Real Analysis Exchange Vol 16 (1990-91)

Allan deCamp, Department of Mathematics, Wesleyan University, Middletown, CT 06457

THE CONSTRUCTION OF A LEBESGUE MEASURABLE SET WITH EVERY DENSITY

The question of the existence of a Lebesgue measurable set $E \subseteq \mathbb{R}$ such that each density $t \in [0, 1]$ occurs, was posed by R.M. Shortt. The following is the construction of such a set E.

<u>Definition</u>. Given a Lebesgue measurable set $E \subseteq \mathbb{R}$ and $t \in [0,1]$, $x \in \mathbb{R}$ is said to have density t with respect to E, denoted $d_E(x) = t$, if given $\epsilon > 0$ there is a $\delta > 0$ such that for all intervals I containing x with $\lambda I < \delta$,

$$\left|\frac{\lambda(I\cap E)}{\lambda I}-t\right|<\epsilon.$$

<u>Theorem</u> (Lebesgue Density Theorem) [1]. Given a Lebesgue measurable set $E \subseteq \mathbf{R}$, almost every point in **R** has density 0 or 1 with respect to E.

So the set of points $x \in \mathbf{R}$ where $d_E(x) \in (0,1)$ is a set of measure zero. In the following construction, for each $t \in (0,1)$ there will be an $x \in K$, the Cantor set, such that $d_E(x) = t$.

<u>Proposition 1.</u> Given $0 \le \alpha \le 1$, $\epsilon > 0$, and (a, b), there exists a measurable set $A \subseteq (a, b)$ such that $\lambda A = \alpha(b-a)$ and for every $c \in (a, b)$,

$$\left|\frac{\lambda(A\cap(a,c))}{c-a}-\alpha\right|<\epsilon$$
(1)

and

$$\frac{\lambda(A\cap(c,b))}{b-c}-\alpha\Big|<\epsilon.$$
 (2)

<u>Proof</u>. Fix $n \in \mathbb{N}$. Let $m = \frac{b-a}{2}$ and put

$$A_n = \bigcup_{r=1}^{\infty} \left(a + \frac{nm}{n+r}, a + \frac{nm}{n+r} + \frac{\alpha nm}{(n+r)(n+r-1)} \right).$$

Notice that $A_n \subseteq (a, a + m]$ and that the constitutent intervals of A_n are disjoint. For any positive integer N,

$$\lambda\left(\bigcup_{r=N}^{\infty}\left(a+\frac{nm}{n+r},a+\frac{nm}{n+r}+\frac{\alpha nm}{(n+r)(n+r-1)}\right)\right)$$

$$=\sum_{r=N}^{\infty}\left(\left(a+\frac{nm}{n+r}+\frac{\alpha nm}{(n+r)(n+r-1)}\right)-\left(a+\frac{nm}{n+r}\right)\right)$$
$$=\alpha\left(\sum_{r=N}^{\infty}\left(\frac{nm}{n+r-1}-\frac{nm}{n+r}\right)\right)=\alpha\left(\frac{nm}{n+N-1}\right).$$

In particular, for N = 1, $\lambda(A_n) = \alpha m$. Now take $c \in (a, a + m]$ then $c \in (a + \frac{nm}{n+s+1}, a + \frac{nm}{n+s}]$ for some integer $s \ge 0$, so

$$rac{lpha nm}{n+s+1} \leq \lambda(A_n \cap (a,c)) \leq rac{lpha nm}{n+s}$$

and

$$\frac{nm}{n+s+1} \leq (c-a) \leq \frac{nm}{n+s}.$$

Thus,

$$\frac{\alpha(n+s)}{n+s+1} \leq \frac{\lambda(A_n \cap (a,c))}{c-a} \leq \frac{\alpha(n+s+1)}{n+s}.$$
 (3)

So for any $c \in (a, a + m]$,

$$lpha\left(\frac{n}{n+1}
ight)\leq rac{\lambda(A_n\cap(a,c))}{c-a}\leq lpha\left(rac{n+1}{n}
ight).$$

