Lemma 0.

Let

$$
d=\operatorname{dist}(E, F)
$$

One easily sees that a closed box with side lengths less than

$$
s:=\frac{d}{\sqrt{n}}
$$

has diameter $<d$.
Note that, for any $A \subseteq \mathbb{R}^{n}$,

$$
m^{*}(A)=\inf \left\{\sum_{j \in J}\left|B_{j}\right| \mid J \text { countable, } B_{j} \text { closed boxes }\right\}
$$

Now let $\left(B_{j}\right)_{j \in J}$ be a countable closed box cover of $E \cup F$ such that

$$
\sum_{j \in J}\left|B_{j}\right|<m^{*}(E \cup F)+\varepsilon
$$

for some arbitrary $\varepsilon>0$ Write

$$
B_{j}=\prod_{i=1}^{n}\left[a_{i j}, b_{i j}\right]
$$

for each $j \in J$, and partition each interval as

$$
P_{i j}=\left\{a_{i j}=x_{i j 0}<\cdots<x_{i j m_{i j}}=b_{i j}\right\}
$$

with $x_{i j k}-x_{i j(k-1)}<s$. This allows us to cover B_{j} with sub-boxes of the form:

$$
b_{j k_{1} k_{2} \ldots k_{n}}=\prod_{i=1}^{n}\left[a_{i j\left(k_{i}-1\right)}, b_{i j k_{i}}\right]
$$

each having diameter $<d$. Letting S_{j} be the set of all sub-boxes of B_{j}, we also have

$$
\sum_{b \in S_{j}}|b|=\left|B_{j}\right|
$$

For each j, define

$$
S_{j E}=\left\{b \in S_{j} \mid b \cap E \neq \emptyset\right\}
$$

and define $S_{j F}$ similarly. Then clearly

$$
\bigcup_{j \in J} S_{j E}
$$

covers E, and similar for F. But $S_{j E}$ and $S_{j F}$ are disjoint because each box has diameter $<d=\operatorname{dist}(E, F)$. This means that

$$
\sum_{b \in S_{j E}}|b|+\sum_{b \in S_{j F}}|b|=\sum_{b \in S_{j E} \cup S_{j F}}|b|
$$

Noting that $S_{j E} \cup S_{j F} \subseteq S_{j}$, we finally obtain

$$
\begin{aligned}
m^{*}(E \cup F)+\varepsilon & >\sum_{j \in J}\left|B_{j}\right| \\
& =\sum_{j \in J} \sum_{b \in S_{j}}|b| \\
& \geq \sum_{j \in J} \sum_{b \in S_{j E} \cup S_{j F}}|b| \\
& =\sum_{j \in J}\left(\sum_{b \in S_{j E}}|b|+\sum_{b \in S_{j F}}|b|\right) \\
& =\sum_{j \in J} \sum_{b \in S_{j E}}|b|+\sum_{j \in J} \sum_{b \in S_{j F}}|b| \\
& \geq m^{*}(E)+m^{*}(F)
\end{aligned}
$$

Since ε was arbitrary,

$$
m^{*}(E \cup F) \geq m^{*}(E)+m^{*}(F)
$$

By finite additivity,

$$
m^{*}(E \cup F) \leq m^{*}(E)+m^{*}(F)
$$

Cominining,

$$
m^{*}(E \cup F)=m^{*}(E)+m^{*}(F)
$$

QED.

Lemma 1.

By monotonicity,

$$
m^{*}(A) \leq \inf \left\{m^{*}(U) \mid U \supseteq A, U \text { open }\right\}
$$

Furthermore, letting $\varepsilon>0$ and $\left(B_{j}\right)_{j \in J}$ be a countable open box cover of A with

$$
\sum_{j \in J}\left|B_{j}\right|<m^{*}(A)+\varepsilon
$$

and letting $U \bigcup_{j \in j} B_{j}$, we have

$$
\begin{aligned}
U & \subseteq \bigcup_{j \in j} B_{j} \\
m^{*}(U) & \leq \sum_{j \in j}\left|B_{j}\right| \\
& <m^{*}(A)+\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, this gives

$$
\begin{aligned}
& \inf \left\{m^{*}(U) \mid U \supseteq A, U \text { open }\right\} \leq m^{*}(A) \\
& m^{*}(A)=\inf \left\{m^{*}(U) \mid U \supseteq A, U \text { open }\right\}
\end{aligned}
$$

Lemma 2.

