7.2.1.
(v) $\emptyset$ is covered by the empty collection, whose sum of volumes is 0 .
(vi)

Every open box has non-negative real volume,
so every sum

$$
\sum_{i \in I} \operatorname{vol}\left(A_{i}\right)
$$

(for open boxes $A_{i}$ ) is a non-negative extended real number, so for any $\Omega \subseteq \mathbb{R}^{n}$

$$
\left\{\sum_{i \in I} \operatorname{vol}\left(A_{i}\right) \mid I \text { countable, } \bigcup_{i \in I} A_{i} \supseteq \Omega\right\}
$$

contains only non-negative extended real values, hence its infimum $m^{*}(\Omega)$ is a non-negative extended real number.
(vii)

For any $\varepsilon>0$
there's a countable cover $\mathcal{U}$ of $B$ by open boxes
such that

$$
\sum_{U \in \mathcal{U}} \operatorname{vol}(U)<m^{*}(B)+\varepsilon
$$

Since $A \subset B, \mathcal{U}$ covers $A$, giving

$$
m^{*}(A) \leq \sum_{U \in \mathcal{U}} \operatorname{vol}(U)<m^{*}(B)+\varepsilon
$$

for all $\varepsilon>0$, or simply

$$
m^{*}(A) \leq m^{*}(B)
$$

(viii) (x).
(x)

Let $\varepsilon>0, \sum_{j \in J} \varepsilon_{j}=\varepsilon$, and $A=\bigcup_{j \in J} A_{j}$.
For each $j \in J$, pick a countable cover $\mathcal{U}_{\|}$of $A_{j}$ by open boxes such that

$$
\sum_{U \in \mathcal{U}_{j}} \operatorname{vol}(U)<m^{*}\left(A_{j}\right)+\varepsilon_{j}
$$

Then

$$
\mathcal{U}:=\bigcup_{j \in J} \mathcal{U}_{j}
$$

(which is countable) covers $A$, hence

$$
\begin{aligned}
m^{*}(A) & \leq \sum_{U \in \mathcal{U}} \operatorname{vol}(U) \\
& \leq \sum_{j \in J} \sum_{U \in \mathcal{U}_{J}} \\
& <\sum_{j \in J} m^{*}\left(A_{j}\right)+\varepsilon_{j} \\
& =\left(\sum_{j \in J} m^{*}\left(A_{j}\right)\right)+\varepsilon
\end{aligned}
$$

for any $\varepsilon>0$, giving

$$
m^{*}(A) \leq \sum_{j \in J} m^{*}\left(A_{j}\right)
$$

(xiii)

Volume (of an open box) is translation invariant, so any cover $\mathcal{U}$ of $A \subseteq \mathbb{R}^{n}$ by open boxes has the same sum of volumes as $\mathcal{U}+x$ (which covers $A+x$ ), hence

$$
\begin{aligned}
& \left\{\sum_{U \in \mathcal{U}} \operatorname{vol}(U) \mid \mathcal{U} \text { a countable cover of } A \text { by open boxes }\right\} \\
= & \left\{\sum_{U \in \mathcal{U}} \operatorname{vol}(U) \mid \mathcal{U} \text { a countable cover of } A+x \text { by open boxes }\right\}
\end{aligned}
$$

so $m^{*}(A)=m^{*}(A+x)$.
7.2.2.

Let

$$
\begin{aligned}
A & \subseteq \mathbb{R}^{m} \\
B & \subseteq \mathbb{R}^{n}
\end{aligned}
$$

(This is different from Tao's choice because I like alphabetical order.)
Definition. Let $S \subseteq \mathbb{R}^{k}$ for some $k$ and let $\mathcal{U}_{S}$ be a collection of subsets of $\mathbb{R}^{k}$. $\mathcal{U}_{S}$ is suitable if it is a countable cover of $S$ by open boxes.
Given two open boxes $U_{A} \subseteq \mathbb{R}^{m}, U_{B} \subseteq \mathbb{R}^{n}$,

$$
\operatorname{vol}_{m+n}\left(U_{A} \times U_{B}\right)=\operatorname{vol}_{m}\left(U_{A}\right) \cdot \operatorname{vol}_{n}\left(U_{B}\right)
$$

