Fourier Series Revision Questions

Following Tao 5.1-5.5

5.1 Periodic Functions

1. Let $\mathrm{L}>0$ be a real number. Define a function f that is periodic with period.
a. Give an example of one
2. What is a Z-Periodic function?
3. In order to completely specify a Z-periodic function $f: R \rightarrow C$, in what interval must one specify f?
a. Why? What does this determine
b. Why can we just specify this
4. What is the name of the space of complex-valued continuous Z-periodic functions?
5. [Lemma] Basic properties of $C(R / Z ; C))$
a. Boundness
b. Vector space and algebra properties
c. Closure under uniform limits

5.2 Inner Product and periodic functions

1. Define the inner product of $f, g \in C(R / Z C))$
2. Find the inner product of $f(x)=1$ and $g(x)=e^{2 \pi i x}$
a. In general will the inner product be a complex or real number?
3. [Lemma] let $f, g, h \in(R / Z ; C)$ give the following properties
a. Hermitian Property
b. Positivite
c. Linearity in the first variable
d. Antilinearity in the second variable
4. Define the norm of $\mathrm{f},\|f\|^{2}$
5. Calculate the norm of the function $f(x)=e^{2 \pi i x}$
6. [Lemma] $f, g \in(R / Z ; C$:
a. (non-degeneracy) we have $\|f\|_{2}=0$ iff....
b. (Cauchy-Schwarz inequality) we have $|<f, g\rangle \mid \leq$?
c. (Triangle in-equality)
d. (Pythagoras' Theorem) if $\langle f, g>=0$
e. Homogeneity
7. f, g are.... Iff $<f, g>=0$
8. Define the L^{2} metric $d_{L^{2}}$ on $C(R / Z ; C)$
9. The sequence f_{n} of functions on $\mathrm{C}(\mathrm{R} / \mathrm{Z} ; \mathrm{C})$ will converge in the L^{2} metric to f if as ..

5.3 Trigonometric Polynomials

1. Polynomials are functions of x^{n} (sometimes called monomials), trigonometrics are combinations of functions of ... sometimes called ...
2. Why is $\cos (2 \pi n x)$ a trig poly?
3. [Lemma] (characters are an orthonormal system).

For any integers n and m, we have $\left\langle e_{n^{\prime}} e_{m}\right\rangle=1$ when ... and $=0$
when..... Also $\left\|e_{n}\right\|=$?
4. [Corollary] Give the formula for the coefficients of a trig poly
5. Define Fourier Transform
a. Give the fourier inversion formula

$$
\text { i. } \quad f(x)=
$$

b. What is the fourier series of f ?
6. Give the Plancherel formula

5.4 Periodic Convolutions

Goal is to probe the Weierstrass approximation theorem for trig poly

1. [Theorem]

Let $f \in C(R / Z ; C)$, and let $\varepsilon>0$. Then there exists a trigonometric polynomial P st \ldots
2. If we let $P(R \mid Z ; C)$ denote the space of all trigonometric polynomials, then the closure of $\mathrm{P}(\mathbf{R} \mid \mathbf{Z} ; \mathbf{C})$ in the L^{∞} metric is ..

Can be proved from the Weierstrass approx theorem for polynomials (Theorem 3.8.3)
3. Define periodic convolution $f * g: R \rightarrow C$
4. [Lemma] (Basic properties of periodic convolution)
a. Closure
b. Commutativity
c. Bilinearity
5. For any $f \in C(R / Z ; C)$ and $n \in Z$, we have $f * e_{n}=$?
6. Define periodic approximation to the identity

5.5 The Fourier and Plancherel Theorem

1. State the Fourier Theorem
2. [Theorem] let $f \in C\left(R / Z ; C\right.$, and suppose that the series $\sum_{n=-\infty}^{\infty}\left|f^{u p}(n)\right|$ is absolutely convergent. the the series...
3. State the Plancherel theorem
