
7.2.1.
(v) ∅ is covered by the empty collection, whose sum of volumes is 0.
(vi)

Every open box has non-negative real volume,
so every sum ∑

i∈I
vol(Ai)

(for open boxes Ai) is a non-negative extended real number,
so for any Ω ⊆ Rn {∑

i∈I
vol(Ai)

∣∣∣∣∣ I countable,
⋃
i∈I

Ai ⊇ Ω

}
contains only non-negative extended real values, hence its infimum m∗(Ω) is a non-negative extended
real number.

(vii)
For any ε > 0
there’s a countable cover U of B by open boxes
such that ∑

U∈U
vol(U) < m∗(B) + ε

Since A ⊂ B, U covers A, giving

m∗(A) ≤
∑
U∈U

vol(U) < m∗(B) + ε

for all ε > 0, or simply
m∗(A) ≤ m∗(B)

(viii) (x).
(x)

Let ε > 0,
∑

j∈J εj = ε, and A =
⋃

j∈J Aj .
For each j ∈ J , pick a countable cover U| of Aj by open boxes such that∑

U∈Uj

vol(U) < m∗(Aj) + εj

Then
U :=

⋃
j∈J
Uj

(which is countable) covers A, hence

m∗(A) ≤
∑
U∈U

vol(U)

≤
∑
j∈J

∑
U∈UJ

<
∑
j∈J

m∗(Aj) + εj

=

∑
j∈J

m∗(Aj)

+ ε
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for any ε > 0, giving

m∗(A) ≤
∑
j∈J

m∗(Aj)

(xiii)
Volume (of an open box) is translation invariant,
so any cover U of A ⊆ Rn by open boxes
has the same sum of volumes as U + x (which covers A+ x),
hence {∑

U∈U
vol(U)

∣∣∣∣∣ U a countable cover of A by open boxes

}

=

{∑
U∈U

vol(U)

∣∣∣∣∣ U a countable cover of A+ x by open boxes

}

so m∗(A) = m∗(A+ x).
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7.2.2.
Let

A ⊆ Rm

B ⊆ Rn

(This is different from Tao’s choice because I like alphabetical order.)
Definition. Let S ⊆ Rk for some k and let US be a collection of subsets of Rk. US is suitable if it is a
countable cover of S by open boxes.
Given two open boxes UA ⊆ Rm, UB ⊆ Rn,

volm+n(UA × UB) = volm(UA) · voln(UB)

Given two suitable covers UA,UB , we can form the collection

UA×B = {UA × UB | UA ∈ UA, UB ∈ UB}

Lemma 2: UA×B is suitable.
Clearly the elements of UA×B are open boxes in Rm+n.
Furthermore, UA×B is countable because there exist injective functions:

UA×B ↪→ UA × UB ↪→ N× N ↪→ N

In particular,
UA×B ↪→ UA × UB : UA × UB 7→ (UA, UB)

UA × UB = ιA × ιB
where ιA : UA ↪→ N and similar for B.
Finally, UA×B covers A× B because for any (a, b) ∈ A× B, there exist UA ∈ UA, UB ∈ UB such that
a ∈ UA, b ∈ UB , hence

(a, b) ∈ UA × UB ∈ UA×B
Now note that ∑

U∈UA×B

volm+n(U) =
∑

(UA,UB)∈UA×UB

volm(UA) voln(UB)

=

( ∑
UA∈UA

volm(UA)

)( ∑
UB∈UB

volm(UB)

)
Now, letting ∑

UA∈UA

volm(UA) < m∗m(A) + εA

∑
UB∈UB

voln(UB) < m∗n(B) + εB

for some εA, εB > 0, we have

m∗m+n(A×B) ≤
∑

U∈UA×B

volm+n(U)

=

( ∑
UA∈UA

volm(UA)

)( ∑
UB∈UB

volm(UB)

)
< (m∗m(A) + εA) (m∗n(B) + εB)

= m∗m(A)m∗n(B) + εAm
∗
n(B) + εBm

∗
m(A) + εAεB
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(The first inequality comes from the suitability of UA×B .)
Since εA, εB can be arbitrarily small, we find

m∗m+n(A×B) ≤ m∗m(A)m∗n(B)
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7.2.3.
(a)

We disjointize the sequence. Let

Di = Ai \
⋃
j<i

Aj

Then Di are disjoint and

Ai =
⋃
j≤i

Dj

∞⋃
i=1

Ai =

∞⋃
i=1

Di

By finite additivity,

m(Ai) =

i∑
j=1

m(Dj)

By countable additivity,

m(

∞⋃
j=1

Aj) =

∞∑
j=1

m(Dj)

= lim
n→∞

n∑
j=1

m(Dj)

= lim
n→∞

m(An)

(b)
Again, we disjointize:

