Homework 7

Samuel Speas

March 2022

Exercise 1. Suppose f and g are integrable and their squares are integrable. Then $f g$ is measurable, integrable, and

$$
\int f g \leq \sqrt{\int f^{2}} \sqrt{\int g^{2}}
$$

Let $t \in R$. Then by linearity of Lebesgue integrals,

$$
0 \leq p(t):=\int(f-t g)^{2}=\int\left(f^{2}-2 t f g+t^{2} g^{2}\right)=\int f^{2}+-2 t \int f g+t^{2} \int g^{2}
$$

and

$$
4\left(\left(\int f g\right)^{2}-\int f^{2} \int g^{2}\right) \leq 0
$$

Since $p(t)>0$ we see that

$$
\int f g \leq \sqrt{\int f^{2}} \sqrt{\int g^{2}}
$$

Exercise 2.

Each $x \in[0,1]$ may be expressed in base 3 as $\left(. \omega_{1} \omega_{2} \omega_{3} \ldots\right)_{3}$. Then

$$
x=\sum_{i=1}^{\infty} \frac{\omega_{i}}{3^{i}}
$$

and each ω_{i} equals 0,1 , or 2 . We've previously constructed a Cantor set C in which each $x \in C$ has a unique ternary expansion such that each ω_{i} equals 0 or 2. We define a function H on $[0,1]$ by

$$
H(x)=\sum_{1}^{\infty} \frac{\omega_{i} / 2}{2^{i}}
$$

where H has equals values at the endpoints of discarded gap intervals and we extend H to these intervals by letting H be constant on them. We recall that this function is well-defined and that it is continuous, surjective, and has derivative zero almost everywhere on $[0,1]$.

Define $\hat{H}: \mathbb{R} \rightarrow \mathbb{R}$ by $\hat{H}(x+n)=H(x)+n$ for all $n \in \mathbb{Z}, x \in[0,1]$. Define

$$
H_{k}(x)=\hat{H}\left(3^{k} x\right) \quad J(x)=\sum_{k=0}^{\infty} \frac{\hat{H}\left(3^{k} x\right)}{4^{k}}
$$

For $x \in[0,1], H(x) \leq 1$ for $\in[0,1]$. Then for $x \in[0,1]$, for each k we have $\hat{H}\left(3^{k} x\right) \leq 3^{k}$. Then $\sum_{k=0}^{\infty} \frac{\hat{H}\left(3^{k} x\right)}{4^{k}}$ converges. Since $\hat{H}\left(3^{k} x_{0}\right)<\hat{H}\left(3^{k} x_{1}\right)$ if $\left|x_{0}-x_{1}\right|>1 / 3^{k}$, summing over k we see that J is strictly increasing.

Recall that if a sequence of real valued functions defined on a set X satisfies $\left|f_{n}(x)\right|<M_{n}$ for all n, and all $x \in X$, where $M_{n}>0$, and $\sum_{n=1}^{\infty} M_{n}=L<\infty$, then $\sum_{n=1}^{\infty} f_{n}(x)$ converges absolutely and uniformly on X. We see then that $\sum_{k=0}^{\infty} \frac{\hat{H}\left(3^{k} x\right)}{4^{k}}$ converges on $[0,1]$. Since $\hat{H}(x+1)=H(x)+1$ for all x, J is continuous on \mathbb{R}.

We see that $J^{\prime}=0$ almost everywhere. Fix $a>0$ and let
$S_{a}=\left\{x: J^{\prime}\right.$ exists, $J^{\prime}>a, x$ belongs to the constancy intervals of every $\left.H_{k}\right\}$.
For each $N \in \mathbb{N}$ and any $x \in\left[0,1 / 3^{N}\right]$, we define $J_{N}:\left[0,1 / 3^{N}\right] \rightarrow \mathbb{R}$ by

$$
J_{N}(x)=\sum_{k=0}^{N} \frac{\hat{H}\left(3^{k} x\right)}{4^{k}}
$$

J_{N} is almost everywhere constancy intervals by the following reasoning. If $x \in[0,1]$ then $\hat{H}(x)=H(x)$, and $H(x)$ is almost everywhere constant (C has measure 0). For $x \in\left[0,1 / 3^{N}\right]$ and $k<N$, we have $0 \leq 3^{k} x \leq 1$. Then J_{N} is almost everywhere constancy intervals for such x. We next utilize the following theorem.

