
Lemma 0.
Let

d = dist(E,F )

One easily sees that a closed box with side lengths less than

s :=
d√
n

has diameter < d.
Note that, for any A ⊆ Rn,

m∗(A) = inf

∑
j∈J
|Bj |

∣∣∣∣∣∣J countable, Bj closed boxes


Now let (Bj)j∈J be a countable closed box cover of E ∪ F such that∑

j∈J
|Bj | < m∗(E ∪ F ) + ε

for some arbitrary ε > 0 Write

Bj =

n∏
i=1

[aij , bij ]

for each j ∈ J , and partition each interval as

Pij =
{
aij = xij0 < · · · < xijmij

= bij
}

with xijk − xij(k−1) < s. This allows us to cover Bj with sub-boxes of the form:

bjk1k2...kn =

n∏
i=1

[aij(ki−1), bijki ]

each having diameter < d. Letting Sj be the set of all sub-boxes of Bj , we also have∑
b∈Sj

|b| = |Bj |

For each j, define
SjE = {b ∈ Sj |b ∩ E 6= ∅}

and define SjF similarly. Then clearly ⋃
j∈J

SjE

covers E, and similar for F . But SjE and SjF are disjoint because each box has diameter < d = dist(E,F ).
This means that ∑

b∈SjE

|b|+
∑
b∈SjF

|b| =
∑

b∈SjE∪sjF

|b|
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Noting that SjE ∪ SjF ⊆ Sj , we finally obtain

m∗(E ∪ F ) + ε >
∑
j∈J
|Bj |

=
∑
j∈J

∑
b∈Sj

|b|

≥
∑
j∈J

∑
b∈SjE∪SjF

|b|

=
∑
j∈J

 ∑
b∈SjE

|b|+
∑
b∈SjF

|b|


=
∑
j∈J

∑
b∈SjE

|b|+
∑
j∈J

∑
b∈SjF

|b|

≥ m∗(E) + m∗(F )

Since ε was arbitrary,
m∗(E ∪ F ) ≥ m∗(E) + m∗(F )

By finite additivity,
m∗(E ∪ F ) ≤ m∗(E) + m∗(F )

Cominining,
m∗(E ∪ F ) = m∗(E) + m∗(F )

QED.
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Lemma 1.
By monotonicity,

m∗(A) ≤ inf {m∗(U) | U ⊇ A,U open}

Furthermore, letting ε > 0 and (Bj)j∈J be a countable open box cover of A with∑
j∈J
|Bj | < m∗(A) + ε

and letting U
⋃
j∈j Bj , we have

U ⊆
⋃
j∈j

Bj

m∗(U) ≤
∑
j∈j
|Bj |

< m∗(A) + ε

Since ε > 0 was arbitrary, this gives

inf {m∗(U) | U ⊇ A,U open} ≤ m∗(A)

m∗(A) = inf {m∗(U) | U ⊇ A,U open}
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Lemma 2.
Define

E =

∞⋃
i=1

Ei

We are to show that E is measurable.
Let ε > 0 and pick a sequence of positive numbers (εi)i∈N such that

∞∑
i=1

εi = ε

For each i, pick a Ui ⊇ Ei such that
m∗(Ui \ Ei) < εi

Define

U =

∞⋃
i=1

Ui

To prove the lemma, we will show that
m∗ (U \ E) < ε

First, we have

U \ E =
⋃
i∈N

Ui \
⋃
i∈N

Ei

=
⋃
i∈N

(
Ui \

⋃
i∈N

Ei

)
⊆
⋃
i∈N

(Ui \ Ei)

By monotonicity and countable subadditivity:

m∗ (U \ E) ≤ m∗

(⋃
i∈N

(Ui \ Ei)

)
≤
∑
i∈N

m∗ (Ui \ Ei)

<
∑
i∈N

εi

= ε

QED.
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Lemma 3.
Since Rn is covered by countably many unit cubes, A is a countable union of compact sets:

A =
⋃

(m1,...mn)∈Zn

(
A ∩

n∏
i=1

[mi,mi + 1]

)

So we assume WLOG that A ⊆ [0, 1]n.
Now we make two claims:

