2.

(a) See the proof below of Egoroff's theorem.
(b) Yes. See the proof below of Egoroff's theorem.
(c)

Let

$$
\begin{aligned}
f_{n}(x) & =\frac{1}{n} x \\
f(x) & =0
\end{aligned}
$$

$\left(f_{n}\right)_{n \in \mathbb{N}}$ converges pointwise to f everywhere.
But, if $E \subseteq \mathbb{R}$ is unbounded,
then the convergence of $\left(f_{n}\right)_{n \in \mathbb{N}}$ on E is not uniform.
Indeed, let $\varepsilon=3$ and let $N \in \mathbb{N}$ be given.
Then, letting $n=N+1$,
we use the unboundedness of E to choose an $x \in E$ with $|x| \geq 3 n$.
This gives $n>N$ and

$$
\begin{gathered}
\frac{|x|}{n} \geq 3 \\
\left|\frac{x}{n}\right| \geq 3 \\
\left|\frac{x}{n}-0\right| \geq 3 \\
\left|f_{n}(x)-f(x)\right| \geq \varepsilon
\end{gathered}
$$

Recalling that $N \in \mathbb{N}$ was arbitrary,
we've shown that for any unbounded $E \subseteq \mathbb{R}$,

$$
\exists \varepsilon>0 \quad \forall N \in \mathbb{N} \quad \exists x \in E \quad \exists n>N: \quad\left|f_{n}(x)-f(x)\right| \geq \varepsilon
$$

i.e. $\left(f_{n}\right)_{n \in \mathbb{N}}$ does not converge uniformly on E.

So any $E \subseteq \mathbb{R}$ on which $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly must be bounded, hence its complement has infinite measure, so Egoroff's theorem fails.
(d)

Note: we will only use boundedness of K, not compactness.
Let d be a metric on \mathbb{R}^{n} and let $\left(D_{i}\right)_{i \in \mathbb{N}}$ be a sequence of measurable subsets of \mathbb{R}^{n} such that

$$
\begin{gathered}
\bigsqcup_{i=1}^{\infty} D_{i}=\mathbb{R}^{n} \\
s:=\inf \left\{m\left(D_{i}\right) \mid i \in \mathbb{N}\right\}>0 \\
a:=\sup \left\{\operatorname{diam}\left(D_{i}\right) \mid i \in \mathbb{N}\right\}<\infty
\end{gathered}
$$

(Diameters are taken using d.)
For example, we could take d to be the standard metric and D_{i} to be translates of $[0,1)^{n}$;
this would give $s=1$ and $a=\sqrt{n}$.
Let $\varepsilon>0$. Let $\varepsilon_{i}>0$ with

$$
\sum_{i=1}^{\infty} \varepsilon_{i}=\varepsilon
$$

For each i, pick some $S_{i} \subseteq D_{i}$ such that

$$
m\left(S_{i}\right) \leq \varepsilon_{i}
$$

$\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly on $D_{i} \backslash S_{i}$
This is possible by Egoroff's.
Letting $S=\bigsqcup_{i=1}^{\infty} S_{i}$, we have

$$
\begin{gathered}
D_{i} \backslash S_{i}=D_{i} \backslash S \\
m(S) \leq \varepsilon
\end{gathered}
$$

Let $K \subseteq \mathbb{R}^{n}$ be bounded (using the metric d) and define

$$
I=\left\{i \in \mathbb{N} \mid D_{i} \cap K \neq \emptyset\right\}
$$

Lemma. I is finite.

Proof.

Since K is bounded, we may pick $r>0$ such that

$$
B_{r}(0) \supseteq K
$$

This gives

$$
\forall i \in \mathbb{N} \quad \exists x \in D_{i}: \quad d(0, x)<r
$$

Noting that

$$
\forall i \in \mathbb{N} \quad \forall x, y \in D_{i}: \quad d(x, y)<a
$$

we apply the triangle inequality to obtain

$$
\begin{gathered}
\forall i \in \mathbb{N} \quad \forall y \in D_{i}: \quad d(0, y)<r+a \\
\forall i \in \mathbb{N}: \quad D_{i} \subseteq B_{r+a}(0)
\end{gathered}
$$

This gives

$$
\begin{aligned}
\infty & \geq m\left(B_{r+a}(0)\right) \\
& \geq m\left(\bigsqcup_{i \in I} D_{i}\right) \\
& =\bigsqcup_{i \in I} m\left(D_{i}\right) \\
& \geq \sum_{i \in I} s \\
& =|I| s \\
& \infty>|I| s
\end{aligned}
$$

Since $s>0$ we may divide by s to obtain

$$
\infty>|I|
$$

I is finite.

