Allan deCamp, Department of Mathematics, Wesleyan University, Middletown, CT 06457
THE CONSTRUCTION OF A LEBESGUE MEASURABLE SET WITH EVERY DENSITY

The question of the existence of a Lebesgue measurable set $E \subseteq \mathbf{R}$ such that each density $t \in[0,1]$ occurs, was posed by R.M. Shortt. The following is the construction of such a set E.

Definition. Given a Lebesgue measurable set $E \subseteq \mathbf{R}$ and $t \in[0,1]$, $x \in \mathbf{R}$ is said to have density t with respect to E, denoted $d_{E}(x)=t$, if given $\epsilon>0$ there is a $\delta>0$ such that for all intervals I containing x with $\lambda I<\delta$,

$$
\left|\frac{\lambda(I \cap E)}{\lambda I}-t\right|<\epsilon .
$$

Theorem (Lebesgue Density Theorem) [1]. Given a Lebesgue measurable set $E \subseteq \mathbf{R}$, almost every point in \mathbf{R} has density 0 or 1 with respect to E.

So the set of points $x \in \mathbf{R}$ where $d_{E}(x) \in(0,1)$ is a set of measure zero. In the following construction, for each $t \in(0,1)$ there will be an $x \in K$, the Cantor set, such that $d_{E}(x)=t$.

Proposition 1. Given $0 \leq \alpha \leq 1, \epsilon>0$, and (a, b), there exists a measurable set $A \subseteq(a, b)$ such that $\lambda A=\alpha(b-a)$ and for every $c \in(a, b)$,

$$
\begin{equation*}
\left|\frac{\lambda(A \cap(a, c))}{c-a}-\alpha\right|<\epsilon \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{\lambda(A \cap(c, b))}{b-c}-\alpha\right|<\epsilon . \tag{2}
\end{equation*}
$$

Proof. Fix $n \in \mathbf{N}$. Let $m=\frac{b-a}{2}$ and put

$$
A_{n}=\bigcup_{r=1}^{\infty}\left(a+\frac{n m}{n+r}, a+\frac{n m}{n+r}+\frac{\alpha n m}{(n+r)(n+r-1)}\right) .
$$

Notice that $A_{n} \subseteq(a, a+m)$ and that the constitutent intervals of A_{n} are disjoint. For any positive integer N ,

$$
\lambda\left(\bigcup_{r=N}^{\infty}\left(a+\frac{n m}{n+r}, a+\frac{n m}{n+r}+\frac{\alpha n m}{(n+r)(n+r-1)}\right)\right)
$$

$$
\begin{gathered}
=\sum_{r=N}^{\infty}\left(\left(a+\frac{n m}{n+r}+\frac{\alpha n m}{(n+r)(n+r-1)}\right)-\left(a+\frac{n m}{n+r}\right)\right) \\
\quad=\alpha\left(\sum_{r=N}^{\infty}\left(\frac{n m}{n+r-1}-\frac{n m}{n+r}\right)\right)=\alpha\left(\frac{n m}{n+N-1}\right) .
\end{gathered}
$$

In particular, for $N=1, \lambda\left(A_{n}\right)=\alpha m$. Now take $c \in(a, a+m)$ then $c \in\left(a+\frac{n m}{n+s+1}, a+\frac{n m}{n+s}\right]$ for some integer $s \geq 0$, so

$$
\frac{\alpha n m}{n+s+1} \leq \lambda\left(A_{n} \cap(a, c)\right) \leq \frac{\alpha n m}{n+s}
$$

and

$$
\frac{n m}{n+s+1} \leq(c-a) \leq \frac{n m}{n+s}
$$

Thus,

$$
\begin{equation*}
\frac{\alpha(n+s)}{n+s+1} \leq \frac{\lambda\left(A_{n} \cap(a, c)\right)}{c-a} \leq \frac{\alpha(n+s+1)}{n+s} \tag{3}
\end{equation*}
$$

So for any $c \in(a, a+m]$,

$$
\alpha\left(\frac{n}{n+1}\right) \leq \frac{\lambda\left(A_{n} \cap(a, c)\right)}{c-a} \leq \alpha\left(\frac{n+1}{n}\right)
$$

