8.2.7.

For each $(a,q) \in \mathbb{N}$, define

$$I_{aq} = \left[\frac{a}{q} - \frac{c}{q^p}, \quad \frac{a}{q} + \frac{c}{q^p}\right] \cap [0, 1]$$

Note that $m(I_{aq}) \leq \frac{2c}{q^p}$. We are asked to show that the following is a null set:

$$\left\{x \in \mathbb{R} \mid x \in I_{aq} \text{ for infinitely many } (a,q) \in \mathbb{N}^2\right\}$$

Pick $A \in \mathbb{N}$ such that A > c + 1. For any $(a, q) \in \mathbb{N}^2$,

$$a \ge qA \implies I_{aq} = \emptyset$$

Hence

$$\sum_{(a,q)\in\mathbb{N}^2} m(I_{aq}) = \sum_{q=1}^{\infty} \sum_{a=1}^{qA} m(I_{aq})$$

$$\leq \sum_{q=1}^{\infty} \sum_{a=1}^{qA} \frac{2c}{q^p}$$

$$= \sum_{q=1}^{\infty} qA \frac{2c}{q^p}$$

$$= 2Ac \sum_{q=1}^{\infty} \frac{1}{q^{p-1}}$$

$$\leq 2Ac \sum_{q=1}^{\infty} \frac{1}{q^2}$$

$$= 2Ac \sum_{k=0}^{\infty} \sum_{q=2^k}^{2^{k+1}-1} \frac{1}{q^2}$$

$$\leq 2Ac \sum_{k=0}^{\infty} \sum_{q=2^k}^{2^{k+1}-1} \frac{1}{(2^k)^2}$$

$$= 2Ac \sum_{k=0}^{\infty} \frac{2^k}{(2^k)^2}$$

$$= 2Ac \sum_{k=0}^{\infty} \frac{1}{2^k}$$

$$= 4Ac$$

$$< \infty$$

So, by the Borel-Tonelli theorem, the given set

$$\left\{x \in \mathbb{R} \mid x \in I_{aq} \text{ for infinitely many } (a,q) \in \mathbb{N}^2\right\}$$

has measure zero.

8.2.9.

Let

$$E = \{ x \in \mathbb{R} \mid f_n(x) \not\to 0 \text{ as } n \to \infty \}$$

We will show that E has measure 0, thus proving the desired result. Importantly,

$$\forall x \in E \; \exists \varepsilon > 0 \; \forall N \in \mathbb{N} \; \exists n > N : \quad f_n(x) \ge \varepsilon$$

This yields

$$E = \bigcup_{k=1}^{\infty} \left\{ x \in E \mid x \in f_n^{-1}\left(\left(\frac{1}{k}, \infty\right)\right) \text{ for infinitely many } n \right\}$$
$$m^*(E) \le \sum_{k=1}^{\infty} m^*\left(\left\{x \in E \mid x \in f_n^{-1}\left(\left(\frac{1}{k}, \infty\right)\right) \text{ for infinitely many } n\right\}\right)$$

Claim. Let $k \in \mathbb{N}$. Then

$$\left\{x \in E \mid x \in f_n^{-1}\left(\left(\frac{1}{k},\infty\right)\right) \text{ for infinitely many } n\right\}$$

is a null set by Borel-Tonelli. **Proof.**

Pick $n \in \mathbb{N}$.

Note that $f_n^{-1}\left(\left(\frac{1}{k},\infty\right)\right)$ is measurable because f_n is measurable and $\left(\frac{1}{k},\infty\right)$ is open. Hence the function $\frac{1}{k} \cdot \chi_{f_n^{-1}\left(\left(\frac{1}{k},\infty\right)\right)}$ is measurable. (In fact, it is simple.) It minorizes f, and therefore

$$m\left(f_n^{-1}\left(\left(\frac{1}{k},\infty\right)\right)\right) \cdot \frac{1}{k} = \int_{\mathbb{R}} \frac{1}{k} \cdot \chi_{f_n^{-1}}\left(\left(\frac{1}{k},\infty\right)\right)$$
$$\leq \int_{\mathbb{R}} f_n$$
$$\leq \frac{1}{4^n}$$
$$m\left(f_n^{-1}\left(\left(\frac{1}{k},\infty\right)\right)\right) \leq \frac{k}{4^n}$$

This holds for all $n \in \mathbb{N}$, hence

$$\sum_{n=1}^{\infty} m\left(f_n^{-1}\left(\left(\frac{1}{k},\infty\right)\right)\right) \le \sum_{n=1}^{\infty} \frac{k}{4^n}$$
$$= \frac{k}{3}$$
$$< \infty$$

Borel-Tonelli now proves the claim. We now see that

$$m^*(E) \le \sum_{k=1}^{\infty} 0$$
$$m^*(E) = 0$$

QED.

