25. Let $f : \mathbb{R} \to [0, \infty)$ be given.

(a) If f is measurable why is the graph of f a zero set?

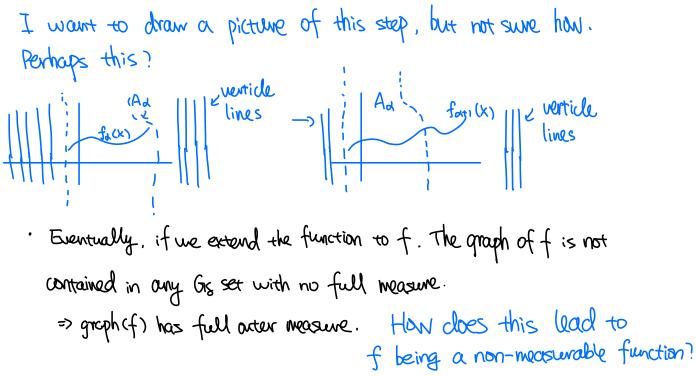
Let
$$G := graph(f) = \{(x, f(x)) : x \in \mathbb{R}\}$$
, then since f is a function,
for eacy $x \in \mathbb{R}$, \exists at most one $y \in [0,\infty)$ s.t. $y = f(x)$. Therefore, a slice
 G_{1x} of G has at most one point. Therefore, $m(G_{x}) = 0$.
By the Zero Slice Theorem, then, $m(G) = 0$.

(b) If the graph of f is a zero set does it follow that f is measurable?

Let ECR be a nonneasurable set, and let
$$f(x) = 1_E(x)$$
.
Then $\{(x, f(x)): x \in \mathbb{R}^{2} \subset ((\mathbb{R} \times \{0\}) \cup (\mathbb{R} \times \{1\})), \text{ then since}$
 $M(\mathbb{R} \times \{0\}) + M(\mathbb{R} \times \{1\}) = 0 + 0 = 0,$
 $\Rightarrow m(graph(f)) = 0$
But E nonneasurable \Rightarrow f nonneasurable, so the statement does not hold
 \uparrow should be since $E \times [0, 1]$ unneasurable

**(c) Read about transfinite induction and go to stack exchange to see that there exists a nonmeasurable function $f: [a, b] \to [0, \infty)$ whose graph is non-measurable.

* stackexchange subject: Lebesgue Measure of the Graph of a Function" by Cosmonut on 412812011



(d) Infer that the measurability hypothesis in the Zero Slice Theorem (Theorem 26) is necessary since every vertical slice graph of the function in (c) is a zero set (it is just a single point) and yet the graph has positive outer measure.

In Theorem 20, for a measurable set EC 12* ×12°, if almost
all slices of E is a zero set. E is a zero set. Thus
$$m(E)=0 \Rightarrow m^{*}(E)=0$$
.
If we drop the measurability requirement, then, for the function
we constructed in cc), since each slice of its graph
is a point in \mathbb{R}^2 , it has measure zero. However,
the graph of the function has positive outer measure.

(e) Why can a graph never have positive inner measure?

Let
$$G_1 := graph(f)$$
. Then since f is a function, every slice G_x
of G contains only one point, thus has measure zero
Now, consider any measurable subset $F \subset G_1$, its slices F_x
will also only contain one point. So by the Zero Slice Theorem,
 $m(G_1)=0$. Therefore G cannot have positive inner measure.

(f) How does (c) yield an example of uncountably many disjoint subsets of the plane, each with infinite outer measure?

The function
$$f$$
 in (c) is $f: [a, b] \rightarrow [0, \infty)$, whose graph has
a positive outer measure. Than, obline $g(x)=f(x)+r$, $r\in \mathbb{R}$.
Then $[a, b] \times \mathbb{R} \subset \bigcup_{r \in \mathbb{R}^2} graph(g_r)$ (I think?).
If we extend the domain of f to \mathbb{R} to construct
functions \tilde{g}_r , then
graph(g_r) $\subset graph(\tilde{g}_r)$
(Need to show: $m^*(graph(\tilde{g}_r))=\infty$)
Then,
 $\mathbb{R}^2 \subset \bigcup_{r \in \mathbb{R}} graph(\tilde{g}_r)$

(g) What assertion can you make from (f) and Exercise 19?