Given two suitable covers $\mathcal{U}_{A}, \mathcal{U}_{B}$, we can form the collection

$$
\mathcal{U}_{A \times B}=\left\{U_{A} \times U_{B} \mid U_{A} \in \mathcal{U}_{A}, U_{B} \in \mathcal{U}_{B}\right\}
$$

Lemma 2: $\mathcal{U}_{A \times B}$ is suitable.
Clearly the elements of $\mathcal{U}_{A \times B}$ are open boxes in $\mathbb{R}^{m+n}$.
Furthermore, $\mathcal{U}_{A \times B}$ is countable because there exist injective functions:

$$
\mathcal{U}_{A \times B} \hookrightarrow \mathcal{U}_{A} \times \mathcal{U}_{B} \hookrightarrow \mathbb{N} \times \mathbb{N} \hookrightarrow \mathbb{N}
$$

In particular,

$$
\begin{gathered}
\mathcal{U}_{A \times B} \hookrightarrow \mathcal{U}_{A} \times \mathcal{U}_{B}: U_{A} \times U_{B} \mapsto\left(U_{A}, U_{B}\right) \\
\mathcal{U}_{A} \times \mathcal{U}_{B}=\iota_{A} \times \iota_{B}
\end{gathered}
$$

where $\iota_{A}: \mathcal{U}_{A} \hookrightarrow \mathbb{N}$ and similar for $B$.
Finally, $\mathcal{U}_{A \times B}$ covers $A \times B$ because for any $(a, b) \in A \times B$, there exist $U_{A} \in \mathcal{U}_{A}, U_{B} \in \mathcal{U}_{B}$ such that $a \in U_{A}, b \in U_{B}$, hence

$$
(a, b) \in U_{A} \times U_{B} \in \mathcal{U}_{A \times B}
$$

Now note that

$$
\begin{aligned}
\sum_{U \in \mathcal{U}_{A \times B}} \operatorname{vol}_{m+n}(U) & =\sum_{\left(U_{A}, U_{B}\right) \in \mathcal{U}_{A} \times \mathcal{U}_{B}} \operatorname{vol}_{m}\left(U_{A}\right) \operatorname{vol}_{n}\left(U_{B}\right) \\
& =\left(\sum_{U_{A} \in \mathcal{U}_{A}} \operatorname{vol}_{m}\left(U_{A}\right)\right)\left(\sum_{U_{B} \in \mathcal{U}_{B}} \operatorname{vol}_{m}\left(U_{B}\right)\right)
\end{aligned}
$$

Now, letting

$$
\begin{aligned}
& \sum_{U_{A} \in \mathcal{U}_{A}} \operatorname{vol}_{m}\left(U_{A}\right)<m_{m}^{*}(A)+\varepsilon_{A} \\
& \sum_{U_{B} \in \mathcal{U}_{B}} \operatorname{vol}_{n}\left(U_{B}\right)<m_{n}^{*}(B)+\varepsilon_{B}
\end{aligned}
$$

for some $\varepsilon_{A}, \varepsilon_{B}>0$, we have

$$
\begin{aligned}
m_{m+n}^{*}(A \times B) & \leq \sum_{U \in \mathcal{U}_{A \times B}} \operatorname{vol}_{m+n}(U) \\
& =\left(\sum_{U_{A} \in \mathcal{U}_{A}} \operatorname{vol}_{m}\left(U_{A}\right)\right)\left(\sum_{U_{B} \in \mathcal{U}_{B}} \operatorname{vol}_{m}\left(U_{B}\right)\right) \\
& <\left(m_{m}^{*}(A)+\varepsilon_{A}\right)\left(m_{n}^{*}(B)+\varepsilon_{B}\right) \\
& =m_{m}^{*}(A) m_{n}^{*}(B)+\varepsilon_{A} m_{n}^{*}(B)+\varepsilon_{B} m_{m}^{*}(A)+\varepsilon_{A} \varepsilon_{B}
\end{aligned}
$$

(The first inequality comes from the suitability of $\mathcal{U}_{A \times B}$.)
Since $\varepsilon_{A}, \varepsilon_{B}$ can be arbitrarily small, we find

$$
m_{m+n}^{*}(A \times B) \leq m_{m}^{*}(A) m_{n}^{*}(B)
$$

7.2.3.
(a)

We disjointize the sequence. Let

$$
D_{i}=A_{i} \backslash \bigcup_{j<i} A_{j}
$$

Then $D_{i}$ are disjoint and

$$
\begin{gathered}
A_{i}=\bigcup_{j \leq i} D_{j} \\
\bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty} D_{i}
\end{gathered}
$$