Since I is finite
and $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly on $D_{i} \backslash S_{i}$ for each $i \in I$, we have

$$
\left(f_{n}\right)_{n \in \mathbb{N}} \text { converges uniformly on } \bigsqcup_{i \in I} D_{i} \backslash S
$$

Hence it converges uniformly on the subset $K \backslash S$.
QED.

Now we prove Egoroff's.
This will be similar to last time.

Definition.

Let (X, Σ, μ) be a measure space and (T, τ) a topological space. A function $f: X \rightarrow M$ is measurable iff

$$
\forall U \in \tau: \quad f^{-1}(U) \in S
$$

In words, we require that the preimage of every open set be measurable.

Theorem (Egoroff).

Hypotheses:

- (X, Σ, μ) is a measure space.
- The codomain of μ is $[0, \infty)$. In particular, $\mu(X)<\infty$.
- (M, d) is a metric space.
- $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a sequence of functions $X \rightarrow M$ which converge pointwise almost everywhere to a function f, and are measurable.
Conclusion: for every $\varepsilon>0$, there is a set $S \in \Sigma$ such that
- $m(S) \leq \varepsilon$
- $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly on $X \backslash S$.

Note.

In the given exercise,

- X is an arbitrary box in \mathbb{R}^{n} (a) or an arbitrary finite-measure subset of \mathbb{R}^{n} (b).
- Σ is the set of Lebesgue-measurable subsets of X.
- $\mu=\left.m\right|_{\Sigma}$.
- $M=\mathbb{R}^{m}$.
- d is the standard (Euclidean) metric on \mathbb{R}^{m}.

Proof.
Let $\varepsilon>0$ and $\sum_{k=1}^{\infty} \varepsilon_{k}=\varepsilon$. For each $\gamma>0, N \in \mathbb{N}$, define

$$
F_{\gamma N}=\left\{x \in X \mid n>N \Longrightarrow d\left(f_{n}(x), f(x)\right)<\gamma\right\}
$$

$F_{\gamma N}$ is measurable (i.e. a member of Σ) since

$$
F_{\gamma N}=\bigcap_{n>N} f_{n}^{-1}\left(B_{\gamma}(f(x))\right)
$$

Claim. Let $\gamma>0$. Then

$$
\lim _{N \rightarrow \infty} \mu\left(F_{\gamma N}\right)=\mu(X)
$$

Proof.

If $N \leq N^{\prime}$ then $F_{\gamma N} \subseteq F_{\gamma N^{\prime}}$. In other words, the sequence $\left(F_{\gamma N}\right)_{N \in \mathbb{N}}$ is ascending. Since $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges pointwise to f almost everywhere, there exists a null set $Z \subseteq X$ such that

$$
\begin{gathered}
\forall x \in X \backslash Z \quad \exists N \in \mathbb{N}: \quad x \in F_{\gamma N} \\
\bigcup_{N=1}^{\infty} F_{\gamma N}=X \backslash Z \\
\lim _{N \rightarrow \infty} \mu\left(F_{\gamma N}\right)=\mu(X)
\end{gathered}
$$

Now let $\left(\gamma_{k}\right)_{k \in \mathbb{N}}$ be a sequence of positive numbers with infimum 0 .
For any sequence of natural numbers $\left(N_{k}\right)_{k \in \mathbb{N}}$,
$\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly on the set

$$
\bigcap_{k=1}^{\infty} F_{\gamma_{k} N_{k}}
$$

Since $\mu(X)<\infty$, for each k there is an N_{k} such that

$$
\mu\left(F_{\gamma_{k} N_{k}}\right) \geq \mu(X)-\varepsilon_{k}
$$

Choose such an N_{k} for each k and define

$$
E=\left(\bigcap_{k \in \mathbb{N}} F_{\gamma_{k} N_{k}}\right)^{c}
$$

Then $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly on E^{c} and

$$
\begin{aligned}
\mu(E) & =\mu\left(\left(\bigcap_{k \in \mathbb{N}} F_{\gamma_{k} N_{k}}\right)^{c}\right) \\
& =\mu\left(\bigcup_{k \in \mathbb{N}} F_{\gamma_{k} N_{k}}^{c}\right)^{c} \\
& \leq \sum_{k \in \mathbb{N}} \mu\left(F_{\gamma_{k} N_{k}}^{c}\right) \\
& \leq \sum_{k \in \mathbb{N}} \varepsilon_{k} \\
& \leq \varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, the theorem is proven.
3.

