Fourier Series Revision Questions Following Tao 5.1-5.5

5.1 Periodic Functions

- 1. Let L>0 be a real number. Define a function f that is periodic with period.
 - a. Give an example of one
- 2. What is a Z-Periodic function?
- 3. In order to completely specify a Z-periodic function $f: R \to C$, in what interval must one specify f?
 - a. Why? What does this determine
 - b. Why can we just specify this
- 4. What is the name of the space of complex-valued continuous Z-periodic functions?
- 5. [Lemma] Basic properties of C(**R/Z**;**C**))
 - a. Boundness
 - b. Vector space and algebra properties
 - c. Closure under uniform limits

5.2 Inner Product and periodic functions

- 1. Define the *inner product* of f, $g \in C(R/Z C)$)
- 2. Find the inner product of f(x) = 1 and $g(x) = e^{2\pi ix}$
 - a. In general will the inner product be a complex or real number?
- 3. [Lemma] let f, g, $h \in (R/Z; C)$ give the following properties
 - a. Hermitian Property
 - b. Positivite
 - c. Linearity in the first variable
 - d. Antilinearity in the second variable
- 4. Define the norm of f, $||f||^2$
- 5. Calculate the norm of the function $f(x) = e^{2\pi ix}$
- 6. [Lemma] f, $g \in (R/Z; C)$:
 - a. (non-degeneracy) we have $||f||_2 = 0$ iff....
 - b. (Cauchy-Schwarz inequality) we have $| < f, g > | \le ?$
 - c. (Triangle in-equality)
 - d. (Pythagoras' Theorem) if <f,g>=0
 - e. Homogeneity
- 7. f,g are.... Iff <f,g>=0
- 8. Define the L^2 metric d_{L^2} on C(R/Z; C)
- 9. The sequence f_n of functions on C(R/Z;C) will converge in the L^2 metric to f if as ..

5.3 Trigonometric Polynomials

- 1. Polynomials are functions of x^n (sometimes called monomials), trigonometrics are combinations of functions of ... sometimes called ...
- 2. Why is $cos(2\pi nx)$ a trig poly?
- 3. [Lemma] (characters are an orthonormal system).

```
For any integers n and m, we have \langle e_n, e_m \rangle = 1 when ... and e_n = 0 when.... Also ||e_n|| = ?
```

- 4. [Corollary] Give the formula for the coefficients of a trig poly
- 5. Define Fourier Transform
 - a. Give the fourier inversion formula
 - i. f(x)=
 - b. What is the fourier series of f?
- 6. Give the Plancherel formula

5.4 Periodic Convolutions

Goal is to probe the Weierstrass approximation theorem for trig poly

1. [Theorem]

Let $f \in C(R/Z; C)$, and let $\varepsilon > 0$. Then there exists a trigonometric polynomial P st ...

2. If we let $P(R \setminus Z; C)$ denote the space of all trigonometric polynomials, then the closure of $P(R \setminus Z; C)$ in the L^{∞} metric is ..

Can be proved from the Weierstrass approx theorem for polynomials (Theorem 3.8.3)

- 3. Define periodic convolution $f * g: R \to C$
- 4. [Lemma] (Basic properties of periodic convolution)
 - a. Closure
 - b. Commutativity
 - c. Bilinearity
- 5. For any $f \in C(R/Z; C)$ and $n \in Z$, we have $f * e_n = ?$
- 6. Define periodic approximation to the identity

5.5 The Fourier and Plancherel Theorem

- 1. State the Fourier Theorem
- 2. [Theorem]

let $f \in C(R/Z; C)$, and suppose that the series $\sum_{n=-\infty}^{\infty} |f^{up}(n)|$ is absolutely convergent. the the series...

3. State the Plancherel theorem