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THE CONSTRUCTION OF A LEBESGUE MEASURABLE SET WITH
EVERY DENSITY

The question of the existence of a Lebesgue measurable set £ C R such
that each density ¢ € [0, 1] occurs, was posed by R.M. Shortt. The following
is the construction of such a set E.

Definition. Given a Lebesgue measurable set £ C R and ¢t € [0,1],
z € R is said to have density ¢ with respect to E, denoted dg(z) = ¢, if
given € > O there is a § > 0 such that for all intervals I containing x with
AL< S,

A(INE)
, AT
Theorem (Lebesgue Density Theorem) [1]. Given a Lebesgue measur-

able set E C R, almost every point in R has density 0 or 1 with respect to
E.

So the set of points z € R where dg(z) € (0,1) is a set of measure zero.
In the following construction, for each t € (0,1) there will be an z € K,
the Cantor set, such that dg(z) = t.

Proposition 1. Given 0 < o < 1, € > 0, and (a,b), there exists a
measurable set A C (a,b) such that AA = a(b— a) and for every ¢ € (a,b),

—t)<e.

A(AN(a,c)) _al<£ (1)

c—a
. A4 (e,b) “

Niec, .

-Tz———-—a,<e. (2)

Proof. Fix n € N. Let m = %% and put
*, nm nm anm
A"_g(a+n+r’a+n+r+(n+r)(n+r—1))'

Notice that A, C (a,a + m] and that the constitutent intervals of A, are
disjoint. For any positive integer N,

N nm nm anm
A (}__JN (a+ n+r’a+n+r+ (n+r)(n+r—1)))
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-3 (( nf} (n+r)?:’:nf-r—1)) N (‘”nnfr))

r=
. nm nm nm
_a(rgv(n+r—l—n+r)) —a(n+N—1)'

In particular, for N = 1, A\(4,) = am. Now take ¢ € (a,a + m] then

c€E (a+ mrs,a + 2 for some integer s > 0, so
oanm anm
—— < A4, <
n+s+17 (401 (a,¢)) n+s
and nm m
— —a) <
n+s+1 <(e—a) n+s
Thus,

a(n + s) < MA4nN(a,)) _ e(nts+1)
n+s+1~ c—a - n+s
So for any ¢ € (a,a + m|,

a( n )S A(An N (a,¢)) Sa(n+1).

n+1 c—a n

Take no € N such that a(;2%) — a > —¢ and o("2) — o < € then,

no+1

lA(Am, n(a,0)

< €. 4
Py a <e (4)

Let A}, be the set A,, reflected in the midpoint of (a,b). If A =
Ap, U A}, then AA = 2(AA,,) = 2(am) = a(b — a). Since A is symmetric
about %2 it is enough to show (1) and (2) hold for ¢ € (a,a + m]. But
A(A N (a,¢)) = A(An, N (a,c¢)) for ¢ € (a,a+ m]| so (4) implies (1). By (1)

\a AAN( ac)

c—a

which implies

ofe—b) v(a(b'—- a)  MAN(a, c)))l .

c—a c—a c—a
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ab—a) _ A4 _ AMAN(a,c)) + (AN (c,b))
alc—b) M4 N (c, b)) e

c—a c—a

and since

ey YR

w

But ¢ € (a,a + m] so (b —¢) > (¢ — a) thus,

I__a + A(A N (c,b)) <e
b—c
and (2) holds. O
Remark. As a result of (3), given n > O there is a § > 0 such that for
all ¢ € (a,b) with ¢ —a < 6 and all d € (a,b) with b —d < 6,

A(AN (a,¢)) A(AN(d,b))
c—a b—d

Let f be the Cantor singular function [1]. Now construct the Cantor set
K in [0,1] using the process of removing middle thirds. Let I,,,I,,, ..., In, =
(@nis bn;)s ooy Iny_, be the intervals removed from [0,1] at the nt* step. For
eachn >1and 1 <t <2"! find E,, C I, using proposition 1, where E,,,
is the A of proposition 1, @ = f(a,,) and e = 1. Put

n

—a| <n and —a| <.

oo 2n—1

E=U U E..

n=1 ¢=1

] Given a set A C [0,1], the complement of A in [0, 1] will be written A°.
g Proposition 2. Given an interval J C [¢,d] C (UN_, U2’ L,.)%,

1 _A(JNE) 1
| —_——_ << —.
| £e) % < 2008 < gy 4 X
Proof. Since the exclusion of end points will not effect the measure,
} assume J = (g, h) for some g,k € [¢,d]. Since AK =0 and J C [0,1],