Define

$$
E=\bigcup_{i=1}^{\infty} E_{i}
$$

We are to show that E is measurable.
Let $\varepsilon>0$ and pick a sequence of positive numbers $\left(\varepsilon_{i}\right)_{i \in \mathbb{N}}$ such that

$$
\sum_{i=1}^{\infty} \varepsilon_{i}=\varepsilon
$$

For each i, pick a $U_{i} \supseteq E_{i}$ such that

$$
m^{*}\left(U_{i} \backslash E_{i}\right)<\varepsilon_{i}
$$

Define

$$
U=\bigcup_{i=1}^{\infty} U_{i}
$$

To prove the lemma, we will show that

$$
m^{*}(U \backslash E)<\varepsilon
$$

First, we have

$$
\begin{aligned}
U \backslash E & =\bigcup_{i \in \mathbb{N}} U_{i} \backslash \bigcup_{i \in \mathbb{N}} E_{i} \\
& =\bigcup_{i \in \mathbb{N}}\left(U_{i} \backslash \bigcup_{i \in \mathbb{N}} E_{i}\right) \\
& \subseteq \bigcup_{i \in \mathbb{N}}\left(U_{i} \backslash E_{i}\right)
\end{aligned}
$$

By monotonicity and countable subadditivity:

$$
\begin{aligned}
m^{*}(U \backslash E) & \leq m^{*}\left(\bigcup_{i \in \mathbb{N}}\left(U_{i} \backslash E_{i}\right)\right) \\
& \leq \sum_{i \in \mathbb{N}} m^{*}\left(U_{i} \backslash E_{i}\right) \\
& <\sum_{i \in \mathbb{N}} \varepsilon_{i} \\
& =\varepsilon
\end{aligned}
$$

QED.

Lemma 3.

Since \mathbb{R}^{n} is covered by countably many unit cubes, A is a countable union of compact sets:

$$
A=\bigcup_{\left(m_{1}, \ldots m_{n}\right) \in \mathbb{Z}^{n}}\left(A \cap \prod_{i=1}^{n}\left[m_{i}, m_{i}+1\right]\right)
$$

So we assume WLOG that $A \subseteq[0,1]^{n}$.
Now we make two claims:

1. An open set is a union of countably many closed boxes with disjoint interiors.
2. Outer measure is countably super-additive on closed boxes with disjoint interiors.

First, we show that these claims imply Lemma 3.
Let U be the open set

$$
U=(-0.1,1.1)^{n} \backslash A
$$

and let $\left(B_{i}\right)_{i \in \mathbb{N}}$ be a sequence of closed boxes with disjoint interiors such that

$$
\bigcup_{i=1}^{\infty} B_{i}=U
$$

Such a sequence exists by Claim 1.
Observation 1. Let $A \subseteq U^{\prime} \subseteq A \cup U$. Let

$$
S=\left\{i \in \mathbb{N} \mid U^{\prime} \cap B_{i} \neq \emptyset\right\}
$$

Then

$$
\begin{gathered}
U^{\prime} \backslash A \subseteq U \\
U^{\prime} \backslash A \subseteq \bigcup_{i \in S} B_{i} \\
m^{*}\left(U^{\prime} \backslash A\right) \leq \sum_{i \in S} m^{*}\left(B_{i}\right)
\end{gathered}
$$

Observation 2. By Claim 2, $\sum_{i=1}^{\infty} m^{*}\left(B_{i}\right)$ is finite:

$$
\infty>m^{*}(U) \geq m^{*}\left(\bigcup_{i=1}^{\infty} B_{i}\right) \geq \sum_{i=1}^{\infty} m^{*}\left(B_{i}\right)
$$