1. An open set is a union of countably many closed boxes with disjoint interiors.

2. Outer measure is countably super-additive on closed boxes with disjoint interiors.

First, we show that these claims imply Lemma 3.
Let U be the open set

U = (−0.1, 1.1)n \A

and let (Bi)i∈N be a sequence of closed boxes with disjoint interiors such that

∞⋃
i=1

Bi = U

Such a sequence exists by Claim 1.
Observation 1. Let A ⊆ U ′ ⊆ A ∪ U . Let

S = {i ∈ N | U ′ ∩Bi 6= ∅}

Then
U ′ \A ⊆ U

U ′ \A ⊆
⋃
i∈S

Bi

m∗ (U ′ \A) ≤
∑
i∈S

m∗ (Bi)

Observation 2. By Claim 2,
∑∞
i=1 m

∗(Bi) is finite:

∞ > m∗ (U) ≥ m∗

( ∞⋃
i=1

Bi

)
≥
∞∑
i=1

m∗(Bi)

Now note that, by compactness and Lebesgue number tactics, for each i there is a radius ri > 0 such that

∀x ∈ Bi : Br(x) ⊆ U

∀a ∈ A : Br(a) ∩Bi = ∅

(Br(x) is the open ball with radius r and center x.)
Fix some such ri for each i.
Furthermore, there’s a radius r > 0 such that

∀a ∈ A : Br(a) ⊆ U

For each m ∈ N, define
Rm = min {r, r1, r2, . . . rm−1}
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Then
∀a ∈ A : BRm

(a) ⊆ U

∀a ∈ A∀i < m : BRm(a) ∩Bi = ∅

Now let
U ′m =

⋃
a∈A

BRm
(a)

U ′m satisfies the hypothesis of Observation 1, and, letting S be as in Observation 1, we find that

∀i ∈ S : i ≥ m

This gives

m∗(U ′m \A) ≤
∑
i∈S

m∗(Bi) ≤
∞∑
i=m

m∗(Bi)

Finally, let ε > 0. By Observation 2, there exists m ∈ N such that

∞∑
i=m

m∗(Bi) < ε

which means that U ′m is an open set containing A such that

m∗(U ′m \A) < ε

Hence A is measurable.

We now prove Claims 1 and 2 to complete the proof.

Claim 1. An open set is a union of countably many closed boxes with disjoint interiors.
For any s > 0 there is a set

Ts = {s〈m1, . . .mn〉+ [0, s]n | mi ∈ Z}

which can be said to tile Rn using translates of [0, s]n (with disjoint interiors). One might also say
that its elements are cubes aligned with grid lines.
This set covers Rn This set is countable, so any subset of it is countable.
Let U be an open set.
We will fill U with closed cubes having power-of-two sidelengths and aligned with gridlines.
For each k ∈ N0, define

Sk =

b ∈ T2−k

∣∣∣∣∣∣ b ⊆ U, b 6⊆
⋃
j<k

Sj


For example,

S0 = {b ∈ T1 | b ⊆ U}

S1 =
{
b ∈ T 1

2

∣∣∣ b ⊆ U, b 6⊆ S0

}
S2 =

{
b ∈ T 1

4

∣∣∣ b ⊆ U, b 6⊆ S0 ∪ S1

}
. . .

Observation 3.
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For any integers i, j ∈ N0 with i ≤ j and any subset S ⊆ T2−i , every box b in{
b ∈ T2−j

∣∣∣ b 6⊆⋃S
}

has interior b◦ disjoint from every b′◦ for b′ ∈ S. For example, the elements of S have disjoint
interiors, and the elements of

Sσ :=

∞⋃
k=0

Sk

have disjoint interiors.
Note also that Sσ is countable since each Sk is countable.

Clearly ⋃
Sσ ⊆ U

Furthermore, we will see that

U ⊆
⋃

Sσ

Indeed, since
⋃∞
k=0 T2−k has boxes with arbitrarily small diameter, it contains a box b with

b ⊆ U

u ∈ b

Taking b such a box with largest possible side length 2−k, we notice that

∀b′ ∈
⋃
j<k

T2−j : u /∈ b′

Hence
b 6⊆

⋃
j<k

Sj

Therefore
b ∈ Sk

u ∈ b ⊆
⋃

Sσ

u ∈
⋃

Sσ

Since u was arbitrary, we now obtain

U ⊆
⋃

Sσ

U =
⋃

Sσ

Thus, we have finally written U as a countable union of closed boxes with disjoint interiors.
Claim 2. Outer measure is countably super-additive on closed boxes with disjoint interiors.