Take $n_0 \in \mathbb{N}$ such that $\alpha(\frac{n_0}{n_0+1}) - \alpha > -\epsilon$ and $\alpha(\frac{n_0+1}{n_0}) - \alpha < \epsilon$ then,

$$\left|\frac{\lambda(A_{n_0}\cap(a,c))}{c-a}-\alpha\right|<\epsilon.$$
 (4)

Let A'_{n_0} be the set A_{n_0} reflected in the midpoint of (a, b). If $A = A_{n_0} \cup A'_{n_0}$ then $\lambda A = 2(\lambda A_{n_0}) = 2(\alpha m) = \alpha(b-a)$. Since A is symmetric about $\frac{b+a}{2}$ it is enough to show (1) and (2) hold for $c \in (a, a + m]$. But $\lambda(A \cap (a, c)) = \lambda(A_{n_0} \cap (a, c))$ for $c \in (a, a + m]$ so (4) implies (1). By (1)

$$\left|\alpha - \frac{\lambda(A \cap (a,c))}{c-a}\right| < \epsilon$$

which implies

$$\left|\frac{\alpha(c-b)}{c-a} + \left(\frac{\alpha(b-a)}{c-a} - \frac{\lambda(A\cap(a,c))}{c-a}\right)\right| < \epsilon$$

and since $\frac{\alpha(b-a)}{c-a} = \frac{\lambda A}{c-a} = \frac{\lambda(A \cap (a,c)) + \lambda(A \cap (c,b))}{c-a},$ $\left| \frac{\alpha(c-b)}{c-a} + \frac{\lambda(A \cap (c,b))}{c-a} \right| < \epsilon.$

But $c \in (a, a + m]$ so $(b - c) \ge (c - a)$ thus,

$$\left|-\alpha+\frac{\lambda(A\cap(c,b))}{b-c}\right|<\epsilon$$

and (2) holds. \Box

<u>Remark.</u> As a result of (3), given $\eta > 0$ there is a $\delta > 0$ such that for all $c \in (a, b)$ with $c - a < \delta$ and all $d \in (a, b)$ with $b - d < \delta$,

$$\left|rac{\lambda(A\cap (a,c))}{c-a}-lpha
ight|<\eta \ \ ext{and} \ \ \left|rac{\lambda(A\cap (d,b))}{b-d}-lpha
ight|<\eta.$$

Let f be the Cantor singular function [1]. Now construct the Cantor set K in [0,1] using the process of removing middle thirds. Let $I_{n_1}, I_{n_2}, ..., I_{n_i} = (a_{n_i}, b_{n_i}), ..., I_{n_{2^{n-1}}}$ be the intervals removed from [0,1] at the n^{th} step. For each $n \ge 1$ and $1 \le i \le 2^{n-1}$ find $E_{n_i} \subseteq I_{n_i}$ using proposition 1, where E_{n_i} is the A of proposition 1, $\alpha = f(a_{n_i})$ and $\epsilon = \frac{1}{n}$. Put

$$E=\bigcup_{n=1}^{\infty}\bigcup_{i=1}^{2^{n-1}}E_{n_i}.$$

Given a set $A \subseteq [0,1]$, the complement of A in [0,1] will be written A^c . <u>Proposition 2</u>. Given an interval $J \subseteq [c,d] \subseteq (\bigcup_{n=1}^N \bigcup_{i=1}^{2^{n-1}} I_{n_i})^c$,

$$f(c)-rac{1}{N}\leq rac{\lambda(J\cap E)}{\lambda J}\leq f(d)+rac{1}{N}.$$

<u>Proof.</u> Since the exclusion of end points will not effect the measure, assume J = (g, h) for some $g, h \in [c, d]$. Since $\lambda K = 0$ and $J \subseteq [0, 1]$,

