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Exercise 1. Suppose f and g are integrable and their squares are integrable.

Then fg is measurable, integrable, and

∫
fg ≤

√∫
f2

√∫
g2.

Let t ∈ R. Then by linearity of Lebesgue integrals,

0 ≤ p(t) :=

∫
(f − tg)2 =

∫
(f2 − 2tfg + t2g2) =

∫
f2 +−2t

∫
fg + t2

∫
g2

and

4((

∫
fg)2 −

∫
f2

∫
g2) ≤ 0.

Since p(t) > 0 we see that

∫
fg ≤

√∫
f2

√∫
g2.

Exercise 2.

Each x ∈ [0, 1] may be expressed in base 3 as (.ω1ω2ω3...)3. Then

x =

∞∑
i=1

ωi

3i

and each ωi equals 0, 1, or 2. We’ve previously constructed a Cantor set C in

which each x ∈ C has a unique ternary expansion such that each ωi equals 0 or

2. We define a function H on [0, 1] by

H(x) =

∞∑
1

ωi/2

2i
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where H has equals values at the endpoints of discarded gap intervals and we

extendH to these intervals by lettingH be constant on them. We recall that this

function is well-defined and that it is continuous, surjective, and has derivative

zero almost everywhere on [0, 1].

Define Ĥ : R → R by Ĥ(x+ n) = H(x) + n for all n ∈ Z, x ∈ [0, 1]. Define

Hk(x) = Ĥ(3kx) J(x) =

∞∑
k=0

Ĥ(3kx)

4k
.

For x ∈ [0, 1], H(x) ≤ 1 for ∈ [0, 1]. Then for x ∈ [0, 1], for each k we have

Ĥ(3kx) ≤ 3k. Then
∑∞

k=0
Ĥ(3kx)

4k
converges. Since Ĥ(3kx0) < Ĥ(3kx1) if

|x0 − x1| > 1/3k, summing over k we see that J is strictly increasing.

Recall that if a sequence of real valued functions defined on a set X satisfies

|fn(x)| < Mn for all n, and all x ∈ X, where Mn > 0, and
∑∞

n=1 Mn = L < ∞,

then
∑∞

n=1 fn(x) converges absolutely and uniformly on X. We see then that∑∞
k=0

Ĥ(3kx)
4k

converges on [0, 1]. Since Ĥ(x + 1) = H(x) + 1 for all x, J is

continuous on R.
We see that J ′ = 0 almost everywhere. Fix a > 0 and let

Sa = {x : J ′ exists, J ′ > a, x belongs to the constancy intervals of every Hk}.

For each N ∈ N and any x ∈ [0, 1/3N ], we define JN : [0, 1/3N ] → R by

JN (x) =

N∑
k=0

Ĥ(3kx)

4k
.

JN is almost everywhere constancy intervals by the following reasoning. If

x ∈ [0, 1] then Ĥ(x) = H(x), and H(x) is almost everywhere constant (C has

measure 0). For x ∈ [0, 1/3N ] and k < N , we have 0 ≤ 3kx ≤ 1. Then JN is

almost everywhere constancy intervals for such x. We next utilize the following

theorem.

Fubini’s differentiation theorem Let I ⊂ R be an interval, and (fk) a

sequence of functions fk : I → R. If s(x) :=
∑∞

k=1 f(x) exists for all x ∈ I, and

for every k ∈ N fk is an increasing function, then s′(x) =
∑∞

k=1 f
′
k(x).

By the construction of H, we have for x ∈ (0, 1
3N

) and n ∈ N that

H(x+
n

3N
) = H(x+

3N − n− 1

3N
)

2



and H(x) = 1 − H(1 − x) for x ∈ [0, 1]. Since the sequence of functions (JN )

meets the hypotheses of Fubini’s differentiation theorem, and since f ′
k = 0

almost everywhere we have that J ′(x) = 0 almost everywhere on [0, 1]. Since

J(x) is defined in any intervals [a, a + 1] and [a + 1, a + 2] identically up to a

constant, the theorem implies that for almost every x ∈ R, J ′(x) = 0.

Exercise 3.

∫
f(x, y)dx =

∫ y

0

1

y2
dx−

∫ 1

y

1

x2
dx =

1

y
+ 1− 1

y
= 1

∫
f(x, y)dy =

∫ x

1

1

y2
dy −

∫ x

0

1

x2
dy =

1

x
− 1− 1

x
= −1

yet double integral gives∫ 1

0

∫ x

0

− 1

x2
dydx =

∫ 1

0

1

x
dx = ∞

so the integral does not exist. This does not contradict corollary 43, because

this corollary requires the integrand to be non-negative.

Exercise 4.

a) Since E is measurable, this is just a restriction of the density of some

point of E, and the conclusion follows.

b) Let A = {x ∈ R : sin(1/x) > 0}, and B = R \ A. Then on the any

interval (−r, r), centered at 0, m(B∩(−r, 0)) = −m(A∩(0, r)), as B∩(−r, 0) =

A∩(0, r)−2r, that is, the opposite sets are obtained by complement in a interval

of length r, and measure preserving translation. Then centered at 0, we have

balanced density 1/2. It seems that some iterated addition or subtraction of

additional periodic functions could change the density. In R2, the solution is

more clear.

Exercise 5.

Take some convergent strictly increasing series and allow it to attain its

subsequent sums on Q. So if
∑∞

n=1 an → L < ∞, the terms of an → 0. For a

given bijection f : N → Q ∩ [0, 1], we can take the sum

s(x) =
∑
n∈Ex

an

where E = {n ∈ N : f(n) < x}.
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Then the ”partial sum” function s(x) is monotonically increasing, and its

discontinuities are at the points Q ∩ [0, 1]. Because the sum s(x) is convergent,

for any p ∈ [0, 1], we have that f(x) → s(p) as x → p, so the discontinuity

points are just those in Q ∩ [0, 1].
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