1.

39. Suppose that f and g are measurable and their squares are integrable. Prove

that fg is measurable, integrable, and
/fg < \//fﬂ//g?

28. The total undergraph of f: R - R is Uf = {(z,y) : y < f(x)}.

(a) Using undergraph pictures, show that the total undergraph is measurable
if and only if the positive and negative parts of f are measurable.

(b) Suppose that f : R — (0, c0) is measurable. Prove that 1/f is measurable.
[Hint: The diffeomorphism T : (z,y) — (2,1/y) sends Uf to (U(1/f)).]

(c) Suppose that f,g : R — (0,00) are measurable. Prove that f - g is mea-
surable. [Hint: T : (z,y) — (x,logy) sends Uf and Ug to U(log f) and
U(log g). How does this imply log f¢g is measurable, and how does use of
T71: (z,y) — (z,e¥) complete the proof?]

(d) Remove the hypotheses in (a)-(c) that the domain of f,g is R.

(e) Generalize (c) to the case that f, g have both signs.

[Hint: Exercise 28 helps.]

33 Berce 2% (© ad @), §-9 i mosuote .
Tha: (ke th quadvatic wick for proving, Cuchy - Sohwors
let A={$q , R={§ . C={4", >0
feefra)? 2o
> [afr+qr e 20
o v §fn (44w ffg 20
= Bt*+ 24t t C 20
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2. *48. The Devil’s ski slope. Recall from Chapter 3 that the Devil’s staircase function
H :[0,1] — [0, 1] is continuous, nondecreasing, constant on each interval com-
plementary to the standard Cantor set, and yet is surjective. For n € Z and

€ [0,1] we define H(z + n) = H(z) + n. This extends H to a continuous
surjection R — R. Then we set

o0

Hk(a:):fl(3kx) and J(x

k=0

Prove that J is continuous, strictly increasing, and yet J' = 0 almost every-
where. [Hint: Fix a > 0 and let

Sy = {x : J'(x) exists, J'(z) > a, and

2 belongs to the constancy intervals of every Hy}.
Use the Vitali Covering Lemma to prove that m*(S,) = 0.]
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53. Consider the function f : R? — R defined by
1 .
Y

—J -1
x, = - :
fz,y) = if 0<y<ax<l

0 otherwise.

(a) Show that the iterated integrals exist and are finite (calculate them) but
the double integral does not exist.

(b) Explain why (a) does not contradict Corollary 43.
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58. The balanced density of a measurable set E at z is the limit, if exists, of the
concentration of £ in B where B is a ball centered at x that shrinks down to
x. Write dpalanced (%, F) to indicate the balanced density, and if it is 1, refer to
x as a balanced density point.

(a) Why is it immediate from the Lebesgue Density Theorem that almost
every point of E is a balanced density point?

(b) Given « € [0, 1], construct an example of a measurable set £ C R that
contains a point x with dpajanced(, F) = .

(¢) Given a € [0,1], construct an example of a measurable set E C R that
contains a point x with é(z, F) = «.

**(d) Is there a single set that contains points of both types of density for all

a € [0,1]?
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66. Construct a monotone function f : [0, 1] — R whose discontinuity set is exactly
the set QN [0, 1], or prove that such a function does not exist.

This proof is adopted fom "o womoonic function whest pontS
of Aiscmthf\u'\ta, form & done set” on wathunoveonfes. nec
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Chovse $ = min($,,%.), then
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