Now note that, by compactness and Lebesgue number tactics, for each i there is a radius $r_{i}>0$ such that

$$
\begin{gathered}
\forall x \in B_{i}: \quad B_{r}(x) \subseteq U \\
\forall a \in A: \quad B_{r}(a) \cap B_{i}=\emptyset
\end{gathered}
$$

($B_{r}(x)$ is the open ball with radius r and center x.)
Fix some such r_{i} for each i.
Furthermore, there's a radius $r>0$ such that

$$
\forall a \in A: \quad B_{r}(a) \subseteq U
$$

For each $m \in \mathbb{N}$, define

$$
R_{m}=\min \left\{r, r_{1}, r_{2}, \ldots r_{m-1}\right\}
$$

Then

$$
\begin{gathered}
\forall a \in A: \quad B_{R_{m}}(a) \subseteq U \\
\forall a \in A \forall i<m: \quad B_{R_{m}}(a) \cap B_{i}=\emptyset
\end{gathered}
$$

Now let

$$
U_{m}^{\prime}=\bigcup_{a \in A} B_{R_{m}}(a)
$$

U_{m}^{\prime} satisfies the hypothesis of Observation 1, and, letting S be as in Observation 1, we find that

$$
\forall i \in S: i \geq m
$$

This gives

$$
m^{*}\left(U_{m}^{\prime} \backslash A\right) \leq \sum_{i \in S} m^{*}\left(B_{i}\right) \leq \sum_{i=m}^{\infty} m^{*}\left(B_{i}\right)
$$

Finally, let $\varepsilon>0$. By Observation 2, there exists $m \in \mathbb{N}$ such that

$$
\sum_{i=m}^{\infty} m^{*}\left(B_{i}\right)<\varepsilon
$$

which means that U_{m}^{\prime} is an open set containing A such that

$$
m^{*}\left(U_{m}^{\prime} \backslash A\right)<\varepsilon
$$

Hence A is measurable.

We now prove Claims 1 and 2 to complete the proof.
Claim 1. An open set is a union of countably many closed boxes with disjoint interiors.
For any $s>0$ there is a set

$$
T_{s}=\left\{s\left\langle m_{1}, \ldots m_{n}\right\rangle+[0, s]^{n} \mid m_{i} \in \mathbb{Z}\right\}
$$

which can be said to tile \mathbb{R}^{n} using translates of $[0, s]^{n}$ (with disjoint interiors). One might also say that its elements are cubes aligned with grid lines.
This set covers \mathbb{R}^{n} This set is countable, so any subset of it is countable.
Let U be an open set.
We will fill U with closed cubes having power-of-two sidelengths and aligned with gridlines.
For each $k \in \mathbb{N}_{0}$, define

$$
S_{k}=\left\{b \in T_{2^{-k}} \mid b \subseteq U, b \nsubseteq \bigcup_{j<k} S_{j}\right\}
$$

For example,

$$
\begin{aligned}
& S_{0}=\left\{b \in T_{1} \mid b \subseteq U\right\} \\
& S_{1}=\left\{\left.b \in T_{\frac{1}{2}} \right\rvert\, b \subseteq U, b \nsubseteq S_{0}\right\} \\
& S_{2}=\left\{\left.b \in T_{\frac{1}{4}} \right\rvert\, b \subseteq U, b \nsubseteq S_{0} \cup S_{1}\right\}
\end{aligned}
$$

Observation 3.

For any integers $i, j \in \mathbb{N}_{0}$ with $i \leq j$ and any subset $S \subseteq T_{2^{-i}}$, every box b in

$$
\left\{b \in T_{2-j} \mid b \nsubseteq \bigcup S\right\}
$$

has interior b° disjoint from every $b^{\prime \circ}$ for $b^{\prime} \in S$. For example, the elements of S have disjoint interiors, and the elements of

$$
S_{\sigma}:=\bigcup_{k=0}^{\infty} S_{k}
$$

have disjoint interiors.
Note also that S_{σ} is countable since each S_{k} is countable.
Clearly

