Lemma 0:

By finite sub-additivity, $m^*(EUF) \in m^*(E) + m^*(F)$

So it suffices to show

m* (EUF) > m*(E) + m*(F)

First, 4×20 , $f\{B_j\}_{j \in J}$ open box covering (EUF) s.t. $\sum_{j \in J} |B_j| \le m^* (EUF) + \varepsilon$

Since E and F one separated, we can divide up $\{B_j\}$ into 2 disjoint sets. $\{B_j\}_{j \in J_E}$, $\{B_j\}_{j \in J_F}$, s.t. they each cover E, F, respectively. Then we have

$$\sum_{j \in J} |B_j| = \sum_{j \in J_E} |B_j| + \sum_{j \in J_E} |B_j|$$

And since

$$M^*(E) \leq \sum_{j \in J_E} |B_j|, M^*(F) \leq \sum_{j \in J_F} |B_j|,$$

we have

$$M^*(E) + M^*(F) \leq \sum_{j \in J_E} |B_j| + \sum_{j \in J_E} |B_j| = \sum_{j \in J_E} |B_j| \leq M^*(E)F) + 2$$

Since & is outsitionly,

Lemma 1:

Since $\forall U \supset A$, $m^*(U) \ge m^*(A)$, we have inf $\{m^*(U), U \supset A, U \text{ open } \} \ge m^*(A)$

Then it suffices to show inf { m*(U), U > A, U open } < m*(A)

By Corollary 7.2.7 of Tao, $M^*(B_i) = |B_i| + j$, so $\sum |B_i| = \sum m^*(B_i) \ge m^*(B)$ (sub-additivity) $\ge \inf\{m^*(U): U > A, U \text{ open }\}$ (B > A, B open)

=> inf $\{m^*(U): U>A, U \text{ open }\} \leq m^*(A) + E$

=> inf {m*(U): U>A, U open } < m*(A) since E is curbitrary

Lemma 2:

Since E_i is measurable $\forall i$, $\forall E \neq 0$ $\exists open set U_i \supseteq E_i \le t$. $M^*(U_i \setminus E_i) < \underbrace{\xi_i}$ Now, let $W = \underbrace{U_i}_{i=1}^{\infty} U_i$ and $W_i = U_i \setminus E_i$, $E = \underbrace{U_i}_{i=1}^{\infty} E_i$.

Then if $X \in W \setminus E$, then $\forall i$, $X \notin E_i$. But since $X \in W \setminus E$, $X \in W$, meaning that for some i, $X \in W_i$, so $X \in \underbrace{U_i}_{i=1}^{\infty} W_i$.

Since $X : S \text{ outsitivary}_{i=1}^{\infty} \underbrace{U_i}_{i=1}^{\infty} U_i \supseteq W \setminus E$. Then, $M^*(W \setminus E) \in M^*(\underbrace{V_i}_{i=1}^{\infty} W_i)$ (monotonicity) $\leq \underbrace{\mathbb{Z}_i}_{i=1}^{\infty} M^*(W_i)$ (countable sub-additivity)

= &

Since U_i is open, W is open. Therefore, $E = \bigcup_{i=1}^{\infty} E_i$ is measurable.

Lemma 3:

To prove this lemma, we prove the following 2 claims:

· <u>Claim 1</u>: A can be written as a countable union of bounded closed subsets.

proof: Let $B_{\epsilon}(x)$ be a closed ball of radius ϵ contened at X, $X \in \mathbb{R}^n$. Then, we can write A as $A = \bigcup_{i=1}^n (B_i(0) \cap A)$

Since Bi(0) and A are both closed, (Bi(0) NA) is closed.

· Claim 2: Any bounded closed (thus compact) subset $A \subset \mathbb{R}^n$ is measurable.

bloot:

Since A is bounded, I open set UDA s.t., by Lemma 1,

m*(U) 4 m*(A) + &

Since U open and A closed, U/A is open. Then, by Lemma 7.4.10 of Tao, U/A can be written as a countable union of open boxes $\overset{\circ}{U}$ Bi.

Lemma 4:

Since E is measurable, $\forall \epsilon > 0$, \exists open set $\forall n \geq 0$ s.t., $m^*(\forall n \in \mathbb{R}) < \frac{\epsilon}{n}$, $n \in \mathbb{N}$

Since Un is open, Un' is closed, thus measurable by Lemma 3. Let $Q = \bigcup_{n=1}^{\infty} U_n'$, then, by Lemma 2, Q is measurable, and $E' \setminus Q \subset U_n \setminus E + M$,

since if $\chi \in (E^c \setminus Q)$, $\chi \notin Q$, so $\chi \in Q^c = \bigcap_{i=1}^n U_i$, then $\chi \in U_n + n$, but $\chi \notin E$, so $\chi \in (U_n \setminus E)$. Then we have

m*(E'(Q) < m*(Un \E) < \f \ \ \ \ \

Since E is our bitrary, $m^*(E^c \setminus Q) = 0$. Then by Lemma 1, +8>0, I open set $U \supset (E^c \setminus Q)$ s.t.

m*(U) < m*(E</Q)+S=8

Since (U(E°/Q)) CU,

m*(U)(E(Q)) <8 => E(Q is measurable.

Lastly, since

 $E'=(E'(Q)\cup Q)$, and both E'(Q) and Q are measurable, we have E' measurable.