Di = Ai \Ai+1

For any i,

Ai =

∞⋂
j=1

Aj ∪
∞⋃
j=i

Dj

∞ > m(A1) ≥ m(Ai) = m(

∞⋂
j=1

Aj) +

∞∑
j=i

m(Dj)

Letting i = 1, we notice that
∞∑
j=1

m(Dj)

converges in R, hence

lim
i→∞

∞∑
j=i

m(Dj) = 0

Now, from the equation

m(Ai) = m(

∞⋂
j=1

Aj) +

∞∑
j=i

m(Dj)
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we obtain

lim
i→∞

m(Ai) = m(

∞⋂
j=1

Aj) + lim
i→∞

∞∑
j=i

m(Dj)

lim
i→∞

m(Ai) = m(

∞⋂
j=1

Aj) + 0

lim
i→∞

m(Ai) = m(

∞⋂
j=1

Aj)

QED.
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7.2.4.
Use open cubes (0, 1q )n to tile the unit cube, creating the set

O =

{
n∏

i=1

(
pi − 1

q
,
pi
q

)

∣∣∣∣∣pi ∈ {1, . . . q}
}

These qn cubes have equal measure by translation invariance.
They are disjoint.
Furthermore, ⋃

O ⊆ [0, 1]n

so

qnm((0,
1

q
)n) =

∑
o∈O

m(o)

= m(
⋃
O)

≤ m([0, 1]n)

= 1

m((0,
1

q
)n) ≤ 1

qn

Similarly, let

C =

{
n∏

i=1

[
pi − 1

q
,
pi
q

]

∣∣∣∣∣pi ∈ {1, . . . q}
}

These qn closed cubes have equal measure by translation invariance.
They cover the unit cube:

[0, 1]n ⊆
⋃
C

This gives

1 = m([0, 1]n)

≤
∑
c∈C

m(c)

= qnm([0,
1

q
]n)

1

qn
≤ m([0,

1

q
]n)

Now we just need to show that (0, 1q )n and [0, 1q ]n have the same measure, giving

1

qn
≤ m([0,

1

q
]n) = m((0,

1

q
)n) ≤ 1

qn

1

qn
= m([0,

1

q
]n) = m((0,

1

q
)n)

Claim: m([0, 1q ]n) = m((0, 1q )n)
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For each i ∈ {1, . . . n} and x ∈ R, define

Fix = [0,
1

q
]× · · · × {x} × · · · [0, 1

q
]

where the Cartesian product has n factors and {x} is the ith factor. Clearly

[0,
1

q
]n \ (0,

1

q
)n =

n⋃
i=1

(Fi0 ∪ Fi1)

E.g. in R3, the above set is the union of the six faces of a cube.

Fix i ∈ {1, . . . n} and j ∈ {0, 1}. By translation invariance,∑
x∈Q∩[0,1]

m(Fij) =
∑

x∈Q∩[0,1]

m(Fix)

Since Q ∩ [0, 1] is infinite, ∑
x∈Q∩[0,1]

m(Fij) ∈ {0,∞}

Noting that these Fix are disjoint, countable additivity gives∑
x∈Q∩[0,1]

m(Fix) = m(
⋃

x∈Q∩[0,1]

Fix)

Noting that ⋃
x∈Q∩[0,1]

Fix ⊆ [0, 1]n

monotonicity gives ∑
x∈Q∩[0,1]

m(Fix) ≤ 1

Recalling that the sum is either 0 or ∞, we have

m(
⋃

x∈Q∩[0,1]

Fix) = 0

m(Fij) = 0

m([0,
1

q
]n \ (0,

1

q
)n) = m(

n⋃
i=1

(Fi0 ∪ Fi1))

≤
n∑

i=1

(0 + 0)

= 0

So, by finite additivity we have

m([0,
1

q
]n) = m((0,

1

q
)n) +m([0,

1

q
]n \ (0,

1

q
)n)

= m((0,
1

q
)n) + 0

= m((0,
1

q
)n)

This proves the claim.
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QED.
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7.4.1. Special case of 7.4.2.
7.4.2.

Let

A =

n∏
i=1

(ai, bi)

and note that
E = Rn−1 × (0,∞)

hence

A ∩ E =

n−1∏
i=1

(ai, bi)× ((an, bn) ∩ (0,∞))

A \ E =

n−1∏
i=1

(ai, bi)× ((an, bn) \ (0,∞))

Trivial case.
If one of

(an, bn) ∩ (0,∞)

(an, bn) \ (0,∞)

is empty, then the other one is (an, bn), giving

m∗(A ∩ E) = m∗(A \ E) = m∗(∅) +m∗(A) = m∗(A)

as was to be shown.
If the above case fails, then

an < 0 < bn

This gives

A ∩ E =

n−1∏
i=1

(ai, bi)× (0, bn)