By finite additivity,

$$
m\left(A_{i}\right)=\sum_{j=1}^{i} m\left(D_{j}\right)
$$

By countable additivity,

$$
\begin{aligned}
m\left(\bigcup_{j=1}^{\infty} A_{j}\right) & =\sum_{j=1}^{\infty} m\left(D_{j}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{j=1}^{n} m\left(D_{j}\right) \\
& =\lim _{n \rightarrow \infty} m\left(A_{n}\right)
\end{aligned}
$$

(b)

Again, we disjointize:

$$
D_{i}=A_{i} \backslash A_{i+1}
$$

For any $i$,

$$
\begin{gathered}
A_{i}=\bigcap_{j=1}^{\infty} A_{j} \cup \bigcup_{j=i}^{\infty} D_{j} \\
\infty>m\left(A_{1}\right) \geq m\left(A_{i}\right)=m\left(\bigcap_{j=1}^{\infty} A_{j}\right)+\sum_{j=i}^{\infty} m\left(D_{j}\right)
\end{gathered}
$$

Letting $i=1$, we notice that

$$
\sum_{j=1}^{\infty} m\left(D_{j}\right)
$$

converges in $\mathbb{R}$, hence

$$
\lim _{i \rightarrow \infty} \sum_{j=i}^{\infty} m\left(D_{j}\right)=0
$$

Now, from the equation

$$
m\left(A_{i}\right)=m\left(\bigcap_{j=1}^{\infty} A_{j}\right)+\sum_{j=i}^{\infty} m\left(D_{j}\right)
$$

we obtain

$$
\begin{gathered}
\lim _{i \rightarrow \infty} m\left(A_{i}\right)=m\left(\bigcap_{j=1}^{\infty} A_{j}\right)+\lim _{i \rightarrow \infty} \sum_{j=i}^{\infty} m\left(D_{j}\right) \\
\lim _{i \rightarrow \infty} m\left(A_{i}\right)=m\left(\bigcap_{j=1}^{\infty} A_{j}\right)+0 \\
\lim _{i \rightarrow \infty} m\left(A_{i}\right)=m\left(\bigcap_{j=1}^{\infty} A_{j}\right)
\end{gathered}
$$

QED.
7.2.4.

Use open cubes $\left(0, \frac{1}{q}\right)^{n}$ to tile the unit cube, creating the set

$$
O=\left\{\left.\prod_{i=1}^{n}\left(\frac{p_{i}-1}{q}, \frac{p_{i}}{q}\right) \right\rvert\, p_{i} \in\{1, \ldots q\}\right\}
$$

These $q^{n}$ cubes have equal measure by translation invariance.
They are disjoint.
Furthermore,

$$
\bigcup O \subseteq[0,1]^{n}
$$

so

$$
\begin{aligned}
q^{n} m\left(\left(0, \frac{1}{q}\right)^{n}\right) & =\sum_{o \in O} m(o) \\
& =m(\bigcup O) \\
& \leq m\left([0,1]^{n}\right) \\
& =1
\end{aligned}
$$

$$
m\left(\left(0, \frac{1}{q}\right)^{n}\right) \leq \frac{1}{q^{n}}
$$

Similarly, let

$$
C=\left\{\left.\prod_{i=1}^{n}\left[\frac{p_{i}-1}{q}, \frac{p_{i}}{q}\right] \right\rvert\, p_{i} \in\{1, \ldots q\}\right\}
$$

These $q^{n}$ closed cubes have equal measure by translation invariance.
They cover the unit cube:

$$
[0,1]^{n} \subseteq \bigcup C
$$

This gives

$$
\begin{aligned}
& 1=m\left([0,1]^{n}\right) \\
& \leq \sum_{c \in C} m(c) \\
&=q^{n} m\left(\left[0, \frac{1}{q}\right]^{n}\right) \\
& \frac{1}{q^{n}} \leq m\left(\left[0, \frac{1}{q}\right]^{n}\right)
\end{aligned}
$$

