Lebesque measure and integral. Riemann integral over R f fix) dx = area under the curve At least, precevize continuous functions are Riemann integrable. (in particular, piecewise constant function). shortcoming: · the underlying space is like R. R", (the domain of integration here is only [e, b]) bornded. " only bounded functions are considered. · If fn → f pointwise, and fn is Riemann integrable, it is not true that f is Riemann integrable. some subset • Lebesque integral : $\int_{\Omega} f \, dx = \int_{\Omega} C R^n$, $dx = dx_1 - dx_n$. · what S2 do we allow? (Lebosque measurable sets) · what f do we allow? (Lebeque integrable function) · Lebesque measure : $m(\Omega) = \int_{\Omega} 1 dx$ tuitively, (1) if $S_{L} \subset \mathbb{R}$. then $m(S_{L}) = (eugth of S_{L})$ (2) $S_{L} \subset \mathbb{R}^{2}$, $m(S_{L}) = area = f_{SL}$ $\int_{a}^{b} 1 dx = b - a = |[a,b]|$. intuitively, "if $SL \subset \mathbb{R}$. (3) $\Omega \subset \mathbb{R}^3$; $n(\Omega) = Volume - f \cdot \Omega$. we know length of a interval, [[a,b]] = b-a.

(an we consistently define length (or generally, measure) for
any subset of
$$\mathbb{R}^n$$
? A few desirable properties
O monotone : If $A \subset B \subset \mathbb{R}^n$, then $m(A) \leq m(B)$.
 $\begin{bmatrix} E_X : A = (0,1) \\ A = \S 13, \end{bmatrix}$, $B = [0,1]$. in \mathbb{R} . $m(A) = m(B) = 1$.
 $A = \S 13, \end{bmatrix}$, $B = \S 1, 23$. in \mathbb{R} $m(A) = m(B) = 0$.
(2) additivity : If $A \cap B = \emptyset$, then $m(A \cup B) = m(A) + m(B)$.

(3) translation invariance:
$$\forall x \in \mathbb{R}^{n}$$
, $E \subset \mathbb{R}^{n}$,
 $m(E) = m(x + E)$ $\begin{pmatrix} x + E = \{x + a \mid a \in E\}, \\ e_{3}, 3 + [1,2] = [3+1, 3+2] \\ = [4,5] \end{pmatrix}$

Trouble: not possible to define such a measure on <u>all</u> subsets on Rⁿ. • Read Tao <u>7.3</u> for an example.

<u>Cure</u>: · Restrict the class of subsets in Rⁿ, to which we assign a measure.

Desired Properties / Axioms of measurable subsets,
$$\begin{pmatrix} Tao - II : \\ Page 180 \end{pmatrix}$$
.
Let Mn denote the set of measurable $\boxed{\frac{1}{2} \frac{1}{2} \frac{1}{2$

- $U \in M_n$. (U is measurable)
- (2) If $U \in M_n$, then $U^c = \mathbb{R}^n \setminus U$ is also in M_n .
- (3). If U,V EMn, then UnV and U"V are measurable.

· outer measure is defined for ALL subsets. in R.

In discussion: try prove properties of
$$m^{*}(E)$$
.
Lemma 7.2.5. 7.2.6. $m^{*}(box) = Vol(box)$