
2.
(a) See the proof below of Egoroff’s theorem.
(b) Yes. See the proof below of Egoroff’s theorem.
(c)

Let

fn(x) =
1

n
x

f(x) = 0

(fn)n∈N converges pointwise to f everywhere.
But, if E ⊆ R is unbounded,
then the convergence of (fn)n∈N on E is not uniform.
Indeed, let ε = 3 and let N ∈ N be given.
Then, letting n = N + 1,
we use the unboundedness of E to choose an x ∈ E with |x| ≥ 3n.
This gives n > N and

|x|
n
≥ 3∣∣∣x

n

∣∣∣ ≥ 3∣∣∣x
n
− 0
∣∣∣ ≥ 3

|fn(x)− f(x)| ≥ ε

Recalling that N ∈ N was arbitrary,
we’ve shown that for any unbounded E ⊆ R,

∃ε>0 ∀N ∈N ∃x∈E ∃n>N : |fn(x)− f(x)| ≥ ε

i.e. (fn)n∈N does not converge uniformly on E.
So any E ⊆ R on which (fn)n∈N converges uniformly must be bounded, hence its complement has
infinite measure, so Egoroff’s theorem fails.

(d)
Note: we will only use boundedness of K, not compactness.
Let d be a metric on Rn and let (Di)i∈N be a sequence of measurable subsets of Rn such that

∞⊔
i=1

Di = Rn

s := inf {m(Di) | i ∈ N} > 0

a := sup {diam(Di) | i ∈ N} <∞

(Diameters are taken using d.)
For example, we could take d to be the standard metric
and Di to be translates of [0, 1)n;
this would give s = 1 and a =

√
n.

Let ε > 0. Let εi > 0 with
∞∑
i=1

εi = ε
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For each i, pick some Si ⊆ Di such that
m(Si) ≤ εi

(fn)n∈N converges uniformly on Di \ Si
This is possible by Egoroff’s.
Letting S =

⊔∞
i=1 Si, we have

Di \ Si = Di \ S

m(S) ≤ ε

Let K ⊆ Rn be bounded (using the metric d) and define

I = {i ∈ N | Di ∩K 6= ∅}

Lemma. I is finite.
Proof.

Since K is bounded, we may pick r > 0 such that

Br(0) ⊇ K

This gives
∀i∈N ∃x∈Di : d(0, x) < r

Noting that
∀i∈N ∀x,y∈Di : d(x, y) < a

we apply the triangle inequality to obtain

∀i∈N ∀y∈Di : d(0, y) < r + a

∀i∈N : Di ⊆ Br+a(0)

This gives

∞ ≥ m (Br+a(0))

≥ m

(⊔
i∈I

Di

)
=
⊔
i∈I

m(Di)

≥
∑
i∈I

s

= |I|s

∞ > |I|s

Since s > 0 we may divide by s to obtain

∞ > |I|

I is finite.
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Since I is finite
and (fn)n∈N converges uniformly on Di \ Si for each i ∈ I,
we have

(fn)n∈N converges uniformly on
⊔
i∈I

Di \ S

Hence it converges uniformly on the subset K \ S.
QED.

Now we prove Egoroff’s.
This will be similar to last time.
Definition.

Let (X,Σ, µ) be a measure space and (T, τ) a topological space. A function f : X →M is measurable
iff

∀U ∈τ : f−1(U) ∈ S

In words, we require that the preimage of every open set be measurable.
Theorem (Egoroff).

Hypotheses:

• (X,Σ, µ) is a measure space.

• The codomain of µ is [0,∞). In particular, µ(X) <∞.

• (M,d) is a metric space.

• (fn)n∈N is a sequence of functions X → M which converge pointwise almost everywhere to a
function f , and are measurable.

Conclusion: for every ε > 0, there is a set S ∈ Σ such that

• m(S) ≤ ε
• (fn)n∈N converges uniformly on X \ S.

Note.
In the given exercise,

• X is an arbitrary box in Rn (a) or an arbitrary finite-measure subset of Rn (b).

• Σ is the set of Lebesgue-measurable subsets of X.

• µ = m|Σ.

• M = Rm.

• d is the standard (Euclidean) metric on Rm.