Now we just need to show that $\left(0, \frac{1}{q}\right)^{n}$ and $\left[0, \frac{1}{q}\right]^{n}$ have the same measure, giving

$$
\begin{gathered}
\frac{1}{q^{n}} \leq m\left(\left[0, \frac{1}{q}\right]^{n}\right)=m\left(\left(0, \frac{1}{q}\right)^{n}\right) \leq \frac{1}{q^{n}} \\
\frac{1}{q^{n}}=m\left(\left[0, \frac{1}{q}\right]^{n}\right)=m\left(\left(0, \frac{1}{q}\right)^{n}\right)
\end{gathered}
$$

Claim: $m\left(\left[0, \frac{1}{q}\right]^{n}\right)=m\left(\left(0, \frac{1}{q}\right)^{n}\right)$

For each $i \in\{1, \ldots n\}$ and $x \in \mathbb{R}$, define

$$
F_{i x}=\left[0, \frac{1}{q}\right] \times \cdots \times\{x\} \times \cdots\left[0, \frac{1}{q}\right]
$$

where the Cartesian product has $n$ factors and $\{x\}$ is the $i^{\text {th }}$ factor. Clearly

$$
\left[0, \frac{1}{q}\right]^{n} \backslash\left(0, \frac{1}{q}\right)^{n}=\bigcup_{i=1}^{n}\left(F_{i 0} \cup F_{i 1}\right)
$$

E.g. in $\mathbb{R}^{3}$, the above set is the union of the six faces of a cube.

Fix $i \in\{1, \ldots n\}$ and $j \in\{0,1\}$. By translation invariance,

$$
\sum_{x \in \mathbb{Q} \cap[0,1]} m\left(F_{i j}\right)=\sum_{x \in \mathbb{Q} \cap[0,1]} m\left(F_{i x}\right)
$$

Since $\mathbb{Q} \cap[0,1]$ is infinite,

$$
\sum_{x \in \mathbb{Q} \cap[0,1]} m\left(F_{i j}\right) \in\{0, \infty\}
$$

Noting that these $F_{i x}$ are disjoint, countable additivity gives

$$
\sum_{x \in \mathbb{Q} \cap[0,1]} m\left(F_{i x}\right)=m\left(\bigcup_{x \in \mathbb{Q} \cap[0,1]} F_{i x}\right)
$$

Noting that

$$
\bigcup_{x \in \mathbb{Q} \cap[0,1]} F_{i x} \subseteq[0,1]^{n}
$$

monotonicity gives

$$
\sum_{x \in \mathbb{Q} \cap[0,1]} m\left(F_{i x}\right) \leq 1
$$

Recalling that the sum is either 0 or $\infty$, we have

$$
\begin{gathered}
m\left(\bigcup_{x \in \mathbb{Q} \cap[0,1]} F_{i x}\right)=0 \\
m\left(F_{i j}\right)=0 \\
m\left(\left[0, \frac{1}{q}\right]^{n} \backslash\left(0, \frac{1}{q}\right)^{n}\right)=m\left(\bigcup_{i=1}^{n}\left(F_{i 0} \cup F_{i 1}\right)\right) \\
\leq \sum_{i=1}^{n}(0+0) \\
=0
\end{gathered}
$$

So, by finite additivity we have

$$
\begin{aligned}
m\left(\left[0, \frac{1}{q}\right]^{n}\right) & =m\left(\left(0, \frac{1}{q}\right)^{n}\right)+m\left(\left[0, \frac{1}{q}\right]^{n} \backslash\left(0, \frac{1}{q}\right)^{n}\right) \\
& =m\left(\left(0, \frac{1}{q}\right)^{n}\right)+0 \\
& =m\left(\left(0, \frac{1}{q}\right)^{n}\right)
\end{aligned}
$$

This proves the claim.

QED.
7.4.1. Special case of 7.4.2.
7.4.2.

Let

$$
A=\prod_{i=1}^{n}\left(a_{i}, b_{i}\right)
$$

and note that

$$
E=\mathbb{R}^{n-1} \times(0, \infty)
$$

hence

$$
\begin{aligned}
& A \cap E=\prod_{i=1}^{n-1}\left(a_{i}, b_{i}\right) \times\left(\left(a_{n}, b_{n}\right) \cap(0, \infty)\right) \\
& A \backslash E=\prod_{i=1}^{n-1}\left(a_{i}, b_{i}\right) \times\left(\left(a_{n}, b_{n}\right) \backslash(0, \infty)\right)
\end{aligned}
$$