Take $n_{0} \in \mathrm{~N}$ such that $\alpha\left(\frac{n_{0}}{n_{0}+1}\right)-\alpha>-\epsilon$ and $\alpha\left(\frac{n_{0}+1}{n_{0}}\right)-\alpha<\epsilon$ then,

$$
\begin{equation*}
\left|\frac{\lambda\left(A_{n_{0}} \cap(a, c)\right)}{c-a}-\alpha\right|<\epsilon \tag{4}
\end{equation*}
$$

Let $A_{n_{0}}^{\prime}$ be the set $A_{n_{0}}$ reflected in the midpoint of (a, b). If $A=$ $A_{n_{0}} \cup A_{n_{0}}^{\prime}$ then $\lambda A=2\left(\lambda A_{n_{0}}\right)=2(\alpha m)=\alpha(b-a)$. Since A is symmetric about $\frac{b+a}{2}$ it is enough to show (1) and (2) hold for $c \in(a, a+m]$. But $\lambda(A \cap(a, c))=\lambda\left(A_{n_{0}} \cap(a, c)\right)$ for $c \in(a, a+m]$ so (4) implies (1). By (1)

$$
\left|\alpha-\frac{\lambda(A \cap(a, c))}{c-a}\right|<\epsilon
$$

which implies

$$
\left|\frac{\alpha(c-b)}{c-a}+\left(\frac{\alpha(b-a)}{c-a}-\frac{\lambda(A \cap(a, c))}{c-a}\right)\right|<\epsilon
$$

and since $\frac{\alpha(b-a)}{c-a}=\frac{\lambda A}{c-a}=\frac{\lambda(A \cap(a, c))+\lambda(A \cap(c, b))}{c-a}$,

$$
\left|\frac{\alpha(c-b)}{c-a}+\frac{\lambda(A \cap(c, b))}{c-a}\right|<\epsilon
$$

But $c \in(a, a+m]$ so $(b-c) \geq(c-a)$ thus,

$$
\left|-\alpha+\frac{\lambda(A \cap(c, b))}{b-c}\right|<\epsilon
$$

and (2) holds.
Remark. As a result of (3), given $\eta>0$ there is a $\delta>0$ such that for all $c \in(a, b)$ with $c-a<\delta$ and all $d \in(a, b)$ with $b-d<\delta$,

$$
\left|\frac{\lambda(A \cap(a, c))}{c-a}-\alpha\right|<\eta \text { and }\left|\frac{\lambda(A \cap(d, b))}{b-d}-\alpha\right|<\eta .
$$

Let f be the Cantor singular function [1]. Now construct the Cantor set K in $[0,1]$ using the process of removing middle thirds. Let $I_{n_{1}}, I_{n_{2}}, \ldots, I_{n_{i}}=$ $\left(a_{n_{i}}, b_{n_{i}}\right), \ldots, I_{n_{2^{n-1}}}$ be the intervals removed from $[0,1]$ at the $n^{\text {th }}$ step. For each $n \geq 1$ and $1 \leq i \leq 2^{n-1}$ find $E_{n_{i}} \subseteq I_{n_{i}}$ using proposition 1 , where $E_{n_{i}}$ is the A of proposition $1, \alpha=f\left(a_{n_{i}}\right)$ and $\epsilon=\frac{1}{n}$. Put

$$
E=\bigcup_{n=1}^{\infty} \bigcup_{i=1}^{2^{n-1}} E_{n_{i}}
$$

Given a set $A \subseteq[0,1]$, the complement of A in $[0,1]$ will be written A^{c}.
Proposition 2. Given an interval $J \subseteq[c, d] \subseteq\left(\cup_{n=1}^{N} \cup_{i=1}^{2^{n-1}} I_{n_{i}}\right)^{c}$,

$$
f(c)-\frac{1}{N} \leq \frac{\lambda(J \cap E)}{\lambda J} \leq f(d)+\frac{1}{N}
$$

Proof. Since the exclusion of end points will not effect the measure, assume $J=(g, h)$ for some $g, h \in[c, d]$. Since $\lambda K=0$ and $J \subseteq[0,1]$,

$$
\lambda J=\lambda\left(J \cap K^{c}\right)
$$

and since $J \subseteq\left(\cup_{n=1}^{N} \cup_{i=1}^{2 n-1} I_{n_{i}}\right)^{c}$,

$$
=\lambda\left(J \cap\left(\bigcup_{N+1}^{\infty} \bigcup_{i=1}^{2^{n-1}} I_{n_{i}}\right)\right)
$$

$$
\begin{equation*}
=\sum_{n=N+1}^{\infty} \sum_{i=1}^{2^{n-1}} \lambda\left(J \cap I_{n_{i}}\right) . \tag{5}
\end{equation*}
$$