$$\lambda J = \lambda (J \cap K^c)$$

and since $J \subseteq (\cup_{n=1}^N \cup_{i=1}^{2^{n-1}} I_{n_i})^c$,

$$= \lambda \left(J \cap \left(\bigcup_{N+1}^{\infty} \bigcup_{i=1}^{2^{n-1}} I_{n_i} \right) \right)$$

$$= \sum_{n=N+1}^{\infty} \sum_{i=1}^{2^{n-1}} \lambda(J \cap I_{n_i}).$$
(5)
Since $J \subseteq (\bigcup_{n=1}^{N} \bigcup_{i=1}^{2^{n-1}} I_{n_i})^c \subseteq (\bigcup_{n=1}^{N} \bigcup_{i=1}^{2^{n-1}} E_{n_i})^c,$
$$\lambda(J \cap E) = \lambda \left(J \cap \left(\bigcup_{n=N+1}^{\infty} \bigcup_{i=1}^{2^{n-1}} E_{n_i} \right) \right).$$
$$= \sum_{n=N+1}^{\infty} \sum_{i=1}^{2^{n-1}} \lambda(J \cap E_{n_i}).$$
(6)

If $J \cap I_{n_i} = (a_{n_i}, h)$ and n > N, (1) gives

$$\left|\frac{\lambda((a_{n_i},h)\cap E_{n_i})}{h-a_{n_i}}-f(a_{n_i})\right|<\frac{1}{n};$$

so, since f is increasing,

$$f(c) - \frac{1}{N} < f(a_{n_i}) - \frac{1}{n} < \frac{\lambda(J \cap E_{n_i})}{\lambda(J \cap I_{n_i})} < f(a_{n_i}) + \frac{1}{n} < f(d) + \frac{1}{N}.$$
 (7)

If $J \cap I_{n_i} = (g, b_{n_i})$ and n > N, the same inequalities follow similarly from (2). If $J \cap I_{n_i} = I_{n_i}$ and n > N, then $J \cap E_{n_i} = E_{n_i}$ and $c \le g \le a_{n_i}$, $b_{n_i} \le h \le d$. So $\lambda(J \cap E_{N_i}) = \lambda E_{n_i}$, but by the construction of $E_{n_i}, \lambda E_{n_i} = f(a_{n_i})(\lambda I_{n_i})$ so (7) again holds. Consequently, for n > N,

$$(f(c)-\frac{1}{N})(\lambda(J\cap I_{n_i})) \leq \lambda(J\cap E_{n_i}) \leq (f(d)+\frac{1}{N})(\lambda(J\cap I_{n_i}))$$
(8)

in the above three situations; while in the remaining situation $J \cap I_{n_i} = \emptyset$, (8) holds trivially. Thus, summing (8) for $1 \leq i \leq 2^{n-1}$ and $n \geq N+1$,

$$\left(f(c)-\frac{1}{N}\right)(\lambda J)\leq\lambda(J\cap E)\leq\left(f(d)+\frac{1}{N}\right)(\lambda J)$$

follows from (5) and (6). \Box

<u>Claim</u>. Given $t \in (0,1)$ and $x \in K$ such that f(x) = t, then $d_E(x) = t$. Consider two cases.

Case i) x is not an end point of K (i.e. $x \neq a_{n_i}$ or b_{n_i} for any $n \in \mathbb{N}$ and $1 \leq i \leq 2^{n-1}$). So given N there is an interval (c_N, d_N) containing x where $d_N - c_N = \frac{1}{3^N}$ and $[c_N, d_N] \subseteq (\bigcup_{n=1}^N \bigcup_{i=1}^{2^{n-1}} I_{n_i})^c$ and there exists positive $\delta_N \leq \frac{1}{3^N}$ such that for every interval I containing x where $\lambda I < \delta_N$, $I \subseteq (c_n, d_N)$. So by Proposition 2

$$f(c_N)-rac{1}{N}\leq rac{\lambda(I\cap E)}{\lambda(I)}\leq f(d_N)+rac{1}{N}.$$

As $N \to \infty$, c_N and d_N converge to x and $\delta_N \to 0$. Thus, since f is continuous, $f(c_N) - \frac{1}{N}$ and $f(d_N) + \frac{1}{N}$ converge to f(x). So given $\epsilon > 0$ there exists N such that for all intervals I containing x with $\lambda I < \delta_N$,

$$\left|\frac{\lambda(I\cap E)}{\lambda I}-f(x)\right|<\epsilon.$$

Therefore $d_E(x) = f(x)$.