$$
\bigcup S_{\sigma} \subseteq U
$$

Furthermore, we will see that

$$
U \subseteq \bigcup S_{\sigma}
$$

Indeed, since $\bigcup_{k=0}^{\infty} T_{2^{-k}}$ has boxes with arbitrarily small diameter, it contains a box b with

$$
\begin{aligned}
& b \subseteq U \\
& u \in b
\end{aligned}
$$

Taking b such a box with largest possible side length 2^{-k}, we notice that

$$
\forall b^{\prime} \in \bigcup_{j<k} T_{2^{-j}}: \quad u \notin b^{\prime}
$$

Hence

$$
b \nsubseteq \bigcup_{j<k} S_{j}
$$

Therefore

$$
\begin{gathered}
b \in S_{k} \\
u \in b \subseteq \bigcup S_{\sigma} \\
u \in \bigcup S_{\sigma}
\end{gathered}
$$

Since u was arbitrary, we now obtain

$$
\begin{aligned}
U & \subseteq \bigcup S_{\sigma} \\
U & =\bigcup S_{\sigma}
\end{aligned}
$$

Thus, we have finally written U as a countable union of closed boxes with disjoint interiors.
Claim 2. Outer measure is countably super-additive on closed boxes with disjoint interiors.
Subclaim. Let $\left(B_{j}\right)_{j \in J}$ be a finite sequence of closed boxes with disjoint interiors, and B^{\prime} a closed box. Then $m^{*}(B) \geq \sum_{j \in J} m^{*}\left(B^{\prime} \cap B_{j}\right)$.

Let $\left(B_{j}\right)_{j \in J}$ be a finite sequence of closed boxes with disjoint interiors, and B^{\prime} a closed box.
Let E_{i} be the set of interval endpoints on the $i^{\text {th }}$ dimension:

$$
E_{i}=\left\{a_{i}^{\prime}, b_{i}^{\prime}\right\} \cup \bigcup_{j \in J}\left\{a_{i j}, b_{i j}\right\}
$$

Let

$$
\begin{aligned}
B_{j} & =\prod_{i=1}^{n}\left[a_{i j}, b_{i j}\right] \\
B & =\prod_{i=1}^{n}\left[a_{i}^{\prime}, b_{i}^{\prime}\right]
\end{aligned}
$$

For each i, let

$$
\begin{gathered}
a_{i}=\min \left(E_{i}\right) \\
b_{i}=\max \left(E_{i}\right) \\
P_{i}=E_{i} \cap\left[a_{i}, b_{i}\right]
\end{gathered}
$$

We regard P_{i} as a partition of the interval $\left[a_{i}, b_{i}\right]$, writing

$$
P_{i}=\left\{a_{i}=x_{i 0}<\cdots<x_{i t_{i}}=b_{i}\right\}
$$

and we use these partitions to split B naturally into sub-boxes:

$$
S=\left\{\prod_{i=1}^{n}\left[x_{i k_{i}-1}, x_{i k_{i}}\right] \mid 1 \leq k_{i} \leq t_{i}\right\}
$$

Clearly

$$
|B|=\sum_{b \in S}|b|
$$

For each $i \in\{1, \ldots n\}$ and $j \in J$ there is the sub-partition

$$
P_{i j}=P_{i} \cap\left[a_{i j}, b_{i j}\right]
$$

which partitions $\left[a_{i j}, b_{i j}\right]$.
We let

$$
\begin{aligned}
& t_{i j}=\max \left(P_{i j}\right) \\
& r_{i j}=\min \left(P_{i j}\right)
\end{aligned}
$$

Now, for each $j \in J$, we take the natural set of sub-boxes

$$
\begin{aligned}
S_{j} & =\left\{\prod_{i=1}^{n}\left[x_{i k_{i}-1}, x_{i k_{i}}\right] \mid r_{i j} \leq k_{i} \leq t_{i j}\right\} \\
& =\left\{b \in S \mid b \subseteq B_{j}\right\} \\
& =\left\{b \in S \mid b^{\circ} \cap B_{j} \neq \emptyset\right\}
\end{aligned}
$$

