

almost every, 407

almost everywhere, 175

alternating harmonic series, 196

alternating multilinear functional, 352

alternating series, 195

ambiently diffeomorphic, 378

ambiently homeomorphic, 115

analytic, 158, 248

Analyticity Theorem, 250

Antiderivative Theorem, 185, 431

Antoine’s Necklace, 117

arc, 131

area of a rectangle, 384

argument by contradiction, 8

Arzelà-Ascoli Propagation Theorem, 227

Arzelà-Ascoli Theorem, 224

ascending k-tuple, 333

associativity, 14, 335

average derivative, 289

Average Integral Theorem, 426
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Baire class 1, 201
Baire’s Theorem, 256
balanced density, 422, 458
Banach Contraction Principle, 240
Banach indicatrix, 460
Banach space, 296
basic form, 331
Bernstein polynomial, 229
bijection, 31
bilinear, 287
block test, 208
Bolzano-Weierstrass Theorem, 80
Borel measurability, 443
Borel’s Lemma, 267
boundary, 92, 141
boundary of a k-cell, 343
bounded above, 13
bounded function, 98, 261
bounded linear transformation, 279
bounded metric, 138
bounded set, 97
bounded variation, 438
box, 26
Brouwer Fixed-Point Theorem, 240, 353
bump function, 200

Cantor function, 186
Cantor Partition Lemma, 113
Cantor piece, 112
Cantor set, 105
Cantor space, 112
Cantor Surjection Theorem, 108
cardinality, 31
Cauchy completion, 122
Cauchy condition, 18, 77
Cauchy Convergence Criterion, 19, 191
Cauchy product, 210
Cauchy sequence, 77
Cauchy-Binet Formula, 339, 363
Cauchy-Riemann Equations, 360
Cauchy-Schwarz Inequality, 23
Cavalieri’s Principle, 318, 414

cell, 328

center of a starlike set, 130

chain connected, 131

Chain Rule, 150, 285

Change of Variables Formula, 319

characteristic function, 171

Chebyshev Lemma, 434

class Cr, 158, 295

class C∞, 295

clopen, 67

closed form, 347

closed neighborhood, 94

closed set, 66

closed set condition, 72

closure, 70, 92

cluster point, 92, 140

co-Cauchy, 119

codomain, 30

coherent labeling, 110

common refinement, 168

commutative diagram, 302

compact, 79

comparable norms, 366

Comparison Test, 192

complement, 45

complete, 14, 78

completed undergraph, 407

Completion Theorem, 119

complex analytic, 251

complex derivative, 360

composite, 31

concentration, 422

condensation point, 92, 140

condition number, 361

conditional convergence, 192, 464

cone map, 349

cone on a metric space, 139

connected, 86

connected component, 147

conorm, 281, 366

continuity in a metric space, 61
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continuously differentiable, 157
Continuum Hypothesis, 31, 137, 145
contraction, weak contraction, 240, 266
convergence, 18, 60, 191
convex, 26
convex combinations, 27, 49
convex function, 49
convex hull, 115
countable, 31
countable additivity, countable subaddi-

tivity, 384, 389
countable base, 141
counting measure, 450
covering, 98
covering compact, 98
critical point, critical value, 204, 459
cube, 26
Cupcake Theorem, 145
curl, 347

Darboux continuous, 154
Darboux integrable, Darboux integral, 167
de Rham cohomology, 352
DeMorgan’s Law, 45
Dedekind cut, 12
Denjoy integral, 464
dense, 107
density point, 422
denumerable, 31
derivate, 434
derivative, 149
derivative (multivariable), 282
derivative growth rate, 248
determinant, 363
Devil’s ski slope, 188, 456
Devil’s staircase function, 186
diagonalizable matrix, 368
diameter in a metric space, 82
diffeomorphism, 163, 300
differentiability of order r, 157
differentiable (multivariable), 282
differentiable function, 149, 151

differential 1-form, 327
differential quotient, 149
differentiation past the integral, 290
dipole, 343
directional derivative, 369
disconnected, 86
discontinuity of the first, second kind, 204
discrete metric, 58
disjoint, 2
distance from a point to a set, 130
distance function, 58
divergence of a series, 191
divergence of a vector field, 346
division of a metric space, 109
domain, 29
Dominated Convergence Theorem, 409
domination of one series by another, 192
doppelgänger, 442
dot product, 22
double density point, 465
duality equation, 338
dyadic, 47
dyadic ruler function, 204