**19. Consider linear Lebesgue measure m_1 on the interval I and planar Lebesgue measure m_2 on the square I^2 . Construct a meseometry $I \to I^2$. Thus meseometry disrespects topology: $(I, \mathcal{M}(I), m_1)$ is meseometric to $(I^2, \mathcal{M}(I^2), m_2)$. [Hint: You might use the following outline. The inclusion $I \setminus \mathbb{Q} \to I$ is injective and preserves m_1 . You can convert it to a bijection $\alpha : I \setminus \mathbb{Q} \to I$ by choosing a countable set $L \subset I \setminus \mathbb{Q}$ and then choosing any bijection $\alpha_0 : L \to L \cup (\mathbb{Q} \cap I)$. Then you can set $\alpha(x) = \alpha_0(x)$ when $x \in L$ and $\alpha(x) = x$ otherwise. Why is α is a meseometry? (Already this shows that nonhomeomorphic spaces can have meseometric measure spaces.) In the same way there is a meseometry $\beta : I^2 \setminus \mathbb{Q}^2 \to I^2$. Then let $A = I \setminus \mathbb{Q}$. Express $x \in A$ as a base-2 expansion

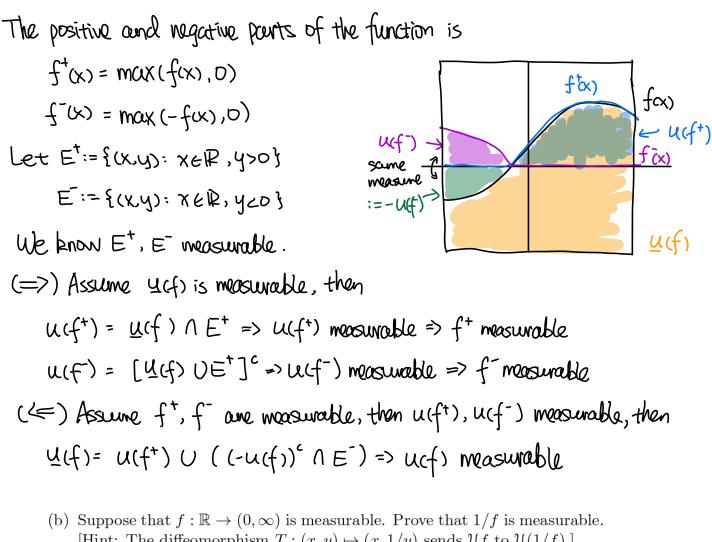
$$x = (a_1 a_2 a_3 a_4 a_5 a_6 \dots)$$

using the digits 0 and 1. It is unique since x is irrational. Then consider the corresponding base-4 expansion

$$\sigma(x) = ((a_1a_2)(a_3a_4)(a_5a_6)\dots)$$

using the digits (00), (01), (10), and (11). Prove that $\sigma(A) = I^2 \setminus \mathbb{Q}^2$ and σ preserves measure. Conclude that $T = \beta \circ \sigma \circ \alpha^{-1}$ is a mesometry $I \to I^2$.]

- 28. The total undergraph of $f : \mathbb{R} \to \mathbb{R}$ is $\underline{\mathcal{U}}f = \{(x, y) : y < f(x)\}.$
 - (a) Using undergraph pictures, show that the total undergraph is measurable if and only if the positive and negative parts of f are measurable.



(c) Suppose that $f, g : \mathbb{R} \to (0, \infty)$ are measurable. Prove that $f \cdot g$ is measurable. [Hint: $T : (x, y) \mapsto (x, \log y)$ sends $\mathcal{U}f$ and $\mathcal{U}g$ to $\mathcal{U}(\log f)$ and $\mathcal{U}(\log g)$. How does this imply $\log fg$ is measurable, and how does use of $T^{-1} : (x, y) \mapsto (x, e^y)$ complete the proof?]

Next, we have, 4x,

(d) Remove the hypotheses in (a)-(c) that the domain of f, g is \mathbb{R} .

For (a), we can easily generalize to R" since the set operations hdd in higher dimensions.

For (b) and (c), we can find diffeomorphism
$$T$$
 in higher dimensions.
(b): $T: (X_1, ..., X_n, Y) \mapsto (X_1, ..., X_n, tj)$
(c): $T: (X_1, ..., X_n, Y) \mapsto (X_1, ..., X_n, log Y)$

i.

(e) Generalize (c) to the case that f, g have both signs.

For f, g that have both signs, we only need to divide U(f) and U(g) by the 4 quadrants. Then we can show that, individually, the 4 quadrants are measurable. Then the union of the pieces will be measurable.