Subclaim. Let (Bj)j∈J be a finite sequence of closed boxes with disjoint interiors, and B′ a closed
box. Then m∗ (B) ≥

∑
j∈J m

∗ (B′ ∩Bj).
Let (Bj)j∈J be a finite sequence of closed boxes with disjoint interiors,
and B′ a closed box.
Let Ei be the set of interval endpoints on the ith dimension:

Ei = {a′i, b′i} ∪
⋃
j∈J
{aij , bij}
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Let

Bj =

n∏
i=1

[aij , bij ]

B =

n∏
i=1

[a′i, b
′
i]

For each i, let
ai = min(Ei)

bi = max(Ei)

Pi = Ei ∩ [ai, bi]

We regard Pi as a partition of the interval [ai, bi], writing

Pi = {ai = xi0 < · · · < xiti = bi}

and we use these partitions to split B naturally into sub-boxes:

S =

{
n∏
i=1

[xiki−1, xiki ]

∣∣∣∣∣ 1 ≤ ki ≤ ti

}

Clearly

|B| =
∑
b∈S

|b|

For each i ∈ {1, . . . n} and j ∈ J there is the sub-partition

Pij = Pi ∩ [aij , bij ]

which partitions [aij , bij ].
We let

tij = max(Pij)

rij = min(Pij)

Now, for each j ∈ J , we take the natural set of sub-boxes

Sj =

{
n∏
i=1

[xiki−1, xiki ]

∣∣∣∣∣ rij ≤ ki ≤ tij

}
= {b ∈ S | b ⊆ Bj}
= {b ∈ S | b◦ ∩Bj 6= ∅}

Clearly

|Bj | =
∑
b∈Sj

|b|

Repeat the above constructions and observations for B′ by defining P ′i , etc.
Important bit: for any j ∈ J , S′ ∩ Sj covers B ∩ Bj . Noting that the Sj are disjoint from
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each other and from S′, we now see

m∗ (B′) = |B′|

=
∑
b∈S′
|b|

=
∑

b∈S′\
⋃

j∈J Sj

|b|+
∑

b∈
⋃

j∈J Sj

|b|

≥
∑

b∈
⋃

j∈J Sj

|b|

=
∑
j∈J

∑
b∈Sj

|b|

≥
∑
j∈J

m∗ (B′ ∩Bj)

(The last “≥” is due to Important bit.)
This proves the subclaim.

Now let (Bj)j∈J be a finite sequence of boxes, as before, and define

C =
⋃
j∈J

Bj

Pick a ε > 0. Pick a countable cover (Bk)k∈K such that Bk are closed boxes and∑
k∈K

|Bk| < m∗ (C) + ε

For any k ∈ K, Subclaim tells us that

m∗(Bk) ≥
∑
j∈J

m∗(Bk ∩Bj)

Noting that each Bk ∩Bj is itself a closed box, we construct a countable closed box cover

(Bk ∩Bj)k∈K

for each j ∈ J . This gives

m∗(Bj) ≤
∑
k∈K

m∗pBk ∩Bj

Summing over J , we have ∑
j∈J

m∗(Bj) ≤
∑
j∈J

∑
k∈K

m∗pBk ∩Bj

=
∑
k∈K

∑
j∈J

m∗pBk ∩Bj

≤
∑
k∈K

m∗(Bk)

< m∗ (C) + ε

9



Since this holds for any ε > 0, we find

m∗ (C) ≥
∑
j∈J

m∗(Bj)

Indeed, for any E ⊇ C =
⋃
j∈J Bj ,

m∗ (E) ≥
∑
j∈J

m∗(Bj)

So, letting (Bl)l∈L be a countable sequence of closed boxes and A their union, we see that for any
finite J ⊆ L,

A ⊇
⋃
j∈J

m∗ (A) ≥
∑
j∈J

m∗(Bj)

Therefore
m∗ (A) ≥

∑
l∈L

m∗(Bj)

This finally proves our claim.
QED.
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Lemma 4.
Let (an)n∈N be a sequence of positive numbers with infimum 0.
For each n, let Un be an open set containing E such that

m∗ (Un \ E) < an

Then each U c
n is closed and

m∗

( ∞⋂
n=1

Un \ E

)
= 0

Note now that

Ec =

( ∞⋃
n=1

U c
n

)
∪

( ∞⋂
n=1

Un \ E

)
Since Ec is a countable union of measurable sets, it is measurable.
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