Lebesgue Measure Revision Questions
 Math 105 Real Analysis 2
 Following Pugh Chp6, Tao Chp 8 and Lecture Notes 1-15

*Some of these questions may seem unnecessary, too easy and 'stupid' but this is just how I learn and make sure my basics are right.

Lecture 1 - Introducing Outer Measure

Reading: Pugh 6.1, Tao 7.1-7.2
Pugh 6.1

1. What is outer measure used for?
2. Define the Lebesgue outer measure
3. What is the cover of an arbitrary set X ?
4. Is the covering of A (as defined in 2) countable? What does it mean to be countable?
5. Define its total length.
6. Define the outer measure of A in words
7. If every series $\Sigma_{k}\left|I_{k}\right|$ diverges then $\mathrm{m}^{*} \mathrm{~A}=$?
8. What lab equipment would you compare outer measure to?
9. [Theorem] Axioms of Outer Measure
a. The outer measure of an empty set is \qquad
b. If $A \subset B$ then \ldots
c. If $A=\cup^{\infty}{ }_{n=1} A_{n}$ then $\mathrm{m}^{*} \mathrm{~A} \ldots$
i. Why is b true?
10. The area of rectangle $R=(a, b) x(c, d)$ is $|R|=$? what is the (planar) outer measure of $A \subset R^{2}$?
11. An open box $B \subset R^{n}$ is $\ldots \ldots, \mathrm{B}=$?
12. The n-dimensional volume $|\mathrm{B}|=$?
a. Hence, what is the n-dimensional outer measure of $A \subset R^{n}$?
13. If $Z \subset R^{n}$ has outer measure zero then it is a Set
14. [Proposition]
a. Every subset of a zero set is ..
b. The countable union of zero sets is ...
c. Each plane $P_{i}(a)=\left\{\left(x_{1}, \ldots ., x_{n}\right) \in R^{n}: x_{i}=a\right\}$ is a \ldots set in R^{n}
15. [Theorem] The linear outer measure of $[a, b]$ is ...; the planar outer measure of $[a, b] x[c, d]$ is \ldots; the n-dimensional outer measure of a closed box is
16. [Corollary] The formulas $m{ }^{*} I=\ldots . ., m^{*} R=\ldots .$. and $m{ }^{*} B=\ldots$... hold also for intervals, rectangles and boxes that are ... or In particular $m^{*} I=|I|, m^{*} R=|R|$, and $m{ }^{*} B=|B|$ for $\mathrm{x}, \mathrm{y}, \mathrm{z}$

Tao 7.1

(From intro for revision)

1. Is every piecewise continuous function Riemann integrable?
2. Is every piecewise constant function Riemann integrable?
3. How does one compute the length/area/volume of Ω ?
4. What do we refer the measure of Ω as?
5. What is the geometrical meaning of a set having outer measure 0 ?
6. What is an example of set which has an infinite outer measure?
7. $M(A \cup B)=$?
8. $m(A) \leq m(B)$ if...
9. $m(x+A)=$? (and in words)
10. Are all open and closed sets measurable?
7.1 The Goal: Lebesgue Measure
11. For every such measurable set $\Omega \subset R^{n}$, the Lebesgue measure $\mathrm{m}(\Omega)$ is a certain number in what [,]?
12. A measurable set obeys the following properties:
a. State the Borel property: every open set in R^{n} is \ldots as is every ...
b. Complementarity
c. Boolean Algebra Property
d. σ-algebra property
13. To every measurable set Ω, we associate the Lebesgue measure $\mathrm{m}(\Omega)$ of Ω, which will obey the following properties (9)

7.2 Outer Measure

1. Define an open box B in R^{n}
2. Define vol(B)
3. In 1-dimension boxes are the same as ...
4. If $b_{i}=a_{i}$ then the box is \ldots and has volume ...
5. What is $\operatorname{vol}_{1}(B), \operatorname{vol}_{2}(B)$ or $\operatorname{vol}_{n}(B)$
6. Def covering by boxes.
7. If Ω is a set, we define the outer measure $\mathrm{m}^{*} \Omega$ of Ω to be the quantity..
8. List the 6 properties followed buy outer measure