A \ E =

n−1∏
i=1

(ai, bi)× (an, 0]

which allows us to determine that

m∗(A ∩ E) =

n−1∏
i=1

(bi − ai) · bn

We also determine (using monotonicity) that

n−1∏
i=1

(bi − ai) · (−an) = m∗(

n−1∏
i=1

(ai, bi)× (an, 0))

≤ m∗(A \ E)

= m∗(

n−1∏
i=1

(ai, bi)× [an, 0])

=

n−1∏
i=1

(bi − ai) · (−an)
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m∗(A \ E) =

n−1∏
i=1

(bi − ai) · (−an)

Which finally yields

m∗(A ∩ E) +m∗(A \ E) =

n−1∏
i=1

(bi − ai) · bn +

n−1∏
i=1

(bi − ai) · (−an)

=

n−1∏
i=1

(bi − ai) · (bn − an)

=

n∏
i=1

(bi − ai)

= m∗(A)

QED.
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7.4.3.
Let A ⊆ Rn.
By finite sub-additivity,

m∗(A ∩ E) +m∗(A \ E) ≥ m∗(A)

We now prove ≤.
Pick an ε > 0 and let (Uk)k∈K be a countable open box cover of A with∑

k∈K

m∗(Uk) < m∗(A) + ε

Note that

A ∩ E ⊆
⋃
k∈K

(Uk ∩ E) m∗(A ∩ E) ≤
∑
k∈K

m∗(Uk ∩ E)

A \ E ⊆
⋃
k∈K

(Uk \ E) m∗(A \ E) ≤
∑
k∈K

m∗(Uk \ E)

Now we find

m∗(A ∩ E) +m∗(A \ E) ≤
∑
k∈K

m∗(Uk ∩ E) +
∑
k∈K

m∗(Uk \ E)

=
∑
k∈K

(m∗(Uk ∩ E) +m∗(Uk \ E))

7.4.2
=

∑
k∈K

m∗(Uk)

< m∗(A) + ε

Since ε > 0 was arbitrary,
m∗(A ∩ E) +m∗(A \ E) ≤ m∗(A)

Combining with our initial inequality, we obtain

m∗(A ∩ E) +m∗(A \ E) = m∗(A)

Since A ⊆ Rn was arbitrary, E is measurable.
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7.4.4.
(a)

Denoting Rn \ E by Ec, we have

m∗(A) = m∗(A ∩ E) +m∗(A \ E)

= m∗(A \ Ec) +m∗(A ∩ Ec)

(b)
We use the translation invariance of m∗.

m∗(A) = m∗(−x+A)

= m∗((−x+A) ∩ E) +m∗((−x+A) \ E)

= m∗(x+ ((−x+A) ∩ E)) +m∗(x+ ((−x+A) \ E))

= m∗(A ∩ (x+ E)) +m∗(A \ (x+ E)))

(The last = comes from equality of sets due to the translation invariance of ∩ and \.)
(c)

Unions:
First, for free, we get

m∗(A) ≤ m∗(A ∩ (E1 ∪ E2)) +m∗(A \ (E1 ∪ E2))

by finite sub-additivity of m∗. Now we prove ≥.

m∗(A) = m∗(A ∩ E1) +m∗(A \ E1)

= m∗(A ∩ E1) +m∗((A \ E1) ∩ E2) +m∗((A \ E1) \ E2)

By finite sub-additivity,

m∗(A ∩ E1) +m∗((A \ E1) ∩ E2) ≥ m∗(A ∩ (E1 ∪ E2))

Noting that
(A \ E1) \ E2 = A \ (E1 ∪ E2)

We now have

m∗(A) = m∗(A ∩ E1) +m∗((A \ E1) ∩ E2) +m∗((A \ E1) \ E2)

≥ m∗(A ∩ (E1 ∪ E2)) +m∗(A \ (E1 ∪ E2))

This proves that E1 ∪ E2 is measurable.

Intersections:
E1 ∩ E2 = (Ec

1 ∪ Ec
2)c

(d) Induction.
(e)

Given i ∈ {1, . . . n} and x ∈ R, we write Pix to denote the half-plane above x in the ith dimension,

Pix = {(p1, . . . pn)|pi > x}
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and P ix to denote the half-plane below x in the ith dimension,

P ix = {(p1, . . . pn)|pi < x}

Now, taking an open box

B =

n∏
i=1

(ai, bi)

we find

B =

n⋂
i=1

(
Piai
∩ P ibi

)
which is measurable by (c) and 7.4.3.

(f)
By finite sub-additivity,

m∗(A ∩ E) +m∗(A \ E) ≥ m∗(A)

Furthermore,

m∗(A ∩ E) +m∗(A \ E) ≤ m∗(E) +m∗(A \ E)

= 0 +m∗(A \ E)

= m∗(A \ E)

≤ m∗(A)

So
m∗(A ∩ E) +m∗(A \ E) = m∗(A)
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