Case *ii*) x is an end point of K. So $x = a_{n_i}$ for some $n \in \mathbb{N}$ and $1 \leq i \leq 2^{n-1}$ (the case when $x = b_{n_i}$ is analogous). For a given interval I containing x look at the right portion of I, $I_r = I \cap [x, \infty)$, and the left portion of I, $I_i = I \cap (-\infty, x]$. By the argument of case *i*) given $\epsilon > 0$ there exists $\delta_r > 0$ such that for all intervals I with $x \in I$ and $\lambda I_r < \delta_r$,

$$\left|\frac{\lambda(I_r\cap E)}{\lambda I_r}-f(x)\right|<\epsilon.$$

By the remark at the end of proposition 1 there exists δ_l such that for all intervals I with $x \in I$ and $\lambda I_l < \delta_l$,

$$\left|\frac{\lambda(I_l\cap E)}{\lambda I_l}-f(x)\right|<\epsilon.$$

Thus for $\delta = \min \{\delta_r, \delta_l\}$, given any interval I with $x \in I$ and $\lambda I < \delta$,

$$\left|\frac{\lambda(I\cap E)}{\lambda I}-f(x)\right|<\epsilon.$$

Therefore $d_E(x) = f(x)$.

Since E is an open set it is clear that every point $x \in E$ has density 1 and since $E \subseteq [0,1]$ every point not in [0,1] has density 0. So for each $t \in [0,1]$ there is a point $x \in \mathbf{R}$ such that $d_E(x) = t$.

REFERENCE

[1] Cohn, D.L., Measure theory. Boston: Birkhäuser 1980.

Received June 6, 1990

Real Analysis Exchange Vol 16 (1990-91)

Roy A. Johnson, Department of Mathematics, Washington State University, Pullman, WA 99164-2930

A MINIMAL FAMILY OF OPEN INTERVALS GENERATING THE BOREL SETS

Let \mathcal{F} be the family of all open intervals of R, and let \mathcal{B}_R denote the Borel sets of R. The following two statements appear in [2, p. 19]:

"A subfamily $\mathcal{F}_0 \subset \mathcal{F}$ is a generator for \mathcal{B}_R iff the set of end points of intervals in \mathcal{F}_0 is dense in R. Thus if $\mathcal{F}_0 \subset \mathcal{F}$ is a generator for \mathcal{B}_R then by removing any finitely many intervals from \mathcal{F}_0 we still get a generator for \mathcal{B}_R ."

Małgorzata Filipczak [1] has shown that the first statement is false. We show that the second statement is also false by making use of the fact that if a σ -algebra separates points, then so does a generator for that σ -algebra [1, Lemma 1]. Since R is homeomorphic to the open interval (0, 1) and since homeomorphism preserves open intervals¹, it suffices to give examples in (0, 1). More precisely, we find a minimal family \mathcal{E} of open intervals in (0, 1) such that $\mathcal{B}_{(0,1)}$ is the smallest σ -algebra containing \mathcal{E} .

Example 1. For each positive integer n, let

$$\mathcal{E}_n = \{((k-1) \cdot 2^{-n}, k \cdot 2^{-n}) : k = 1 \dots 2^n\},\$$

and let $\mathcal{E} = \bigcup \mathcal{E}_n$. The open intervals in \mathcal{E}_1 will be called members of the first level, those in \mathcal{E}_2 members of the second level, etc.

¹In this paper an open interval is an interval that happens to be an open set. Example 2 is given for those who want open intervals to have compact closure.