Lecture 1 - Lebesgue Measure and Integral

1. $\int_{\Omega} f d x, \Omega \subset R^{n} \quad d x=d x_{1} \ldots . . d x_{n}$
a. What Ω do we allow?
b. What f do we allow?
2. The lebesgue measure $m(\Omega)$ is the measure of that \qquad of that set.
3. Define properties (monotone, additivity and translation invariance)
4. Properties of measurable subsets: let M_{n} denote the set of measurable subsets in R^{n}
a. If $U \subset R^{n}$ is open then \ldots
b. If $U \in M_{N}$, then $U^{c} \ldots$
c. If $U, V \in M_{n}$, then And Are measurable
d. We want M to be a σ - algebra i.e.....
5. How to probe that Z has zero outer measure and Q.
6. Why does $\mathrm{m}^{*}(\mathrm{box})=\operatorname{vol}(\mathrm{box})$

Lecture 2 - Properties of outer measure; measurable set

Pugh 6.2, Tao 7.2, 7.4

(Tao 7.2 already completed above)
Pugh 6.2 Measurability

1. What does it mean for two intervals to be disjoint?
2. If A and B are subsets of disjoint intervals in R then $m^{*}(A \sqcup B)=$?
3. Measurability is the ... nonmeasurability is the ..
4. Are open sets, closed sets, their unions, differences ect measurable?
5. A set $E \subset R$ is (Lebesgue) measurable if the division Of R is so "clean" that for each "test set" $X \subset R$ we have $\mathrm{m}^{*} \mathrm{X}=$
6. How do we denote the collection of all lebesgue measurable subsets of R^{n}
7. When do we drop the * for $m * E$?
8. Let M be any set.
a. The collection of all subsets of M is denoted as ..
b. An abstract outer measure on M is a function ω :that satisfies the 3 axioms of measure
c. A set $E \subset M$ is measurable with respect to ω if $\mathrm{E} \mid \ldots .$. we have
9. [Theorem] The collection M of measurable sets with respect to any outer measure on any set M is a Y And the outer measure restricted to this Y is All zero sets are measurable, [do they have an effect on measurability?]
10. A σ - algebra is a collection of sets that includes x , is closed under y and is closed under z.
a. What does countable additivity of ω mean?
11. [Theorem] Measure Continuity Theorem. If $\left\{E_{k}\right\}$ and $\left\{F_{k}\right\}$ are sequences of measurable sets then define
a. Upward measure continuity
b. Downward measure continuity

Tao 7.4 Measurable Sets

1. Definition of Lebesgue measurability.
a. We say E is measurable iff we have the identity..
b. If E is measurable, we define the Lebesgue measure of E to be ...
c. If E is not measurable we leave $m(E)$...
2. Why would we subscript $m(E)$ as $m_{n}(E)$?
3. Are half-spaces measurable?
4. Give the 6 properties of measurable sets
a. Compliment
b. Translation invariance
c. intersection/union
d. Boolean algebra property
e. open/closed box
f. Zero set
5. Lemma for Finite additivity
6. Are there non-measurable sets?
7. If $A \subseteq B$ are two measurable sets
a. Is $\mathrm{B} \backslash \mathrm{A}$ measurable?
b. $m(B \backslash A)=$?
8. Define countable additivity [Lemma]
9. [Lemma] σ - algebra property
10. [Lemma] every open set can be written as a countable or finite union of ...
11. [Lemma] (Borel property) Every open set, and every closed set is....

Lecture 2 - Measurability

1. Definition of outer measure of any subset in R
2. Lemma 7.2.5, proof of properties
3. Compact set in $R^{n}<=>$..
4. [Corollary] outer measure of any box $=\ldots$

Lecture 3 - Tao Lemma 7.4.2-7.4.5

Tao 7.4 (Already done above)
Tao Lemmas

1. [Lemma 7.4.2] (Half spaces are measurable).