Fubini's differentiation theorem Let $I \subset R$ be an interval, and $\left(f_{k}\right)$ a sequence of functions $f_{k}: I \rightarrow \mathbb{R}$. If $s(x):=\sum_{k=1}^{\infty} f(x)$ exists for all $x \in I$, and for every $k \in N f_{k}$ is an increasing function, then $s^{\prime}(x)=\sum_{k=1}^{\infty} f_{k}^{\prime}(x)$.

By the construction of H, we have for $x \in\left(0, \frac{1}{3^{N}}\right)$ and $n \in \mathbb{N}$ that

$$
H\left(x+\frac{n}{3^{N}}\right)=H\left(x+\frac{3^{N}-n-1}{3^{N}}\right)
$$

and $H(x)=1-H(1-x)$ for $x \in[0,1]$. Since the sequence of functions $\left(J_{N}\right)$ meets the hypotheses of Fubini's differentiation theorem, and since $f_{k}^{\prime}=0$ almost everywhere we have that $J^{\prime}(x)=0$ almost everywhere on $[0,1]$. Since $J(x)$ is defined in any intervals $[a, a+1]$ and $[a+1, a+2]$ identically up to a constant, the theorem implies that for almost every $x \in \mathbb{R}, J^{\prime}(x)=0$.

Exercise 3.

$$
\begin{aligned}
& \int f(x, y) d x=\int_{0}^{y} \frac{1}{y^{2}} d x-\int_{y}^{1} \frac{1}{x^{2}} d x=\frac{1}{y}+1-\frac{1}{y}=1 \\
& \int f(x, y) d y=\int_{1}^{x} \frac{1}{y^{2}} d y-\int_{0}^{x} \frac{1}{x^{2}} d y=\frac{1}{x}-1-\frac{1}{x}=-1
\end{aligned}
$$

yet double integral gives

$$
\int_{0}^{1} \int_{0}^{x}-\frac{1}{x^{2}} d y d x=\int_{0}^{1} \frac{1}{x} d x=\infty
$$

so the integral does not exist. This does not contradict corollary 43, because this corollary requires the integrand to be non-negative.

Exercise 4.

a) Since E is measurable, this is just a restriction of the density of some point of E , and the conclusion follows.
b) Let $A=\{x \in \mathbb{R}: \sin (1 / x)>0\}$, and $B=\mathbb{R} \backslash A$. Then on the any interval $(-r, r)$, centered at $0, m(B \cap(-r, 0))=-m(A \cap(0, r))$, as $B \cap(-r, 0)=$ $A \cap(0, r)-2 r$, that is, the opposite sets are obtained by complement in a interval of length r, and measure preserving translation. Then centered at 0 , we have balanced density $1 / 2$. It seems that some iterated addition or subtraction of additional periodic functions could change the density. In R^{2}, the solution is more clear.

Exercise 5.

Take some convergent strictly increasing series and allow it to attain its subsequent sums on \mathbb{Q}. So if $\sum_{n=1}^{\infty} a_{n} \rightarrow L<\infty$, the terms of $a_{n} \rightarrow 0$. For a given bijection $f: \mathbb{N} \rightarrow \mathbb{Q} \cap[0,1]$, we can take the sum

$$
s(x)=\sum_{n \in E_{x}} a_{n}
$$

where $E=\{n \in \mathbb{N}: f(n)<x\}$.

Then the "partial sum" function $s(x)$ is monotonically increasing, and its discontinuities are at the points $\mathbb{Q} \cap[0,1]$. Because the sum $s(x)$ is convergent, for any $p \in[0,1]$, we have that $f(x) \rightarrow s(p)$ as $x \rightarrow p$, so the discontinuity points are just those in $Q \cap[0,1]$.

