1.

Existence of partial derivatives.

Let $y_{0} \in \mathbb{R}$.
Case 1: $y_{0} \neq 0$
The function

$$
x \mapsto f\left(x, y_{0}\right)=\frac{x y_{0}}{x^{2}+y_{0}^{2}}
$$

is a quotient of two differentiable functions, so it is differentiable. And of course, its derivative at $x=x_{0} \in \mathbb{R}$ is precisely

$$
\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x}
$$

So this partial derivative exists for all $x_{0} \in \mathbb{R}$.
Case 2: $y_{0}=0$
The function

$$
x \mapsto f\left(x, y_{0}\right)=f(x, 0)=0
$$

has derivative 0 everywhere, so

$$
\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x}
$$

exists and is 0 for all $x_{0} \in \mathbb{R}$.
Similarly,

$$
\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y}
$$

exists for all $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$.
Discontinuity at $(0,0)$.
The sequence

$$
p_{n}=\left(\frac{1}{n}, \frac{1}{n}\right)
$$

approaches $(0,0)$ but its image

$$
f\left(p_{n}\right)=\frac{1}{2}
$$

approaches $\frac{1}{2} \neq f(0,0)=0$,
so f is not continuous at $(0,0)$.
2.

We will show that f is uniformly continuous on E.

Let $p, q \in E$.
Write $v=q-p$ and

$$
v=\left(v_{1}, \ldots v_{n}\right)
$$

As in Pugh's Theorem 8 proof, define

$$
p_{j}=p+\sum_{k=1}^{j} v_{k} e_{k}
$$

for $j \in\{0, \ldots n\}$, and

$$
\begin{aligned}
\sigma_{j}:[0,1] & \rightarrow E \\
t & \mapsto p_{j-1}+t v_{j} e_{j}
\end{aligned}
$$

for $j \in\{1, \ldots n\}$.
Each function

$$
f \circ \sigma_{j}:[0,1] \rightarrow \mathbb{R}
$$

is continuous on $[0,1]$ and differentiable on $(0,1)$, so the mean value theorem yields a $t_{j} \in(0,1)$ such that

$$
\left(f \circ \sigma_{j}\right)^{\prime}\left(t_{j}\right)=f\left(p_{j}\right)-f\left(p_{j-1}\right)
$$

Noting that

$$
\left(f \circ \sigma_{j}\right)^{\prime}\left(t_{j}\right)=\frac{\partial f\left(p_{j-1}+t v_{j} e_{j}\right)}{\partial x_{j}} v_{j}
$$

and using the boundedness of the partial derivatives to define

$$
M=\sup \left\{\left.\left|\frac{\partial f\left(p^{\prime}\right)}{\partial x_{j}}\right| \right\rvert\, p^{\prime} \in E, j \in\{1, \ldots n\}\right\}
$$

we find

$$
\begin{aligned}
d_{\mathbb{R}}(f(q), f(p)) & =|f(q)-f(p)| \\
& =|f(p+v)-f(p)| \\
& =\left|\sum_{j=1}^{n}\left(f\left(p_{j}\right)-f\left(p_{j-1}\right)\right)\right| \\
& =\left|\sum_{j=1}^{n} \frac{\partial f\left(p_{j-1}+t v_{j} e_{j}\right)}{\partial x_{j}} v_{j}\right| \\
& \leq \sum_{j=1}^{n}\left|\frac{\partial f\left(p_{j-1}+t v_{j} e_{j}\right)}{\partial x_{j}}\right|\left|v_{j}\right| \\
& \leq \sum_{j=1}^{n} M|v|_{\mathbb{R}^{n}} \\
& =M n \cdot d_{\mathbb{R}^{n}}(p, q)
\end{aligned}
$$

Note that this holds for any $p, q \in E$.
Now, letting $\varepsilon>0$, we define $\delta=\frac{\varepsilon}{M n}$
(or, if $M=0$, we instead let $\delta=1$), giving

$$
d_{\mathbb{R}^{n}}(p, q)<\delta \Longrightarrow d_{\mathbb{R}}(f(q), f(p))<\varepsilon
$$

Since $\varepsilon>0$ was arbitrary and δ works for all $p, q \in E$, this proves that f is uniformly continuous.
3.

We use an arbitrary metric space (M, d) instead of \mathbb{R}^{2}.
Case 1: $E=\emptyset$.
Define

$$
\begin{aligned}
f: \mathbb{R}^{n} & \rightarrow \mathbb{R} \\
x & \mapsto 1
\end{aligned}
$$

Case 2: $E \neq \emptyset$.
Define

$$
\begin{aligned}
f: \mathbb{R}^{n} & \rightarrow \mathbb{R} \\
x & \mapsto \operatorname{dist}(x, E)
\end{aligned}
$$

where

$$
\operatorname{dist}(x, E):=\inf \{d(x, e) \mid e \in E\}
$$

In each case, f trivially satisfies the requirements of the problem (and is, in fact, uniformly continuous). In case 2, we could also define

$$
\begin{aligned}
f: \mathbb{R}^{n} & \rightarrow \mathbb{R} \\
x & \mapsto \begin{cases}0 & x \in E \\
\exp \left(-\frac{1}{\operatorname{dist}(x, E)}\right) & x \notin E\end{cases}
\end{aligned}
$$

I suspect that this is smooth when $M=\mathbb{R}^{n}$.

