Existence of partial derivatives.

Let $y_0 \in \mathbb{R}$. **Case 1:** $y_0 \neq 0$ The function

$$x \mapsto f(x, y_0) = \frac{xy_0}{x^2 + y_0^2}$$

is a quotient of two differentiable functions, so it is differentiable. And of course, its derivative at $x = x_0 \in \mathbb{R}$ is precisely

$$\frac{\partial f(x_0, y_0)}{\partial x}$$

So this partial derivative exists for all $x_0 \in \mathbb{R}$. **Case 2:** $y_0 = 0$ The function

$$x \mapsto f(x, y_0) = f(x, 0) = 0$$

has derivative 0 everywhere, so

$$\frac{\partial f(x_0, y_0)}{\partial x}$$

exists and is 0 for all $x_0 \in \mathbb{R}$. Similarly,

$$\frac{\partial f(x_0, y_0)}{\partial y}$$

exists for all $(x_0, y_0) \in \mathbb{R}^2$. **Discontinuity at** (0,0). The sequence

$$p_n = (\frac{1}{n}, \frac{1}{n})$$

approaches (0,0) but its image

$$f(p_n) = \frac{1}{2}$$

approaches $\frac{1}{2} \neq f(0,0) = 0$, so f is not continuous at (0,0).

We will show that f is uniformly continuous on E.

Let $p, q \in E$. Write v = q - p and

$$v = (v_1, \dots v_n)$$

As in Pugh's Theorem 8 proof, define

$$p_j = p + \sum_{k=1}^j v_k e_k$$

for $j \in \{0, \ldots n\}$, and

$$\sigma_j : [0,1] \to E$$
$$t \mapsto p_{j-1} + tv_j e_j$$

for $j \in \{1, \dots n\}$. Each function

$$f \circ \sigma_j : [0,1] \to \mathbb{R}$$

is continuous on [0,1] and differentiable on (0,1), so the mean value theorem yields a $t_j \in (0,1)$ such that

$$(f \circ \sigma_j)'(t_j) = f(p_j) - f(p_{j-1})$$

Noting that

$$(f \circ \sigma_j)'(t_j) = \frac{\partial f(p_{j-1} + tv_j e_j)}{\partial x_j} v_j$$

and using the boundedness of the partial derivatives to define

$$M = \sup\left\{ \left| \frac{\partial f(p')}{\partial x_j} \right| \ \left| \ p' \in E, j \in \{1, \dots, n\} \right\} \right\}$$

we find

$$d_{\mathbb{R}}(f(q), f(p)) = |f(q) - f(p)|$$

$$= |f(p+v) - f(p)|$$

$$= \left| \sum_{j=1}^{n} (f(p_j) - f(p_{j-1})) \right|$$

$$= \left| \sum_{j=1}^{n} \frac{\partial f(p_{j-1} + tv_j e_j)}{\partial x_j} v_j \right|$$

$$\leq \sum_{j=1}^{n} \left| \frac{\partial f(p_{j-1} + tv_j e_j)}{\partial x_j} \right| |v_j|$$

$$\leq \sum_{j=1}^{n} M |v|_{\mathbb{R}^n}$$

$$= Mn \cdot d_{\mathbb{R}^n}(p, q)$$

Note that this holds for any $p, q \in E$. Now, letting $\varepsilon > 0$, we define $\delta = \frac{\varepsilon}{Mn}$ (or, if M = 0, we instead let $\delta = 1$), giving

$$d_{\mathbb{R}^n}(p,q) < \delta \implies d_{\mathbb{R}}(f(q),f(p)) < \varepsilon$$

Since $\varepsilon > 0$ was arbitrary and δ works for all $p, q \in E$, this proves that f is uniformly continuous.

We use an arbitrary metric space (M, d) instead of \mathbb{R}^2 . Case 1: $E = \emptyset$. Define

$$f: \mathbb{R}^n \to \mathbb{R}$$
$$x \mapsto 1$$

Case 2: $E \neq \emptyset$. Define

 $f: \mathbb{R}^n \to \mathbb{R}$ $x \mapsto \operatorname{dist}(x, E)$

where

$$\operatorname{dist}(x, E) \coloneqq \inf \left\{ d(x, e) \mid e \in E \right\}$$

In each case, f trivially satisfies the requirements of the problem (and is, in fact, uniformly continuous). In case 2, we could also define

$$f: \mathbb{R}^n \to \mathbb{R}$$
$$x \mapsto \begin{cases} 0 & x \in E\\ \exp(-\frac{1}{\operatorname{dist}(x,E)}) & x \notin E \end{cases}$$

I suspect that this is smooth when $M = \mathbb{R}^n$.