Egoroff’s Theorem, 448
embedding, 85
empty set, 2
envelope sequences, 408
equicontinuity, 224
equivalence relation, equivalence class, 3
Euler characteristic, 50
Euler’s Product Formula, 210
exact form, 347
exponential growth rate, 194
extension of a function, 129
exterior derivative, 337

fat Cantor set, 108, 203
Fatou’s Lemma, 410
field, 16
finite, 31
finite additivity, 390

countable additivity, countable subaddi-
tivity, 384, 389
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finite intersection property, 134
fixed-point, 47, 240
flow, 246
flux, 346
Fréchet derivative, 284
front face, 343
Fubini’s Theorem, 316
Fubini-Tonelli Theorem, 416
function, 29
function algebra, 234
functional, 328
Fundamental Theorem of Calculus, 183,

426
Fundamental Theorem of Continuous Func-

tions, 41

gap interval, 108, 112
Gauss Divergence Theorem, 346
general k-form, 331
general linear group, 372
Generalized Heine-Borel Theorem, 103
generic, 256
geometric series, 191
gradient, 311
grand intersection, 134
greatest lower bound, 47
Green’s Formula, 346
growing steeple, 214

Hölder condition, 198
Hahn-Mazurkiewicz Theorem, 143
Hairy Ball Theorem, 381
harmonic series, 192
Hausdorff metric, 144
Hawaiian earring, 132
Heine-Borel Theorem, 80, 81
Heine-Borel Theorem in a Function Space,

228
Higher Order Chain Rule, 374
Higher Order Leibniz Rule, 199
Hilbert cube, 143
homeomorphism, 62

hull, 400
hyperspace, 144

idempotent, 70
identity map, 31
Identity Theorem for analytic functions,

268
image, 30
implicit function, 297
Implicit Function Theorem, 298
improper Riemann integral, 191
inclusion cell, 334
indicator function, 171
infimum, 17
infinite, 31
infinite address string, 107
infinite product, 209
infinitely differentiable, 157
Inheritance Principle, 73, 74
inherited metric, 58
inherited topology, 74
initial condition for an ODE, 242
injection, 30
inner measure, 384
inner product, inner product space, 28
integer lattice, 24
Integral Test, 193
integrally equivalent, 205
integration by parts, 189
integration by substitution, 189
interior, 92, 140
Intermediate Value Theorem, 40
Intermediate Value Theorem for f ′, 154
intrinsic property, 85
Inverse Function Theorem, 162, 301
inverse image, 71
isometry, isometric, 126
iterate, 138

Jacobian, 319, 329
Jordan content, 319, 450, 451
Jordan Curve Theorem, 144

front face, 343

general k-form, 331
general linear group, 372
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Jordan measurable, 451

jump, jump discontinuity, 49, 204

kernel, 401

L’Hôpital’s Rule, 153

Lagrange form of the Taylor remainder,
160

Lagrange multiplier, 310

least upper bound, 13

Least Upper Bound Property, 14

Lebesgue Density Theorem, 422

Lebesgue Dominated Convergence Theo-
rem, 409

Lebesgue integrability, Lebesgue integral,
406

Lebesgue measurability, Lebesgue measure,
389

Lebesgue Monotone Convergence Theo-
rem, 407

Lebesgue number, 100

Lebesgue outer measure, 383

Lebesgue’s Antiderivative Theorem, 431

Lebesgue’s Fundamental Theorem of Cal-
culus, 426

Lebesgue’s Main Theorem, 430, 439

Leibniz Rule, 149, 285

length of a vector, 23

length of an interval, 383

limit, 65

limit point, 65

limit set, 68

linear transformation, 277

Lipeomorphism, 452

Lipschitz condition, 244

locally path connected, 143

locally path-connected, 132

logarithm function, 186

lower Lebesgue sum, 440

lower sum, lower integral, 166

Lusin’s Theorem, 447

magnitude of a number, of a vector, 16,
23

Manhattan metric, 76
manifold, 345
map, mapping, 29
maximum stretch, 279
meager subset, 256
mean value property, 151
Mean Value Theorem, 151, 288
measurability, measure, 389
measurable function, 406
Measurable Product Theorem, 402
measurable with respect to an outer mea-

sure, 389
Measure Continuity Theorem, 392
measure continuous, 429
measure space, 393
measure theoretic boundary, 401
measure-theoretic connectedness, 465
Mertens’ Theorem, 210
mesemorphism, 393
meseomorphism, 393
mesh of a partition, 164
mesisometry, 393
metric space, metric subspace, 57, 58
middle-quarters Cantor set, 203
middle-thirds Cantor set, 105
minimum stretch, 366
modulus of continuity, 264
Monotone Convergence Theorem, 407
monotonicity, 125
Moore-Kline Theorem, 112
Morse-Sard Theorem, 204
multilinear functional, 352

name of a form, 327
natural numbers, 1
nearly continuous, 447
nearly uniform convergence, 448
neighborhood, 70
nested sequence, 81
norm, normed space, 28, 279

manifold 345

measure continuous, 429

measure theoretic boundary, 401

mesemorphism, 393
meseomorphism, 393

mesisometry, 393
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nowhere dense, 107

