7.2.1.

(v) 0 is covered by the empty collection, whose sum of volumes is 0.

(vi)

(vii)

Every open box has non-negative real volume,

SO every sum
> vol(4;)
il

(for open boxes A;) is a non-negative extended real number,

so for any 2 C R”
{Z VOI(AZ‘)

icl

I countable, U A; D Q}

i€l
contains only non-negative extended real values, hence its infimum m*(2) is a non-negative extended
real number.

For any € > 0

there’s a countable cover U of B by open boxes

such that
> vol(U) < m*(B) + ¢
Ueu

Since A C B, U covers A, giving

m*(A4) < Z vol(U) <m*(B) + ¢
Ueu

for all € > 0, or simply
m*(A) < m*(B)

(viii) (x).

(%)

Let € >0, > ,c, e =¢, and A= ;. ; 4;.
For each j € J, pick a countable cover U of A; by open boxes such that

Z VOI(U) < m*(A]) + €5
Uel;

Then

U= qu

JEJ
(which is countable) covers A, hence

m*(A4) < Z vol(U)

veu

<.

jeEJUEU,

< Zm*(AJ) +¢€;

jEJ

=) m*(4;) | +e¢

jeJ



for any € > 0, giving
m*(A) <Y m*(4;)
jeJ
(xiii)
Volume (of an open box) is translation invariant,
so any cover U of A CR" by open boxes

has the same sum of volumes as U + x (which covers A + z),
hence

{ Z vol(U)

veu

= { Z vol(U)

veu

U a countable cover of A by open boxes}

U a countable cover of A+ x by open boxes}

so m*(A) =m*(A+ x).



7.2.2.
Let
ACR™

BCR"

(This is different from Tao’s choice because I like alphabetical order.)

Definition. Let S C R* for some k and let Us be a collection of subsets of RF. Ug is suitable if it is a
countable cover of S by open boxes.

Given two open boxes Uy C R™, Ug C R™,

VOl (Ua X Ug) = vol,y, (Uy) - vol, (Ug)
Given two suitable covers U4, Up, we can form the collection
UAxB = {UA X UB | UA S UA,UB EZ/{B}

Lemma 2: U p is suitable.
Clearly the elements of U4« 5 are open boxes in R™+",
Furthermore, U 4« g is countable because there exist injective functions:

UAXB‘%UAXZ/{B‘—)NXN‘—}N

In particular,
quB SUs XU :Usa xUpg +— (UA,UB)
UA XZ/[B =1A X LB

where 14 : Us — N and similar for B.
Finally, Usx p covers A x B because for any (a,b) € A x B, there exist Uy € Us,Up € Up such that
a € Ua,b e Up, hence

(a,b) cUaxUp EUaxB

Now note that

> ol n(U) = > VOl (Ua) vol, (Ug)

UelUaxB (Ua,Up)EUAXUB
= ( Z VOL,,L(UA)> ( Z VOlm(UB)>
Ua€Ua UpeUp

Now, letting

Z voly, (Ua) < my,(A) +ea
UacUa

Z VOln(UB) < m:(B) +éB
UpelUp

for some € 4,ep > 0, we have

My n(AXxB) < > volyyn(U)

UeUaxs
:( Z volm(UA)> ( Z VOlm(UB)>
UacUa UpeUp

< (mi,(A) + £4) (my(B) +ep)
— i, (A)miy(B) + camiy(B) + epmy, (A) + eacp



(The first inequality comes from the suitability of Uax5.)
Since €4,ep can be arbitrarily small, we find

Moy (A X B) < mg, (A)ms, (B)

m n



7.2.3.
(a)

We disjointize the sequence. Let

Then D; are disjoint and

By finite additivity,

By countable additivity,

(b)
Again, we disjointize:
D= A\ Aipa

For any 1,
A= 40D,
j=1 j=i

oo o0

oo > m(Ar) = m(A;) =m([) 4;) +Y_m(D;)
j=1 j=i
Letting ¢ = 1, we notice that
Z m(D;)
j=1
converges in R, hence
Jfim ) m(D;) =0
Jj=1
Now, from the equation
o0 o0
m(A;) = m((7) 4;) + Y m(D;)
Jj=1 Jj=t



we obtain

QED.



7.2.4.

Use open cubes (0, %)” to tile the unit cube, creating the set

0= {H(pllquz)

i=1 q

pi € {1,...q}}

These ¢ cubes have equal measure by translation invariance.
They are disjoint.
Furthermore,

Joco

SO

Similarly, let

=1 p
C_{H[ q aq]p

i=1

These q" closed cubes have equal measure by translation invariance.
They cover the unit cube:

1" <l Je

This gives
1 =m([0,1]")
<2 mle)
ceC
1
—_ qnm 0, -n
(0, 21")
1 1
— <m Oa ="
i
Now we just need to show that (0, %)” and [0, %]" have the same measure, giving
1 1 1 1
—<m 07771 =m 0’771 < —
g =m0, 21N =m((0. )" < 75
1 1 1
— =m([0,=]") = m((0,-)"
g~ o, 21 = m((0.)%)



For each i € {1,...n} and = € R, define
1 1
Fi,=0,-]x---xA{x} x---|0,-
0, ] {z} 0]

where the Cartesian product has n factors and {} is the i*! factor. Clearly

n

[0, ="\ (0,-)" = U(Fz'o U Fi1)

i=1

E.g. in R3, the above set is the union of the six faces of a cube.

