1. Outer measure of any subset in \mathbb{R}^{n}.

Def: $\quad \forall E \subset \mathbb{R}^{n}$

$$
\begin{aligned}
& \subset \mathbb{R}^{n} \\
& m^{*}(E)=\inf \left\{\sum_{i=1}^{\infty} \operatorname{vol}\left(B_{i}\right), \quad\left\{B_{i}\right\} \text { is an open cover }\right\} \\
& \text { of } E \text { by boxes }\}
\end{aligned}
$$

Lemma 7.2.5 (Properties of outer measure). Outer measure has the
Lemma, 7.2.5 following six properties:
(v) (Empty set) The empty set \emptyset has outer measure $m^{*}(\emptyset)=0 \leftarrow$ no box is needed for cover.
(vi) (Positivity) We have $0 \leq m^{*}(\Omega) \leq+\infty$ for every measurable set Ω.
Σ by def, inf over non-negative numbers. \therefore result is $\geqslant 0$.

168
7. Lebesgue measure
(vii) (Monotonicity) If $A \subseteq B \subseteq \mathbf{R}^{n}$, then $m^{*}(A) \leq m^{*}(B)$.
(viii) (Finite sub-additivity) If $\left(A_{j}\right)_{j \in J}$ are a finite collection of subsets of \mathbf{R}^{n}, then $m^{*}\left(\bigcup_{j \in J} A_{j}\right) \leq \sum_{j \in J} m^{*}\left(A_{j}\right)$.
(x) (Countable sub-additivity) If $\left(A_{j}\right)_{j \in J}$ are a countable collection of subsets of \mathbf{R}^{n}, then $m^{*}\left(\bigcup_{j \in J} A_{j}\right) \leq \sum_{j \in J} m^{*}\left(A_{j}\right)$.
(xiii) (Translation invariance) If Ω is a subset of \mathbf{R}^{n}, and $x \in \mathbf{R}^{n}$, then $m^{*}(x+\Omega)=m^{*}(\Omega)$.
if $\left\{B_{i}\right\}$ covers Ω then $\left\{x+B_{i}\right\}$ covers

Pf: (vii) For any open cover $\left\{B_{i}\right\}$ of B, it is also an open cover of A. (And ,if, $M, N \subset \mathbb{R}, M \supset N$. then $\inf M \leq \inf N$.
Thus. $\quad m^{*}(A) \leqslant m^{*}(B)$
W.T.S.
(viii). Finite sub-additivity. $m^{*}(A \cup B) \leqslant m^{*}(A)+m^{*}(B)$.

Try proving $\left(m^{*}(A)+m^{*}(B) \geqslant\right.$ Area of some covering of A, and covering of B) $-\varepsilon$
then $\Leftrightarrow($ total area $) \geqslant m^{*}(A \cup B)$.
thus. $\forall \varepsilon>0, \quad m^{*}(A)+m^{*}(B) \geqslant m^{*}(A \cup B)-\varepsilon$.

$$
\Rightarrow \quad m^{*}(A)+m^{*}(B) \geqslant m^{*}(A \cup B) \text {. }
$$

$\because \quad m^{*}(A)=\inf \left\{\Sigma \operatorname{Vol}\left(B_{i}\right) \mid\left\{B_{i} \mid\right.\right.$ cover $\left.A\right\}$.
$\therefore \quad \forall \varepsilon>0, \quad \exists$ covering $\left\{B_{i}\right\}$, s.t. $\quad \sum_{i}\left|B_{i}\right| \leqslant m^{*}(A)+\varepsilon$.
similarly do it for B, Then take the union of the 2 commutable covers. to get a cover of $A \cup B$.

$$
m^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right) \leqslant \sum m^{*}\left(A_{j}\right) .
$$

collection of
(x). W.T.S. $\forall \varepsilon>0$, there exists a open covers,
$\left\{B_{i}^{(j)}\right\}$ for A_{j}. such that

$$
\begin{aligned}
m^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right) & \leqslant \sum_{j} m^{*}\left(A_{j}\right)+\varepsilon . \\
& =\sum_{j=1}^{\infty}\left(m^{*}\left(A_{j}\right)+\frac{\varepsilon}{2^{j}}\right)
\end{aligned}
$$

We can find open cover $\left\{B_{i}^{i}\right\}$ for A_{j}, s.t.

$$
m^{*}\left(A_{j}\right)+\frac{\varepsilon}{2^{j}} \geqslant \sum_{i=1}^{\infty}\left|B_{i}^{(j)}\right|
$$

And $\sum_{j=1}^{\infty}\left(\sum_{i=1}^{\infty}\left|B_{i}^{(j)}\right|\right) \geqslant m^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right)$

Prop 7.2 .6
Proposition 7.2.6 (Outer measure of closed box). For any closed
box

$$
B=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}: x_{i} \in\left[a_{i}, b_{i}\right] \text { for all } 1 \leq i \leq n\right\}
$$

we have

$$
m^{*}(B)=\prod_{i=1}^{n}\left(b_{i}-a_{i}\right)
$$

Recall: - compact set in $\mathbb{R}^{n} \Longleftrightarrow$ closed and bounded.