8.2.10.

We state and prove what I believe to be the general case.

Theorem (Egoroff).

Hypotheses:

- (X, S, μ) is a measure space.
- The codomain of μ is $[0,\infty)$. In particular, $\mu(X) < \infty$.
- (M, d) is a metric space.
- $(f_n)_{n \in \mathbb{N}}$ is a sequence of functions $X \to M$ which converge pointwise to a function f, and are measurable (i.e. $f_n^{-1}(V) \in S$ for any open set $V \subseteq M$ and $n \in \mathbb{N}$).

Conclusion: for every $\varepsilon > 0$, there is a set $E \in S$ such that

- $m(E) \leq \varepsilon$
- The sequence f_n converges uniformly on E^c .

Note.

In the given problem,

- X = [0, 1].
- S is the set of Lebesgue-measurable subsets of [0, 1].
- $\mu = m|_S$.
- $M = [0, \infty).$
- d is the standard metric inherited from \mathbb{R} .
- f is the constant 0 function.

Proof.

Let $\varepsilon > 0$ and $\sum_{k=1}^{\infty} \varepsilon_k = \varepsilon$. For each $\gamma > 0, N \in \mathbb{N}$, define

$$F_{\gamma N} = \{ x \in X \mid n > N \implies d(f_n(x), f(x)) < \gamma \}$$

 $F_{\gamma N}$ is measurable (i.e. a member of S) since

$$F_{\gamma N} = \bigcap_{n>N} f_n^{-1}(B_{\gamma}(f(x)))$$

Claim. Let $\gamma > 0$. Then

$$\lim_{N \to \infty} \mu(F_{\gamma N}) = \mu(X)$$

Proof.

If $N \leq N'$ then $F_{\gamma N} \subseteq F_{\gamma N'}$. In other words, the sequence $(F_{\gamma N})_{N \in \mathbb{N}}$ is ascending. Since $(f_n)_{n \in \mathbb{N}}$ converges pointwise to f throughout X, we have

$$\forall x \in X \quad \exists N \in \mathbb{N} : \quad x \in F_{\gamma N}$$
$$\bigcup_{N=1}^{\infty} F_{\gamma N} = X$$
$$\lim_{N \to \infty} \mu(F_{\gamma N}) = \mu(X)$$

Now let $(\gamma_k)_{k\in\mathbb{N}}$ be a sequence of positive numbers with infimum 0. For any sequence of natural numbers $(N_k)_{k\in\mathbb{N}}$, $(f_n)_{n\in\mathbb{N}}$ converges uniformly on the set

$$\bigcap_{k=1}^{\infty} F_{\gamma_k N_k}$$

Since $\mu(X) < \infty$, for each k there is an N_k such that

$$\mu(F_{\gamma_k N_k}) \ge \mu(X) - \varepsilon_k$$

Choose such an ${\cal N}_k$ for each k and define

$$E = \left(\bigcap_{k \in \mathbb{N}} F_{\gamma_k N_k}\right)^c$$

Then $(f_n)_{n\in\mathbb{N}}$ converges uniformly on E^c and

$$\mu(E) = \mu\left(\left(\bigcap_{k\in\mathbb{N}} F_{\gamma_k N_k}\right)^c\right)$$
$$= \mu\left(\bigcup_{k\in\mathbb{N}} F_{\gamma_k N_k}^c\right)$$
$$\leq \sum_{k\in\mathbb{N}} \mu(F_{\gamma_k N_k}^c)$$
$$\leq \sum_{k\in\mathbb{N}} \varepsilon_k$$
$$\leq \varepsilon$$

Since $\varepsilon>0$ was arbitrary, the theorem is proven.