ODE, 242

one-to-one, 30

onto, 30

open covering, 98

open mapping, 127

open set, 66

open set condition, 72

operator norm, 279

orbit, 138, 441

ordered field, 16

orthant, 24

oscillating discontinuity, 205

oscillation, 177

outer measure, 383

parallelogram law, 53

partial derivative, 284

partial product, 209

partial sum, 191

partition, 113

partition pair, 164

patches, 99

path, path-connected, 90

Peano curve, 112

Peano space, 143

perfect, 94

Picard’s Theorem, 244

piece of a compact metric space, 109

piecewise continuous function, 172

Poincaré Lemma, 348

pointwise convergence, pointwise limit, 211

pointwise equicontinuity, 224, 261

Polar Form Theorem, 362

positive definiteness, 58

preimage, 71

preimage measurability, 416

proper subset, 86

pullback, pushforward, 338

quasi-round, 449

Rademacher’s Theorem, 206, 438
Radius of Convergence Theorem, 197
range, 30
rank, Rank Theorem, 301, 303
Ratio Mean Value Theorem, 152
Ratio Test, 195
rational cut, 13
rational numbers, 2
rational ruler function, 173
real number, 12
rearrangement of a sequence, 126
rearrangement of a series, 209
reduction of a covering, 98
Refinement Principle, 168
regularity hierarchy, 158
regularity of Lebesgue measure, 395
regularity sandwich, 396
retraction, 353
Riemann ζ-function, 210
Riemann integrability, Riemann integral,

164
Riemann measurable, 319
Riemann sum, 164
Riemann’s Integrability Criterion, 171
Riemann-Lebesgue Theorem, 175
Root Test, 194

sample points, 164
Sandwich Principle, 173
Sard’s Theorem, 204
satellite, 458
sawtooth function, 254
Schroeder-Bernstein Theorem, 36
scraps, 99
second derivative, 291
separable metric space, 141
separates points (function algebra), 234
separation, 86
shadow area, 329
shear matrix, 320, 368
sign of a permutation, 363
signed area, 330

shadow area, 329
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signed commutativity, 331
simple closed curve, 144
simple form, 331
simple function, 456
simple region, 377
simply connected, 347
singleton set, 2
slice, 316, 403, 414
slice integral, 316
sliding secant method, 155
slope over an interval, 434
smooth, 157, 295
solution of an ODE, 242
somewhere dense, 107
space-filling, 112
spherical shell, 379
staircase curve, 376
starlike, 130, 351
steeple functions, 214
Steinhaus’ Theorem, 441
step function, 172
Stokes’ Curl Theorem, 347
Stokes’ Formula for a Cube, 343
Stokes’ Formula for a general cell, 345
Stone-Weierstrass Theorem, 234
subcovering, 98
subfield, 16
sublinear, 282
subsequence, 60
sup norm, 214
support of a function, 200
supremum, 17
surjection, 30

tail of a series, 192
tame, 116
target, 30
taxicab metric, 76
Taylor Approximation Theorem, 160
Taylor polynomial, 159
Taylor series, 161, 248
Taylor’s Theorem, 251

Term by Term Integration Theorem, 219
thick and thin subsets, 256
topological equivalence, 73
topological property, 71
topological space, 67
topologist’s sine circle, 132
topologist’s sine curve, 91
total derivative, 284
total length of a covering, 108, 175, 384
total undergraph, 453
total variation of a function, 438
totally bounded, 103
totally disconnected, 105
trajectory of a vector field, 243
transcendental number, 51
transformation, 29
Triangle Inequality, 16
Triangle Inequality for distance, 24
Triangle Inequality for vectors, 24
trichotomy, 16
trigonometric polynomial, 238
truncation of an address, 107

ultrametric, 136
unbounded set, 97
uncountable, 31
undergraph, 164, 406
uniform Cr convergence, 295
uniform continuity, 52, 85
uniform convergence, 211, 217
uniform equicontinuity, 261
unit ball, sphere, 26
unit cube, 26
universal compact metric space, 108
upper semicontinuity, 147, 275, 454
upper sum, upper integral, 166
utility problem, 144

vanishing at a point (function algebra),
234

vector field, 243, 346
vector ODE, 242

slice integral, 316
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Vitali covering, 418
Vitali Covering Lemma, 418, 422
Volume Multiplier Formula, 320

wedge product, 334
Weierstrass Approximation Theorem, 228
Weierstrass M-test, 217
wild, 117

Zeno’s staircase function, 174
zero locus, 268, 461
zero set, 108, 175, 315, 386
Zero Slice Theorem, 403
zeroth derivative, 157

Volume Multiplier Formula, 320
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