(a) See the proof below of Egoroft’s theorem.
(b) Yes. See the proof below of Egoroff’s theorem.

(c)
Let

fn(x) = %x
flz)=0

(fn)nen converges pointwise to f everywhere.
But, if £ C R is unbounded,
then the convergence of (fy,)nen on E is not uniform.
Indeed, let € = 3 and let N € N be given.
Then, letting n = N + 1,
we use the unboundedness of E to choose an x € E with |z| > 3n.
This gives n > N and o]
T
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[fn(z) = f(z)] = €

Recalling that N € N was arbitrary,
we’ve shown that for any unbounded E C R,

Je>0 VNeN JzeFE In>N: |fu(z)— f(z)]>e

i.e. (fn)nen does not converge uniformly on E.
So any E C R on which (f,)nen converges uniformly must be bounded, hence its complement has
infinite measure, so Egoroff’s theorem fails.

(d)
Note: we will only use boundedness of K, not compactness.
Let d be a metric on R™ and let (D;);en be a sequence of measurable subsets of R” such that

|j D; =R"
i=1

s=inf {m(D;) | i1 €N} >0
a = sup {diam(D;) | i € N} < o0

(Diameters are taken using d.)

For example, we could take d to be the standard metric
and D; to be translates of [0,1)™;

this would give s =1 and a = /n.

Let € > 0. Let ¢; > 0 with

o
E E; =€
i=1



For each i, pick some S; C D; such that
m(S;) <e;

(fn)nen converges uniformly on D; \ S;
This is possible by Egoroft’s.
Letting S = | |;2, Si, we have
m(S) <e
Let K C R™ be bounded (using the metric d) and define
I={ieN|D;NK # 0}

Lemma. [ is finite.
Proof.
Since K is bounded, we may pick r > 0 such that

B.(0) 2 K

This gives
vieN JzxeD;: d0,z)<r

Noting that
VieN VzyeD;: d(z,y)<a

we apply the triangle inequality to obtain
VieN VyeD;: d(0,y)<r+a

VieN: D; C B,14(0)
This gives

coz>zm (BH—a(O))

oo > |I|s

Since s > 0 we may divide by s to obtain
oo > |1

I is finite.



Since [ is finite
and (f,)nen converges uniformly on D; \ S; for each i € I,
we have
(fn)nen converges uniformly on |_| D;\ S

iel
Hence it converges uniformly on the subset K \ S.
QED.
Now we prove Egoroff’s.
This will be similar to last time.
Definition.
Let (X, X, 1) be a measure space and (T, 7) a topological space. A function f : X — M is measurable
iff

Yoer: f7HU)eSs

In words, we require that the preimage of every open set be measurable.
Theorem (Egoroff).
Hypotheses:

(X, 3, p) is a measure space.

The codomain of p is [0,00). In particular, u(X) < oo.

(M, d) is a metric space.

(fn)nen is a sequence of functions X — M which converge pointwise almost everywhere to a
function f, and are measurable.

Conclusion: for every € > 0, there is a set S € ¥ such that
e m(S)<e
e (fn)nen converges uniformly on X \ S.

Note.
In the given exercise,

X is an arbitrary box in R™ (a) or an arbitrary finite-measure subset of R™ (b).

3. is the set of Lebesgue-measurable subsets of X.
e p=mls.

e M =R"™.

e d is the standard (Euclidean) metric on R™.

Proof.
Let ¢ > 0 and Y ;- & = . For each v > 0, N € N, define

Fin={zeX[n>N = d(fu(z), f(2)) <~}

F,n is measurable (i.e. a member of X) since

Fov =[] 1 (B (f(@))
n>N
Claim. Let v > 0. Then
limp(Fy) = p(X)

N —oo

Proof.



If N < N’ then F,y C F,ns. In other words, the sequence (Fyn)nen is ascending.
Since (fy)nen converges pointwise to f almost everywhere,
there exists a null set Z C X such that

VeeX\Z INeN: zeF,n

U Fy=x\2
N=1

Jim pu(Fyx) = p(X)

Now let (yx)ren be a sequence of positive numbers with infimum 0.
For any sequence of natural numbers (Ng)gen,

(fn)nen converges uniformly on the set
o0
n F’)’k Ny
k=1

Since pu(X) < oo, for each k there is an Ny, such that

/’L(FVka) > M(X) — €k

Choose such an N for each k& and define

E= (m FVka>
keN

Then (f)nen converges uniformly on E¢ and

ao-{ ()

=K (U F’?ﬂ%)
keN
< ZM(F%N;C)

keN
Szz?k
<e

Since € > 0 was arbitrary, the theorem is proven.



Note that
|[T] = sup {|T%| | x € R",[x| = 1}

L
[|T|]1 is the largest 1-norm among column vectors of T, i.e.

1<j<n}

n

M = max{Z|Tij|

i=1

Proof: ||T]|1 < M:
Let x € R™ with |x|; = 1.

ITx|y = |yl

= luil
i=1
=2 |2 Tuws

i=1|j=1

n n

<O T

i=1j=1

n n
=3 (Tl

j=1i=1

n n
=§:<WHE:WM>
j=1 i=1
n
<Y lwylM
j=1

=M |ajl
j=1

= M|x|;
=M-1
=M

Since the unit vector x was arbitrary, this gives
[Ty < M

Tl > M:
Let j be such that >, |T3;| = M.
Define x so that x; = 1 and all other components of x are 0.
Then |x|; =1 and
Ty
|Tx|, =
Thj



1Tl < [Tx]y

= |7y
=1
=M
QED.

. .
| ‘max°

[|T||max is the largest 1-norm among row-vectors of T, i.e.

n
M’ = max Z|Tij| 1<i<n
j=1

Proof:
||T||max <M':
Let x € R™ with |X|max = 1.

‘TX|maX = ‘y|max
— ma {Jyi] | 1< < n)

n
= max ZTijxj 1<i<n

IN

j=1
n
max Z |Tijl|x;] | 1<i<n
j=1

n
< max Z\Tij\ 1<i<n
=1

= Ml
Since the unit vector x was arbitrary, this gives
1T || max < M’

[T max = M
Pick 4 such that Z?:l |Ti;| = M’



and let z; = sgn(T};) for each j.

HT| |max > |Txlmax

= |Y|max
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QED.