Proof.
Let ε > 0 and

∑∞
k=1 εk = ε. For each γ > 0, N ∈ N, define

FγN = {x ∈ X | n > N =⇒ d(fn(x), f(x)) < γ}

FγN is measurable (i.e. a member of Σ) since

FγN =
⋂
n>N

f−1
n (Bγ(f(x)))

Claim. Let γ > 0. Then
lim
N→∞

µ(FγN ) = µ(X)

Proof.
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If N ≤ N ′ then FγN ⊆ FγN ′ . In other words, the sequence (FγN )N∈N is ascending.
Since (fn)n∈N converges pointwise to f almost everywhere,
there exists a null set Z ⊆ X such that

∀x∈X \ Z ∃N ∈N : x∈FγN
∞⋃
N=1

FγN = X \ Z

lim
N→∞

µ(FγN ) = µ(X)

Now let (γk)k∈N be a sequence of positive numbers with infimum 0.
For any sequence of natural numbers (Nk)k∈N,
(fn)n∈N converges uniformly on the set

∞⋂
k=1

FγkNk

Since µ(X) <∞, for each k there is an Nk such that

µ(FγkNk
) ≥ µ(X)− εk

Choose such an Nk for each k and define

E =

(⋂
k∈N

FγkNk

)c

Then (fn)n∈N converges uniformly on Ec and

µ(E) = µ

((⋂
k∈N

FγkNk

)c)

= µ

(⋃
k∈N

F cγkNk

)
≤
∑
k∈N

µ(F cγkNk
)

≤
∑
k∈N

εk

≤ ε

Since ε > 0 was arbitrary, the theorem is proven.
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3.
Note that

||T || = sup {|Tx| | x ∈ Rn, |x| = 1}

| · |1:
||T ||1 is the largest 1-norm among column vectors of T , i.e.

M := max

{
n∑
i=1

|Tij |

∣∣∣∣∣ 1 ≤ j ≤ n

}

Proof: ||T ||1 ≤M :
Let x ∈ Rn with |x|1 = 1.

|Tx|1 = |y|1

=

n∑
i=1

|yi|

=

n∑
i=1

∣∣∣∣∣∣
n∑
j=1

Tijxj

∣∣∣∣∣∣
≤

n∑
i=1

n∑
j=1

|Tij ||xj |

=

n∑
j=1

n∑
i=1

|Tij ||xj |

=

n∑
j=1

(
|xj |

n∑
i=1

|Tij |

)

≤
n∑
j=1

|xj |M

= M

n∑
j=1

|xj |

= M |x|1
= M · 1
= M

Since the unit vector x was arbitrary, this gives

||T ||1 ≤M

||T ||1 ≥M :
Let j be such that

∑n
i=1 |Tij | = M .

Define x so that xj = 1 and all other components of x are 0.
Then |x|1 = 1 and

|Tx|1 =

T1j

...
Tnj


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||T ||1 ≤ |Tx|1

=

n∑
i=1

|Tij |

= M

QED.
| · |max:

||T ||max is the largest 1-norm among row-vectors of T , i.e.

M ′ := max


n∑
j=1

|Tij |

∣∣∣∣∣∣ 1 ≤ i ≤ n


Proof:
||T ||max ≤M ′:

Let x ∈ Rn with |x|max = 1.

|Tx|max = |y|max

= max {|yi| | 1 ≤ i ≤ n}

= max


∣∣∣∣∣∣
n∑
j=1

Tijxj

∣∣∣∣∣∣
∣∣∣∣∣∣ 1 ≤ i ≤ n


≤ max


n∑
j=1

|Tij ||xj |

∣∣∣∣∣∣ 1 ≤ i ≤ n


≤ max


n∑
j=1

|Tij |

∣∣∣∣∣∣ 1 ≤ i ≤ n


= M ′

Since the unit vector x was arbitrary, this gives

||T ||max ≤M ′

||T ||max ≥M ′:
Pick i such that

∑n
j=1 |Tij | = M ′
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and let xj = sgn(Tij) for each j.

||T ||max ≥ |Tx|max

= |y|max

≥ |yi|

=

∣∣∣∣∣∣
n∑
j=1

Tijxj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑
j=1

Tij sgn(Tij)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑
j=1

|Tij |

∣∣∣∣∣∣
=

n∑
j=1

|Tij |

= M ′

QED.
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4.
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