Existence of partial derivatives.
Let yo € R.
Case 1: yy #0
The function 2y
0
z+— f(x = —"—
f( 7310) 2 ¥ y%
is a quotient of two differentiable functions, so it is differentiable.
And of course, its derivative at z = ¢ € R is precisely

3f(5507 yo)
Ox

So this partial derivative exists for all zg € R.
Case 2: yp =0
The function

x v flx,yo) = f(x,0) =0

has derivative 0 everywhere, so

Of(zo,y0)
ox
exists and is 0 for all ¢ € R.
Similarly,
df (z0,90)
dy
exists for all (zg,yo) € R?.
Discontinuity at (0,0).
The sequence
11
Pn = (n7 n)
approaches (0,0) but its image
1
f(pn) - 5

approaches % # £(0,0) =0,
so f is not continuous at (0, 0).



We will show that f is uniformly continuous on F.

Let p,g € E.
Write v = ¢ — p and
v=(v1,...0p)

As in Pugh’s Theorem 8 proof, define
J
pj=p+t Z VkCk
k=1
for j €{0,...n}, and

oj:0,1] - E
t— pj_1 +tuje;

for j € {1,...n}.
Each function
foo;:[0,1] =R

is continuous on [0, 1] and differentiable on (0, 1),
so the mean value theorem yields a t; € (0,1) such that

(foay)(t;) = fps) — fpj-1)
Noting that
(fooy)(t;) = af(pjalm—: tvjej)vj

and using the boundedness of the partial derivatives to define

- {‘&f(p’)

’p/EE,jG{l,...n}}

(9.’)3]‘
we find
dr(f(q), f(p)) = |f(q) — f(P)I
=|f(p+v)— f(p)]
= : (f(pj) _f(pj—l))

|v;]

= Mn - dgn(p, q)



Note that this holds for any p,q € F.
Now, letting € > 0, we define § = 7
(or, if M =0, we instead let § = 1), giving

drn(p,q) <6 = dr(f(q), f(p)) <e¢

Since € > 0 was arbitrary and § works for all p,q € E,
this proves that f is uniformly continuous.



We use an arbitrary metric space (M, d) instead of R2.

Case 1: E = 0.
Define
f:R" >R
r—1
Case 2: E # 0.
Define
fR*"=R
x — dist(x, E)
where

dist(z, F) := inf {d(z,e) | e € E}

In each case, f trivially satisfies the requirements of the problem (and is, in fact, uniformly continuous).
In case 2, we could also define

f:R" >R

. reklk
x
eXp(_dist(lz,E)) )

I suspect that this is smooth when M = R".






