
8.2.7.
For each (a, q) ∈ N, define

Iaq =

[
a

q
− c

qp
,
a

q
+

c

qp

]
∩ [0, 1]

Note that m(Iaq) ≤ 2c
qp .

We are asked to show that the following is a null set:{
x ∈ R

∣∣ x ∈ Iaq for infinitely many (a, q) ∈ N2
}

Pick A ∈ N such that A > c+ 1.
For any (a, q) ∈ N2,

a ≥ qA =⇒ Iaq = ∅

Hence

∑
(a,q)∈N2

m(Iaq) =
∞∑
q=1

qA∑
a=1

m(Iaq)

≤
∞∑
q=1

qA∑
a=1

2c

qp

=

∞∑
q=1

qA
2c

qp

= 2Ac

∞∑
q=1

1

qp−1

≤ 2Ac

∞∑
q=1

1

q2

= 2Ac

∞∑
k=0

2k+1−1∑
q=2k

1

q2

≤ 2Ac

∞∑
k=0

2k+1−1∑
q=2k

1

(2k)2

= 2Ac

∞∑
k=0

2k

(2k)2

= 2Ac

∞∑
k=0

1

2k

= 4Ac

<∞

So, by the Borel-Tonelli theorem,
the given set {

x ∈ R
∣∣ x ∈ Iaq for infinitely many (a, q) ∈ N2

}
has measure zero.
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8.2.9.
Let

E = {x ∈ R | fn(x) 6→ 0 as n→∞}

We will show that E has measure 0, thus proving the desired result.
Importantly,

∀x∈E ∃ε>0 ∀N ∈N ∃n>N : fn(x) ≥ ε

This yields

E =

∞⋃
k=1

{
x ∈ E

∣∣ x ∈ f−1n ((
1
k ,∞

))
for infinitely many n

}
m∗(E) ≤

∞∑
k=1

m∗
({
x ∈ E

∣∣ x ∈ f−1n ((
1
k ,∞

))
for infinitely many n

})
Claim. Let k ∈ N. Then {

x ∈ E
∣∣ x ∈ f−1n ((

1
k ,∞

))
for infinitely many n

}
is a null set by Borel-Tonelli.
Proof.

Pick n ∈ N.
Note that f−1n

((
1
k ,∞

))
is measurable because fn is measurable and

(
1
k ,∞

)
is open.

Hence the function 1
k · χf−1

n

((
1
k ,∞

)) is measurable. (In fact, it is simple.)

It minorizes f , and therefore

m
(
f−1n

((
1
k ,∞

)))
· 1k =

∫
R

1
k · χf−1

n

((
1
k ,∞

))
≤
∫
R
fn

≤ 1

4n

m
(
f−1n

((
1
k ,∞

)))
≤ k

4n

This holds for all n ∈ N, hence

∞∑
n=1

m
(
f−1n

((
1
k ,∞

)))
≤
∞∑
n=1

k

4n

=
k

3
<∞

Borel-Tonelli now proves the claim.
We now see that

m∗(E) ≤
∞∑
k=1

0

m∗(E) = 0

QED.
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8.2.10.
We state and prove what I believe to be the general case.

Theorem (Egoroff).
Hypotheses:

• (X,S, µ) is a measure space.

• The codomain of µ is [0,∞). In particular, µ(X) <∞.

• (M,d) is a metric space.

• (fn)n∈N is a sequence of functions X → M which converge pointwise to a function f , and are
measurable (i.e. f−1n (V ) ∈ S for any open set V ⊆M and n ∈ N).

Conclusion: for every ε > 0, there is a set E ∈ S such that

• m(E) ≤ ε
• The sequence fn converges uniformly on Ec.

Note.
In the given problem,

• X = [0, 1].

• S is the set of Lebesgue-measurable subsets of [0, 1].

• µ = m|S .

• M = [0,∞).

• d is the standard metric inherited from R.

• f is the constant 0 function.

Proof.
Let ε > 0 and

∑∞
k=1 εk = ε. For each γ > 0, N ∈ N, define

FγN = {x ∈ X | n > N =⇒ d(fn(x), f(x)) < γ}

FγN is measurable (i.e. a member of S) since

FγN =
⋂
n>N

f−1n (Bγ(f(x)))

Claim. Let γ > 0. Then
lim
N→∞

µ(FγN ) = µ(X)

Proof.
If N ≤ N ′ then FγN ⊆ FγN ′ . In other words, the sequence (FγN )N∈N is ascending.
Since (fn)n∈N converges pointwise to f throughout X, we have

∀x∈X ∃N ∈N : x∈FγN
∞⋃
N=1

FγN = X

lim
N→∞

µ(FγN ) = µ(X)

Now let (γk)k∈N be a sequence of positive numbers with infimum 0.
For any sequence of natural numbers (Nk)k∈N,
(fn)n∈N converges uniformly on the set

∞⋂
k=1

FγkNk
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Since µ(X) <∞, for each k there is an Nk such that

µ(FγkNk
) ≥ µ(X)− εk

Choose such an Nk for each k and define

E =

(⋂
k∈N

FγkNk

)c

Then (fn)n∈N converges uniformly on Ec and

µ(E) = µ

((⋂
k∈N

FγkNk

)c)

= µ

(⋃
k∈N

F cγkNk

)
≤
∑
k∈N

µ(F cγkNk
)

≤
∑
k∈N

εk

≤ ε

Since ε > 0 was arbitrary, the theorem is proven.
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