Note that

$$
\|T\|=\sup \left\{|T \mathbf{x}|\left|\mathbf{x} \in \mathbb{R}^{n},|\mathbf{x}|=1\right\}\right.
$$

$|\cdot|_{1}:$
$\|T\|_{1}$ is the largest 1-norm among column vectors of T, i.e.

$$
M:=\max \left\{\sum_{i=1}^{n}\left|T_{i j}\right| \mid 1 \leq j \leq n\right\}
$$

Proof: $\|T\|_{1} \leq M$:
Let $\mathbf{x} \in \mathbb{R}^{n}$ with $|\mathbf{x}|_{1}=1$.

$$
\begin{aligned}
|T \mathbf{x}|_{1} & =|\mathbf{y}|_{1} \\
& =\sum_{i=1}^{n}\left|y_{i}\right| \\
& =\sum_{i=1}^{n}\left|\sum_{j=1}^{n} T_{i j} x_{j}\right| \\
& \leq \sum_{i=1}^{n} \sum_{j=1}^{n}\left|T_{i j}\right|\left|x_{j}\right| \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n}\left|T_{i j}\right|\left|x_{j}\right| \\
& =\sum_{j=1}^{n}\left(\left|x_{j}\right| \sum_{i=1}^{n}\left|T_{i j}\right|\right) \\
& \leq \sum_{j=1}^{n}\left|x_{j}\right| M \\
& =M \sum_{j=1}^{n}\left|x_{j}\right| \\
& =M|\mathbf{x}|_{1} \\
& =M \cdot 1 \\
& =M
\end{aligned}
$$

Since the unit vector \mathbf{x} was arbitrary, this gives

$$
\|T\|_{1} \leq M
$$

$\|T\|_{1} \geq M:$
Let j be such that $\sum_{i=1}^{n}\left|T_{i j}\right|=M$.
Define \mathbf{x} so that $x_{j}=1$ and all other components of \mathbf{x} are 0 .
Then $|\mathbf{x}|_{1}=1$ and

$$
|T \mathbf{x}|_{1}=\left[\begin{array}{c}
T_{1 j} \\
\vdots \\
T_{n j}
\end{array}\right]
$$

$$
\begin{aligned}
\|T\|_{1} & \leq|T \mathbf{x}|_{1} \\
& =\sum_{i=1}^{n}\left|T_{i j}\right| \\
& =M
\end{aligned}
$$

QED.
$|\cdot|_{\max }$:
$\|T\|_{\text {max }}$ is the largest 1-norm among row-vectors of T, i.e.

$$
M^{\prime}:=\max \left\{\sum_{j=1}^{n}\left|T_{i j}\right| \mid 1 \leq i \leq n\right\}
$$

Proof:
$\|T\|_{\text {max }} \leq M^{\prime}:$
Let $\mathbf{x} \in \mathbb{R}^{n}$ with $|\mathbf{x}|_{\max }=1$.

$$
\begin{aligned}
|T \mathbf{x}|_{\max } & =|\mathbf{y}|_{\max } \\
& =\max \left\{\left|y_{i}\right| \mid 1 \leq i \leq n\right\} \\
& =\max \left\{\left|\sum_{j=1}^{n} T_{i j} x_{j}\right| \mid 1 \leq i \leq n\right\} \\
& \leq \max \left\{\sum_{j=1}^{n}\left|T_{i j}\right|\left|x_{j}\right| \mid 1 \leq i \leq n\right\} \\
& \leq \max \left\{\sum_{j=1}^{n}\left|T_{i j}\right| \mid 1 \leq i \leq n\right\} \\
& =M^{\prime}
\end{aligned}
$$

Since the unit vector \mathbf{x} was arbitrary, this gives

$$
\|T\|_{\max } \leq M^{\prime}
$$

$\|\left. T\right|_{\text {max }} \geq M^{\prime}:$
Pick i such that $\sum_{j=1}^{n}\left|T_{i j}\right|=M^{\prime}$
and let $x_{j}=\operatorname{sgn}\left(T_{i j}\right)$ for each j.

$$
\begin{aligned}
\|T\|_{\max } & \geq|T \mathbf{x}|_{\max } \\
& =|\mathbf{y}|_{\max } \\
& \geq\left|y_{i}\right| \\
& =\left|\sum_{j=1}^{n} T_{i j} x_{j}\right| \\
& =\left|\sum_{j=1}^{n} T_{i j} \operatorname{sgn}\left(T_{i j}\right)\right| \\
& =\left|\sum_{j=1}^{n}\right| T_{i j}| | \\
& =\sum_{j=1}^{n}\left|T_{i j}\right| \\
& =M^{\prime}
\end{aligned}
$$

QED.