The half - space $\left\{\left(x_{1}, \ldots, x_{n}\right) \in R^{n}: x_{n}>0\right\}$ is measurable
2. [Lemma 7.4.3]

A similar argument will also show that any half space of the form $\left\{\left(x_{1}, \ldots, x_{n}\right) \in R^{n}: x_{j}>0\right\}$ or $\left\{\left(x_{1}, \ldots x_{n}\right) \in R^{n}: x_{j}<0\right\}$ for some $1 \leq j \leq n$ is measurable.
3. [Lemma 7.4.4] (Properties of Measurable Sets)
a. If E is measurable, then $R^{n} \backslash E$ is also measurable.
b. (Translation invariance) if E is measurable, and $x \in R^{n}$, then $x+E$ is also measurable, and $m(x E)=m(E)$
c. if E_{1} and E_{2} are measurable, then $E_{1} \cap E_{2}$ and $E_{1} \cup E_{2}$ are measurable
d. (Boolean algebra property) If $E_{1,} E_{2}, \ldots, E_{N}$ are measurable, then $U^{N}{ }_{j=1} E_{j}$ and $\cap^{N}{ }_{j=1} E_{j}$ are measurable
e. every open box, and every closed box is measurable
f. Any set E of outer measure zero (i.e., $m^{*}(E)=0$) is measurable.
4. [Lemma 7.4.5] (Finite additivity)

If $\left(E_{j}\right)_{j \in J}$ are a finite collection of disjoint measurable sets and any set A (not necessarily measurable) we have

$$
m^{*}\left(A \cap \underset{j \in J}{\cup} E_{j}\right)=\sum_{j \in J} m^{*}\left(A \cap E_{j}\right)
$$

Lecture 4 - Tao Lemma 7.4.6-7.4.11

Tao 7.4 Done already

1. [Remark 7.4.6]

Lemma 7.4.5 (Finite additivity) and Proposition 7.3.3 when combined, imply that there exists non - measurable sets.
Proposition 7.3.3 (Failure of finite additivity). There exists a finite collection $\left(A_{j}\right)_{j \in J}$ of disjoint
subsets of R, such that $\quad m^{*}\left(\underset{j \epsilon J}{ } A_{j}\right) \neq \sum_{j \in J} m^{*}\left(A_{j}\right)$
2. [Corollary 7.4.7]

If $A \subseteq B$ are two measurable sets, then $B \backslash A$ is also measurable, and

$$
m(B \backslash A)=m(B)-m(A)
$$

3. [Lemma 7.4.8] (Countable additivity)

If $\left(E_{j}\right)_{j \in J}$ are a countable collection of disjoint measurable sets, then $\underset{j \in J}{ } E_{j}$ is measurable,
and $m\left(\mathrm{U}_{j \in J} E_{j}\right)=\sum_{j \in J} m\left(E_{j}\right)$
4. [Lemma 7.4.9] σ - algebra property

If $\left(\Omega_{j}\right)_{j \epsilon J}$ are any countable collection of measurable sets (so J is countable), then the union
$\cup_{j \in J} \Omega_{j}$ and the intersection $\bigcap_{j \in J} \Omega_{j}$ are also measurable.
5. [Lemma 7.4.10]

Every open set can be written as a countable or finite union of open boxes.
6. [Lemma 7.4.11] (Borel Property)

Every open set, and every closed set, is Lebes gue measurable.

Lecture 5 - Measurable Function, Regularity

Pugh 6.4, Tao 7.5

Pugh 6.4 Regularity

1. [Theorem] Open sets and closed sets in R^{n} are
2. [Proposition]

The half - spaces $[a, \infty) \times R^{n-1}$ and $(a, \infty) \times R^{n-1}$ are in R^{n}. So are all open ...
3. Do zero sets have any effect on outer measure?
4. Is $\sigma-$ algebra closed with respect to
a. countable unions?
b. Complements?
5. [Corollary] The Lebesgue measure of a closed or partially closed box is the volume of it's The boundary of a box is a ...
6. What is the countable intersection of open sets called?
7. What is the countable union of closed sets called?
8. What is the complement of a (6) set? Is it true conversely?
9. A homeomorphism sets G-sets to G-sets and F-sets to F-sets. What is a homeomorphism?
10. Does σ-algebra contain G and F sets? Why?
11. [Theorem]

Lebesgue measure is regular in the sense that each measurable set E can be \qquad s. $t . G \backslash F$ is a set. Conversely, if there is such an then E is measurable.
12. [Corollary]

A bounded set $E \subset R^{n}$ is measureable iff it has a \qquad s.t F is .. , G is ..., and $m F=$...
13. [Corollary] Modulo zero sets, Lebesgue measurable sets are ... and ...
14. [Corollary] A Lipeomorphism $h: R^{n}->R^{n}$ is a
15. Define a lipeomorphism
16. Define a mesomorphism

Affine Motions

17. What is an affine motion of R^{n} ?
18. Does translation affect Lebesgue measure?
19. [Lemma] Every open set is a countable disjoint union of ... plus a
20. [Corollary] Rigid motions of R^{n} preserve.... They are me...