## Trivial case.

If one of

$$
\begin{aligned}
& \left(a_{n}, b_{n}\right) \cap(0, \infty) \\
& \left(a_{n}, b_{n}\right) \backslash(0, \infty)
\end{aligned}
$$

is empty, then the other one is $\left(a_{n}, b_{n}\right)$, giving

$$
m^{*}(A \cap E)=m^{*}(A \backslash E)=m^{*}(\emptyset)+m^{*}(A)=m^{*}(A)
$$

as was to be shown.
If the above case fails, then

$$
a_{n}<0<b_{n}
$$

This gives

$$
\begin{aligned}
& A \cap E=\prod_{i=1}^{n-1}\left(a_{i}, b_{i}\right) \times\left(0, b_{n}\right) \\
& A \backslash E=\prod_{i=1}^{n-1}\left(a_{i}, b_{i}\right) \times\left(a_{n}, 0\right]
\end{aligned}
$$

which allows us to determine that

$$
m^{*}(A \cap E)=\prod_{i=1}^{n-1}\left(b_{i}-a_{i}\right) \cdot b_{n}
$$

We also determine (using monotonicity) that

$$
\begin{aligned}
\prod_{i=1}^{n-1}\left(b_{i}-a_{i}\right) \cdot\left(-a_{n}\right) & =m^{*}\left(\prod_{i=1}^{n-1}\left(a_{i}, b_{i}\right) \times\left(a_{n}, 0\right)\right) \\
& \leq m^{*}(A \backslash E) \\
& =m^{*}\left(\prod_{i=1}^{n-1}\left(a_{i}, b_{i}\right) \times\left[a_{n}, 0\right]\right) \\
& =\prod_{i=1}^{n-1}\left(b_{i}-a_{i}\right) \cdot\left(-a_{n}\right)
\end{aligned}
$$

$$
m^{*}(A \backslash E)=\prod_{i=1}^{n-1}\left(b_{i}-a_{i}\right) \cdot\left(-a_{n}\right)
$$

Which finally yields

$$
\begin{aligned}
m^{*}(A \cap E)+m^{*}(A \backslash E) & =\prod_{i=1}^{n-1}\left(b_{i}-a_{i}\right) \cdot b_{n}+\prod_{i=1}^{n-1}\left(b_{i}-a_{i}\right) \cdot\left(-a_{n}\right) \\
& =\prod_{i=1}^{n-1}\left(b_{i}-a_{i}\right) \cdot\left(b_{n}-a_{n}\right) \\
& =\prod_{i=1}^{n}\left(b_{i}-a_{i}\right) \\
& =m^{*}(A)
\end{aligned}
$$

QED.

### 7.4.3.

Let $A \subseteq \mathbb{R}^{n}$.
By finite sub-additivity,

$$
m^{*}(A \cap E)+m^{*}(A \backslash E) \geq m^{*}(A)
$$

We now prove $\leq$.
Pick an $\varepsilon>0$ and let $\left(U_{k}\right)_{k \in K}$ be a countable open box cover of $A$ with

$$
\sum_{k \in K} m^{*}\left(U_{k}\right)<m^{*}(A)+\varepsilon
$$

Note that

$$
\begin{array}{ll}
A \cap E \subseteq \bigcup_{k \in K}\left(U_{k} \cap E\right) & m^{*}(A \cap E) \leq \sum_{k \in K} m^{*}\left(U_{k} \cap E\right) \\
A \backslash E \subseteq \bigcup_{k \in K}\left(U_{k} \backslash E\right) & m^{*}(A \backslash E) \leq \sum_{k \in K} m^{*}\left(U_{k} \backslash E\right)
\end{array}
$$

Now we find

$$
\begin{aligned}
& m^{*}(A \cap E)+m^{*}(A \backslash E) \leq \sum_{k \in K} m^{*}\left(U_{k} \cap E\right)+\sum_{k \in K} m^{*}\left(U_{k} \backslash E\right) \\
&=\sum_{k \in K}\left(m^{*}\left(U_{k} \cap E\right)+m^{*}\left(U_{k} \backslash E\right)\right) \\
& \stackrel{7.4 .2}{=} \sum_{k \in K} m^{*}\left(U_{k}\right) \\
&<m^{*}(A)+\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary,

$$
m^{*}(A \cap E)+m^{*}(A \backslash E) \leq m^{*}(A)
$$

Combining with our initial inequality, we obtain

$$
m^{*}(A \cap E)+m^{*}(A \backslash E)=m^{*}(A)
$$

Since $A \subseteq \mathbb{R}^{n}$ was arbitrary, $E$ is measurable.