] AJ = A(J N K°)
|

and since J C (UN_, U¥]" I,..)°,

n=1

] (s (0Tw))
| N+1 i=1
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oo on-—1

= 3 LML) (5)

n=N+1 i=1
Since J C (UM, UET" I,)° € (UL, UET Bl

A(JnE):A(Jn( G 2UE,,,.)).

n=N+1 i=1
oo 2n—l
= Y Y MINE). (6)
n=N+1 i=1

If J N I, = (an,, k) and n > N, (1) gives

A((an,s R) N Ey,)
h—ap,;

- f(a'":')

1
<=
n

so, since f is increasing,

10~ < Jlam) = 2 <O sy 4 < s@ 4 @

If JNI,, = (g,bs,) and n > N, the same inequalities follow similarly from
(2). ¥JNI, = I, and n > N, then JN E,, = Ey,; and ¢ < ¢ < an,;
bn; < h < d. So A(J N Ey;) = AE,,, but by the construction of Ep;, AE,; =
f(an;)(AL,,) so (7) again holds. Consequently, for n > N,

(£ - BTN L) AN Ea) < (@) + HATNLY)  (®)

in the above three situations; while in the remaining situation J N I,,;, = 0,
(8) holds trivially. Thus, summing (8) for 1 <i < 2" landn>N+1,

( fle) - -l-b-) (W) < AJNE) < ( )+ %r-) (AJ)

follows from (5) and (6). O

Claim. Given t € (0,1) and z € K such that f(z) =t, then dg(z) =1t.
Consider two cases.

Case 1) z is not an end point of K (i.e. = # ay, or b, for any n € N
and 1 < 1 < 2*1). So given N there is an interval (cy;dn) containing
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z where dy — ey = 3k and [en,dy] C (UN, U2 " I,.)° and there exists

positive 6y < g}v such that for every interval I containing £ where AT < 8y,
I € (cn,dn). So by Proposition 2
1 _AMInE) 1
— <o —.

flew) = < =5 S T + 5
As N — oo, ¢y and dy converge to z and §y — 0. Thus, since f is
continuous, f(cy) — & and f(dy) + # converge to f(z). So given € > 0
there exists N such that for all intervals I containing z with AI < 6y,
A(INE) '
VALY

< €.

Therefore dg(z) = f(z).

Case 1) z is an end point of K. So z = a,, for some n € N and

1 < i < 2" (the case when z = b,, is analogous). For a given interval

I containing z look at the right portion of I, I, = I N [z,00), and the left

portion of I, I; = IN(—o0,z]. By the argument of case t) given € > 0 there
exists 6, > 0 such that for all intervals I with z € I and AI, < §,,

IA(I, N E)

T — f(z)| <e.

By the remark at the end of proposition 1. there exists 6; such that for all
intervals I with z € I and AJ; < §;,

AL NE)
, f(z)| <e
Thus for 6 = min {é,, §}, given any interval I with z € I and AI < §,
A(INE)

Therefore dg(z) = f(z).

Since E is an open set it is clear that every point z € E has density
1 and since E C [0,1] every point not in [0,1] has density 0. So for each
_ t €[0,1] there is a point z € R such that dg(z) = ¢.
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A MINIMAL FAMILY OF OPEN INTERVALS
GENERATING THE BOREL SETS

Let F be the family of all open intervals of R, and let Br denote the Borel sets of

R. The following two statements appear in [2, p. 19]:

“A subfamily Fo C F is a generator for Bg iff the set of end points of
intervals in Fy is dense in R. Thus if Fy C F is a generator for Br then
by removing any finitely many intervals from Fy we still get a generator

for Br.”

Malgorzata Filipczak [1] has shown that the first statement is false. We show that the
second statement is also false by making use of the fact that if a a-aigebra, separates

points, then so does a generator for that o-algebra [1, Lemma 1]. Since R is homeomor-

phic to the open interval (0,1) and since homeomorphism preserves open intervals!, it -

suffices to give examples in (0,1). More precisely, we find a minimal family £ of open
intervals in (0, 1) such that B(o,1) is the smallest o-algebra containing £.

Example 1. For each positive integer n, let
E={((k-1)-27"k-27"): k=1...2"},

and let £ = &,. The open intervals in & will be called members of the first level,

those in & members of the second level, etc.

1In this paper an open interval is an interval that happens to be an open set. Example 2 is given

for those who want open intervals to have compact closure.
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