Fix i € {1,...n} and j € {0,1}. By translation invariance,
Yo mFy) = >, m(Fi)
z€QN[0,1] z€QN[0,1]
Since Q N [0, 1] is infinite,
Z ’I’?’L(Fij) S {0,00}
€QNI0,1]
Noting that these Fj, are disjoint, countable additivity gives
Y m(Fe)=m( |J Fa)
z€QN[0,1] z€QN[0,1]
Noting that
U F.cl”
z€QNIo0,1]
monotonicity gives
> om(F,) <1
x€Qnl[0,1]
Recalling that the sum is either 0 or oo, we have

m( |J Fa)=0

z€eQN[0,1]
m(Fij) =0
1 1 "
m([0,=]"\ (0, =)") = m({_J(Fio U Fin))
q q i=1
< i(o +0)
_o
So, by finite additivity we have
1 ny __ m “\n m ~1n 1 n
m([0, 5] ) =m((0, q) ) +m([0, q] \ (0, q) )
1 n
1 n
= m((O,g) )

This proves the claim.



QED.



7.4.1. Special case of 7.4.2.
7.4.2.
Let

and note that
E=R""!x(0,00)
hence 1
ANE = [](ai,bi) x ((an,bn) N (0,00))

AVE = [T (@ b) x (@n,ba) \ 0,50)

Trivial case.

If one of
(an,by) N (0,00)

(@n;bn) \ (0,00)
is empty, then the other one is (ay, by ), giving

m* (AN E) =m*(A\ E) = m*(0) + m*(A) = m*(A)

as was to be shown.
If the above case fails, then
a, <0<b,

This gives

n—1

ANE = [](aibi) x (0,b,)
=1

A\ E = ﬁ(ai,bi) X (an, 0]
i=1

which allows us to determine that

n—1
m* (ANE) =[] (i - a;)-bn
i=1
We also determine (using monotonicity) that
n—1 n—1
[T —ai) - (—an) = m*(]] (as, b3) x (a5,0))
i=1 i=1
<m*(A\E)
n—1
= m*(H(ai,bl) X [an, 0])
i=1
n—1

10



Which finally yields

1 n—1
m* (ANE)+m*(A\E) = (bi—ai)'bn+H(bi_ai)‘(_an)
- i=1

3
|

S
|l
_

(bi - ai) ' (bn - a'n)

&
Il
_

I
—

=
£

S
§
<

S
Il
* =

I
E

QED.
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7.4.3.
Let A C R™.
By finite sub-additivity,
m*(ANE)+m*(A\ E) > m*(A)

We now prove <.
Pick an £ > 0 and let (Ug)gex be a countable open box cover of A with

Z m*(U,) < m*(A) + ¢

keK
Note that
AnNEC |JWxnE) “(ANE)< Y m*(UxNE)
keK keK
A\EC |J U\ E) m*(A\E) <> m*(Ux\ E)
keK keK

Now we find

m (ANE)+m*(A\E) <> m Uy NE)+ Y m"(Us\ E)

keK keK
= > (m*(UxNE)+m*(Up \ E))
keK
S ()
keK
<m*(A)+e¢

Since € > 0 was arbitrary,
m* (ANE)+m*(A\ E) <m*(A)

Combining with our initial inequality, we obtain
m* (ANE)+m*(A\ E) =m*(A)

Since A C R™ was arbitrary, E is measurable.
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7.4.4.

(a)
Denoting R™ \ E by E¢, we have
m*(A) =m*"(ANE)+m*(A\ E)
=m*(A\ E°) +m*(ANE°)
(b)
We use the translation invariance of m*.
m*(A) =m*(—z + A)
=m"((—z+A)NE)+m"((—x+ A)\ E)
=m*(z+ ((-z+ A NE)) +m"(z+ (-2 +A)\ E))
=m* (AN (z + E)) +m*(A\ (z + E)))
(The last = comes from equality of sets due to the translation invariance of N and \.)
(c)

Unions:

First, for free, we get
m*(A) <m* (AN (E1UEy))+m™(A\ (E1U Ey))

by finite sub-additivity of m*. Now we prove >.

m*(A) = m* (AN Ey) +m*(A\ By)
= m (AN Ey) +m*((A\ Ey) N Ez) +m*((A\ E1) \ Es)

By finite sub-additivity,
m* (AN Ey) +m*((A\ E1) N Eg) >m*(AN(E; U Ey))

Noting that
(A\ E1)\ E2 = A\ (E1 UE3)

We now have

m*(A) =m*(ANEy) +m*((A\ E1) N Ey) + m*((A\ E1) \ E2)
>m (AN (E1UEy))+m*(A\ (E1 U Ey))

This proves that E; U Fs is measurable.

Intersections:
EiNEy; = (EfUES)°

(d) Induction.
(e)

Given i € {1,...n} and = € R, we write P;, to denote the half-plane above z in the i*" dimension,

Pip ={(p1,...pn)|pi > x}
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and P™ to denote the half-plane below z in the i*" dimension,

P ={(p1,...pa)lpi < x}

Now, taking an open box

we find

which is measurable by (c) and 7.4.3.
(f)
By finite sub-additivity,
m*(ANE)+m"(A\ E) > m*(A)

Furthermore,
m* (ANE)+m*"(A\ E) <m*(E)+m*(A\ E)
=0+m"(A\E)
=m"(A\ E)
<m*(4)
So

m* (AN E) +m*(A\ E) = m*(A)
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