Since $J \subseteq\left(\cup_{n=1}^{N} \cup_{i=1}^{2^{n-1}} I_{n_{i}}\right)^{c} \subseteq\left(\cup_{n=1}^{N} \cup_{i=1}^{\cup^{n-1}} E_{n_{i}}\right)^{c}$,

$$
\begin{align*}
\lambda(J \cap E) & =\lambda\left(J \cap\left(\bigcup_{n=N+1}^{\infty} \bigcup_{i=1}^{2^{n-1}} E_{n_{i}}\right)\right) . \\
= & \sum_{n=N+1}^{\infty} \sum_{i=1}^{2^{n-1}} \lambda\left(J \cap E_{n_{i}}\right) . \tag{6}
\end{align*}
$$

If $J \cap I_{n_{i}}=\left(a_{n_{i}}, h\right)$ and $n>N$, (1) gives

$$
\left|\frac{\lambda\left(\left(a_{n_{i}}, h\right) \cap E_{n_{i}}\right)}{h-a_{n_{i}}}-f\left(a_{n_{i}}\right)\right|<\frac{1}{n} ;
$$

so, since f is increasing,

$$
\begin{equation*}
f(c)-\frac{1}{N}<f\left(a_{n_{i}}\right)-\frac{1}{n}<\frac{\lambda\left(J \cap E_{n_{i}}\right)}{\lambda\left(J \cap I_{n_{i}}\right)}<f\left(a_{n_{i}}\right)+\frac{1}{n}<f(d)+\frac{1}{N} . \tag{7}
\end{equation*}
$$

If $J \cap I_{n_{i}}=\left(g, b_{n_{i}}\right)$ and $n>N$, the same inequalities follow similarly from (2). If $J \cap I_{n_{i}}=I_{n_{i}}$ and $n>N$, then $J \cap E_{n_{i}}=E_{n_{i}}$ and $c \leq g \leq a_{n_{i}}$, $b_{n_{i}} \leq h \leq d$. So $\lambda\left(J \cap E_{N_{i}}\right)=\lambda E_{n_{i}}$, but by the construction of $E_{n_{i}}, \lambda E_{n_{i}}=$ $f\left(a_{n_{i}}\right)\left(\lambda I_{n_{i}}\right)$ so (7) again holds. Consequently, for $n>N$,

$$
\begin{equation*}
\left(f(c)-\frac{1}{N}\right)\left(\lambda\left(J \cap I_{n_{i}}\right)\right) \leq \lambda\left(J \cap E_{n_{i}}\right) \leq\left(f(d)+\frac{1}{N}\right)\left(\lambda\left(J \cap I_{n_{i}}\right)\right) \tag{8}
\end{equation*}
$$

in the above three situations; while in the remaining situation $J \cap I_{n_{i}}=\emptyset$, (8) holds trivially. Thus, summing (8) for $1 \leq i \leq 2^{n-1}$ and $n \geq N+1$,

$$
\left(f(c)-\frac{1}{N}\right)(\lambda J) \leq \lambda(J \cap E) \leq\left(f(d)+\frac{1}{N}\right)(\lambda J)
$$

follows from (5) and (6).
Claim. Given $t \in(0,1)$ and $x \in K$ such that $f(x)=t$, then $d_{E}(x)=t$. Consider two cases.

Case i) x is not an end point of K (i.e. $x \neq a_{n_{i}}$ or $b_{n_{i}}$ for any $n \in \mathbf{N}$ and $1 \leq i \leq 2^{n-1}$). So given N there is an interval (c_{N}, d_{N}) containing
x where $d_{N}-c_{N}=\frac{1}{3^{N}}$ and $\left[c_{N}, d_{N}\right] \subseteq\left(\cup_{n=1}^{N} \cup_{i=1}^{2^{n-1}} I_{n_{i}}\right)^{c}$ and there exists positive $\delta_{N} \leq \frac{1}{3^{N}}$ such that for every interval I containing x where $\lambda I<\delta_{N}$, $I \subseteq\left(c_{n}, d_{N}\right)$. So by Proposition 2

$$
f\left(c_{N}\right)-\frac{1}{N} \leq \frac{\lambda(I \cap E)}{\lambda(I)} \leq f\left(d_{N}\right)+\frac{1}{N}
$$