### 7.4.4.

(a)

Denoting $\mathbb{R}^{n} \backslash E$ by $E^{c}$, we have

$$
\begin{aligned}
m^{*}(A) & =m^{*}(A \cap E)+m^{*}(A \backslash E) \\
& =m^{*}\left(A \backslash E^{c}\right)+m^{*}\left(A \cap E^{c}\right)
\end{aligned}
$$

(b)

We use the translation invariance of $m^{*}$.

$$
\begin{aligned}
m^{*}(A) & =m^{*}(-x+A) \\
& =m^{*}((-x+A) \cap E)+m^{*}((-x+A) \backslash E) \\
& =m^{*}(x+((-x+A) \cap E))+m^{*}(x+((-x+A) \backslash E)) \\
& \left.=m^{*}(A \cap(x+E))+m^{*}(A \backslash(x+E))\right)
\end{aligned}
$$

(The last $=$ comes from equality of sets due to the translation invariance of $\cap$ and $\backslash$.)
(c)

## Unions:

First, for free, we get

$$
m^{*}(A) \leq m^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)+m^{*}\left(A \backslash\left(E_{1} \cup E_{2}\right)\right)
$$

by finite sub-additivity of $m^{*}$. Now we prove $\geq$.

$$
\begin{aligned}
m^{*}(A) & =m^{*}\left(A \cap E_{1}\right)+m^{*}\left(A \backslash E_{1}\right) \\
& =m^{*}\left(A \cap E_{1}\right)+m^{*}\left(\left(A \backslash E_{1}\right) \cap E_{2}\right)+m^{*}\left(\left(A \backslash E_{1}\right) \backslash E_{2}\right)
\end{aligned}
$$

By finite sub-additivity,

$$
m^{*}\left(A \cap E_{1}\right)+m^{*}\left(\left(A \backslash E_{1}\right) \cap E_{2}\right) \geq m^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)
$$

Noting that

$$
\left(A \backslash E_{1}\right) \backslash E_{2}=A \backslash\left(E_{1} \cup E_{2}\right)
$$

We now have

$$
\begin{aligned}
m^{*}(A) & =m^{*}\left(A \cap E_{1}\right)+m^{*}\left(\left(A \backslash E_{1}\right) \cap E_{2}\right)+m^{*}\left(\left(A \backslash E_{1}\right) \backslash E_{2}\right) \\
& \geq m^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)+m^{*}\left(A \backslash\left(E_{1} \cup E_{2}\right)\right)
\end{aligned}
$$

This proves that $E_{1} \cup E_{2}$ is measurable.

## Intersections:

$$
E_{1} \cap E_{2}=\left(E_{1}^{c} \cup E_{2}^{c}\right)^{c}
$$

(d) Induction.
(e)

Given $i \in\{1, \ldots n\}$ and $x \in \mathbb{R}$, we write $P_{i x}$ to denote the half-plane above $x$ in the $i^{\text {th }}$ dimension,

$$
P_{i x}=\left\{\left(p_{1}, \ldots p_{n}\right) \mid p_{i}>x\right\}
$$

and $P^{i x}$ to denote the half-plane below $x$ in the $i^{\text {th }}$ dimension,

$$
P^{i x}=\left\{\left(p_{1}, \ldots p_{n}\right) \mid p_{i}<x\right\}
$$

Now, taking an open box

$$
B=\prod_{i=1}^{n}\left(a_{i}, b_{i}\right)
$$

we find

$$
B=\bigcap_{i=1}^{n}\left(P_{i a_{i}} \cap P^{i b_{i}}\right)
$$

which is measurable by (c) and 7.4.3.
(f)

By finite sub-additivity,

$$
m^{*}(A \cap E)+m^{*}(A \backslash E) \geq m^{*}(A)
$$

Furthermore,

$$
\begin{aligned}
m^{*}(A \cap E)+m^{*}(A \backslash E) & \leq m^{*}(E)+m^{*}(A \backslash E) \\
& =0+m^{*}(A \backslash E) \\
& =m^{*}(A \backslash E) \\
& \leq m^{*}(A)
\end{aligned}
$$

So

$$
m^{*}(A \cap E)+m^{*}(A \backslash E)=m^{*}(A)
$$