Clearly

$$
\left|B_{j}\right|=\sum_{b \in S_{j}}|b|
$$

Repeat the above constructions and observations for B^{\prime} by defining P_{i}^{\prime}, etc.
Important bit: for any $j \in J, S^{\prime} \cap S_{j}$ covers $B \cap B_{j}$. Noting that the S_{j} are disjoint from
each other and from S^{\prime}, we now see

$$
\begin{aligned}
m^{*}\left(B^{\prime}\right) & =\left|B^{\prime}\right| \\
& =\sum_{b \in S^{\prime}}|b| \\
& =\sum_{b \in S^{\prime} \backslash \bigcup_{j \in J} S_{j}}|b|+\sum_{b \in \bigcup_{j \in J} S_{j}}|b| \\
& \geq \sum_{b \in \bigcup_{j \in J} S_{j}}|b| \\
& =\sum_{j \in J} \sum_{b \in S_{j}}|b| \\
& \geq \sum_{j \in J} m^{*}\left(B^{\prime} \cap B_{j}\right)
\end{aligned}
$$

(The last " \geq " is due to Important bit.)
This proves the subclaim.
Now let $\left(B_{j}\right)_{j \in J}$ be a finite sequence of boxes, as before, and define

$$
C=\bigcup_{j \in J} B_{j}
$$

Pick a $\varepsilon>0$. Pick a countable cover $\left(B_{k}\right)_{k \in K}$ such that B_{k} are closed boxes and

$$
\sum_{k \in K}\left|B_{k}\right|<m^{*}(C)+\varepsilon
$$

For any $k \in K$, Subclaim tells us that

$$
m^{*}\left(B_{k}\right) \geq \sum_{j \in J} m^{*}\left(B_{k} \cap B_{j}\right)
$$

Noting that each $B_{k} \cap B_{j}$ is itself a closed box, we construct a countable closed box cover

$$
\left(B_{k} \cap B_{j}\right)_{k \in K}
$$

for each $j \in J$. This gives

$$
m^{*}\left(B_{j}\right) \leq \sum_{k \in K} m^{*} p B_{k} \cap B_{j}
$$

Summing over J, we have

$$
\begin{aligned}
\sum_{j \in J} m^{*}\left(B_{j}\right) & \leq \sum_{j \in J} \sum_{k \in K} m^{*} p B_{k} \cap B_{j} \\
& =\sum_{k \in K} \sum_{j \in J} m^{*} p B_{k} \cap B_{j} \\
& \leq \sum_{k \in K} m^{*}\left(B_{k}\right) \\
& <m^{*}(C)+\varepsilon
\end{aligned}
$$

Since this holds for any $\varepsilon>0$, we find

$$
m^{*}(C) \geq \sum_{j \in J} m^{*}\left(B_{j}\right)
$$

Indeed, for any $E \supseteq C=\bigcup_{j \in J} B_{j}$,

$$
m^{*}(E) \geq \sum_{j \in J} m^{*}\left(B_{j}\right)
$$

So, letting $\left(B_{l}\right)_{l \in L}$ be a countable sequence of closed boxes and A their union, we see that for any finite $J \subseteq L$,

$$
\begin{gathered}
A \supseteq \bigcup_{j \in J} \\
m^{*}(A) \geq \sum_{j \in J} m^{*}\left(B_{j}\right)
\end{gathered}
$$

Therefore

$$
m^{*}(A) \geq \sum_{l \in L} m^{*}\left(B_{j}\right)
$$

This finally proves our claim.
QED.

Lemma 4.

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of positive numbers with infimum 0 .
For each n, let U_{n} be an open set containing E such that

$$
m^{*}\left(U_{n} \backslash E\right)<a_{n}
$$

Then each U_{n}^{c} is closed and

$$
m^{*}\left(\bigcap_{n=1}^{\infty} U_{n} \backslash E\right)=0
$$

Note now that

$$
E^{c}=\left(\bigcup_{n=1}^{\infty} U_{n}^{c}\right) \cup\left(\bigcap_{n=1}^{\infty} U_{n} \backslash E\right)
$$

Since E^{c} is a countable union of measurable sets, it is measurable.