As $N \rightarrow \infty, c_{N}$ and d_{N} converge to x and $\delta_{N} \rightarrow 0$. Thus, since f is continuous, $f\left(c_{N}\right)-\frac{1}{N}$ and $f\left(d_{N}\right)+\frac{1}{N}$ converge to $f(x)$. So given $\epsilon>0$ there exists N such that for all intervals I containing x with $\lambda I<\delta_{N}$,

$$
\left|\frac{\lambda(I \cap E)}{\lambda I}-f(x)\right|<\epsilon
$$

Therefore $d_{E}(x)=f(x)$.
Case $i i$) x is an end point of K. So $x=a_{n_{i}}$ for some $n \in \mathbb{N}$ and $1 \leq i \leq 2^{n-1}$ (the case when $x=b_{n_{i}}$ is analogous). For a given interval I containing x look at the right portion of $I, I_{r}=I \cap[x, \infty)$, and the left portion of $I, I_{l}=I \cap(-\infty, x]$. By the argument of case $\left.i\right)$ given $\epsilon>0$ there exists $\delta_{r}>0$ such that for all intervals I with $x \in I$ and $\lambda I_{r}<\delta_{r}$,

$$
\left|\frac{\lambda\left(I_{r} \cap E\right)}{\lambda I_{r}}-f(x)\right|<\epsilon .
$$

By the remark at the end of proposition 1. there exists δ_{l} such that for all intervals I with $x \in I$ and $\lambda I_{l}<\delta_{l}$,

$$
\left|\frac{\lambda\left(I_{l} \cap E\right)}{\lambda I_{l}}-f(x)\right|<\epsilon
$$

Thus for $\delta=\min \left\{\delta_{r}, \delta_{l}\right\}$, given any interval I with $x \in I$ and $\lambda I<\delta$,

$$
\left|\frac{\lambda(I \cap E)}{\lambda I}-f(x)\right|<\epsilon
$$

Therefore $d_{E}(x)=f(x)$.
Since E is an open set it is clear that every point $x \in E$ has density 1 and since $E \subseteq[0,1]$ every point not in $[0,1]$ has density 0 . So for each $t \in[0,1]$ there is a point $x \in \mathbf{R}$ such that $d_{E}(x)=t$.

REFERENCE

[1] Cohn, D.L., Measure theory. Boston: Birkhäuser 1980.

Roy A. Johnson, Department of Mathematics, Washington State University, Pullman, WA 99164-2930

A MINIMAL FAMILY OF OPEN INTERVALS GENERATING THE BOREL SETS

Let \mathcal{F} be the family of all open intervals of R, and let \mathcal{B}_{R} denote the Borel sets of R. The following two statements appear in [2, p. 19]:
> "A subfamily $\mathcal{F}_{0} \subset \mathcal{F}$ is a generator for \mathcal{B}_{R} iff the set of end points of intervals in \mathcal{F}_{0} is dense in R. Thus if $\mathcal{F}_{0} \subset \mathcal{F}$ is a generator for \mathcal{B}_{R} then by removing any finitely many intervals from \mathcal{F}_{0} we still get a generator for \mathcal{B}_{R}."

Małgorzata Filipczak [1] has shown that the first statement is false. We show that the second statement is also false by making use of the fact that if a σ-algebra separates points, then so does a generator for that σ-algebra [1, Lemma 1]. Since R is homeomorphic to the open interval $(0,1)$ and since homeomorphism preserves open intervals ${ }^{1}$, it suffices to give examples in $(0,1)$. More precisely, we find a minimal family \mathcal{E} of open intervals in $(0,1)$ such that $\mathcal{B}_{(0,1)}$ is the smallest σ-algebra containing \mathcal{E}.

Example 1. For each positive integer n, let

$$
\mathcal{E}_{n}=\left\{\left((k-1) \cdot 2^{-n}, k \cdot 2^{-n}\right): k=1 \ldots 2^{n}\right\}
$$

and let $\mathcal{E}=\bigcup \mathcal{E}_{n}$. The open intervals in \mathcal{E}_{1} will be called members of the first level, those in \mathcal{E}_{2} members of the second level, etc.

[^0]
[^0]: ${ }^{1}$ In this paper an open interval is an interval that happens to be an open set. Example 2 is given for those who want open intervals to have compact closure.