- Riemann integral:
$1-\operatorname{dim} \quad \operatorname{vol}([a, b])=b-a=\int_{a}^{b} \cdot 1 d x=\int_{\mathbb{R}} \cdot 1_{[a, b]} d x$ $\underset{\text { function. }}{\text { indicator }} 1_{[a, b]}^{\square} \underset{a}{\square} \quad 1_{[a, b]}^{(x)}= \begin{cases}1 & x \in[a, b] \\ 0 & \text { else. }\end{cases}$

$$
d x=d x_{1} d x_{2} \cdots d x_{n} .
$$

$n-\operatorname{dim} . \quad \operatorname{Vol}\left(\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]\right)=\int_{\mathbb{R}^{n}} 1_{B}(x) d x$ same is true for open boxes.
$\forall \varepsilon>0$
Pf: It's clear that, we can choose a open box, slightly larger than B, to cover B, thees.

$$
m^{*}(B) \leqslant \operatorname{Vol}(B)+\varepsilon \quad \forall \varepsilon>0 \Rightarrow m^{*}(B) \leqslant \operatorname{Vol}(B) .
$$

$(n=1$ case). because $B=[a, b]$ is compact, hence any open cover of B can be reduced to a finite subcover. Let $\left\{B_{i}\right\}_{i=1}^{N}$ be a finite open cover of B. WTS.

$$
\sum_{i=1}^{N}\left|B_{i}\right| \geqslant \operatorname{Vol}(B) \quad(*)
$$

let $f_{i}(x)=1_{B_{i}}(x)$, then

$$
\begin{aligned}
& f_{i}(x)=1_{B_{i}}(x) \text {, then } \\
& \begin{aligned}
& \sum_{i=1}^{N}\left|B_{i}\right|= \\
& \sum_{i=1}^{N}\left(\int_{\mathbb{R}} f_{i} d x\right)=\int_{\mathbb{R}} \sum_{i=1}^{N} f_{i} d x \geqslant \int_{1_{B} d x} \\
&=v_{0}(B) .
\end{aligned}
\end{aligned}
$$

Claim: $f(x) \geqslant I_{B}(x)$ indeed, $B \subset \bigcup_{i=1}^{N} B_{i}$
thus $1_{B} \leq \sum 1_{B_{i}}$
($n=2$ case). WTS. given any finite cover $\left\{B_{i}\right\}_{i 2}^{N}$ of B.
that $\sum^{N}\left|B_{i}\right| \geqslant|B|$
 $i=1$
$\omega_{i}\left\{B_{i}\right\}$

again $\quad\left|B_{i}\right|=\int_{\mathbb{R}^{2}} \underline{I_{B_{i}}\left(x_{1}, x_{2}\right)} d x_{1} d x_{2}=\int_{\mathbb{R}} \cdot 1_{B_{i, 1}}\left(x_{1}\right) \cdot d x_{1}$
going to integrate along X_{2}

$$
\begin{aligned}
& \sum_{i=1}^{N} \int 1_{B_{i}}(x) d x_{1} d x_{2} \\
& =\int_{\mathbb{R}^{2}} \sum_{i=1}^{N} 1_{B_{i}}(x) d x_{1} d x_{2}=\int_{\mathbb{R}}\left(\int_{i_{i}} 1_{B_{i}}\left(x_{1}, x_{2}\right) \cdot d x_{2}\right) d x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Claim: } f\left(x_{1}\right) \geqslant \mathcal{1}_{\left[a_{1}, b_{1}\right]}^{\left(x_{1}\right)} \cdot \underbrace{|\underbrace{}_{2}-a_{2}|}_{\text {height }} \text { of } B \text {. } \begin{array}{l}
f\left(x_{1}\right) \geqslant 0 \text { is true. }
\end{array}\} \begin{array}{l}
f\left(x_{1}\right) \geqslant\left|b_{2}-a_{2}\right| . \\
-i f \\
x_{2} \notin\left[a_{1}, b_{2}\right] .
\end{array}
\end{aligned}
$$

this follows by induction hypothesis (the $n=1$ case). applied to. the line with the given x_{1}.

The general n is by induction.

Pugh:

- divide B into grids of smaller boxes. So that each small box is contain ed in. some Bi
- then

$$
\begin{aligned}
\operatorname{Vol}(B) & =\sum \text { vol of grid small. bors. } \\
& \leq \sum \text { Vol of open cover } B_{i}
\end{aligned}
$$

coper, closed, half open / half dosed egg
Cor: outer measure of any box

$$
=\operatorname{vol}(\text { box })
$$

Last time in discussion: (1) $m^{*}(\mathbb{N})=0 \quad\binom{$ Why ? by $\$$ countable }{ sub-addicurty }

$$
m^{*}(N) \leqslant \sum_{i=0}^{\infty} m^{*}(\{i\})=\sum_{i=0}^{\infty} 0=0
$$

(2) similarly $m^{*}(\mathbb{Q})=0 . \quad \because \mathbb{Q}$ is countable.
(3). $m_{1}^{*}(\mathbb{R})=\infty$ by monotonicity $m_{n}^{*}(E)$ is measure of $E \subset \mathbb{R}^{n}$.

$$
\begin{array}{ll}
\because \quad m_{1}^{*}((-R, R))=2 R . \\
\therefore \quad m_{1}^{*}(\mathbb{R}) \geqslant 2 R \\
\therefore \quad m_{1}^{*}(\mathbb{R})=+\infty . & \forall R>0 .
\end{array}
$$

skip. Tao. \$7.3
idea: (1) construct a "weird" subset $E \subset[0,1]$.

$$
(2)[-1,2]>\operatorname{Ll}_{q \in[-1,1] \cap \mathbb{Q}} q+E>[0,1]
$$

then trouble: additivity would fail.

$$
\begin{aligned}
& \because \quad m^{*}(\underset{q \in[-1,1] \cap \mathbb{Q}}{ } q+E)=\sum_{q \in[-1,1] \cap \mathbb{Q}} m^{*}(q+E)=\sum_{q \in \cdots} m^{*}(E)=0 \text { ? } \\
& m^{*}([0,1]) \leq \frac{m^{*}(\underset{q}{4} q+E)}{} \leq m^{*}([-1,2])=3 \\
& 1
\end{aligned}
$$