Inner Measure, Hulls, and Kernals
21. Consider any bounded $A \subset R^{n}$, measurable or not. $\mathrm{m}^{*} \mathrm{~A}$ is the infimum of the measure of That contain A
22. The infimum is achieved by a ... what do we call it?
23. Define a Hull.
24. The inner measure of A is the the supremum of the measure ofThe supremum is achieved by \qquad what do we call it?
25. $m_{*} A=$?
26. How does m_{*} measure A?
27. Is it greater than or less than the outer measure m*?
28. Is m_{*} monotone? If yes what does this imply
29. Definite the measure theoretic boundary of $\operatorname{set} \mathrm{A}$
30. [Theorem] If $A \subset B \subset R^{n}$ and B is a box then A is measurable iff.....
31. [Lemma] If A is contained in a box B then $m B=$?

Tao 7.5 - Measurable Functions

1. Define measurable functions
2. Are continuous functions measurable? [Lemma]
3. [Lemma 7.5.3]

Let Ω be a measurable subset of R^{n}, and let $f: \Omega \rightarrow R^{m}$ be a function. Then f is measurable iff... for every open box B
4. [Lemma 7.5.4]

Let Ω be a measurable subset of R^{n}, and let $f: \Omega \rightarrow R^{m}$ be a function. Suppose that $f=\left(f_{1}, ., f_{m}\right)$ where $f_{j}: \Omega \rightarrow R$ is the $j^{\text {th }}$ co - ordinate of f. Then f is measurable iff...
5. Is the composition of two measurable functions measurable?
6. [Lemma 7.5.5]

Let Ω be a measurable subset of R^{n}, and let W be an open subset of R^{m}. If $f: \Omega->W$ is measurable and $g: W \rightarrow R^{p}$ is continuous, then is $g \circ f: \Omega \rightarrow R^{p}$ measurable?
7. [Lemma 7.5.6]

Let Ω be a measurable subset of R^{n}. If $f: \Omega \rightarrow>R$ is a measurable function, then is $|f|, \max (f, 0)$ $\min (f, 0)$?
8. [Corollary 7.5.7]

Let Ω be a measurable subset of R^{n}. If $f: \Omega \rightarrow R$ and $g: \Omega \rightarrow R$ are measurable functions then is $f+g, f-g, f g, \max (f, g), \min (f, g)$? when is f / g measurable?
9. [Lemma 7.5.8]

Let Ω be a measurable subset of R^{n}, and let $f: \Omega \rightarrow>$ be a function. Then iff $f^{-1}((a, \infty))$ is measurable for every
10. [Lemma 7.5.9] (Measurable functions in the extended reals)

Let Ω be a measurable subset of R^{n}. A function $f: \Omega \rightarrow R^{*}$ is said to be measurable iff is measurable for every real number a.
11. What is R^{*} ?
12. [Lemma 7.5.10] (Limits of measurable functions are measurable)

Let Ω be a measurable subset of R^{n}. For each positive integer n, let $f_{n}: \Omega \rightarrow R^{*}$ be a measurable function. Then are sup $n_{n \geq 1} f_{n^{\prime}}, \inf n_{n \geq 1} f_{n^{\prime}}, \limsup n_{n \rightarrow \infty} f_{n^{\prime}}, \operatorname{limin} f_{n \rightarrow \infty} f_{n}$ also measurable? if f_{n} converge pointwise to another function $f: \Omega \rightarrow R^{*}$, is f also measurable?

Lecture 6 Products \& Slices

Pugh 6.5

1. [Theorem] Measurable Product Theorem $m(A \times B)=$?
2. [Lemma] If A and B are boxes then $A \times B$ is measurable and $m(A \times B)=$?
3. [Lemma] If A and B are zero sets then what is $A \times B$?
4. [Lemma] If U and V are open:
a. Is $\mathrm{U} \times \mathrm{V}$ measurable?
b. What is $m(U \times V)$?
5. The hull of a product is the product of
6. The kernel of a product is the product of ...
7. What set is the slice of $E \subset R^{n} \times R^{k}$ at $x \in R^{n}$?
8. [Theorem] Zero Slice Theorem

If $E \subset R^{n} x R^{k}$ is measurable then E is a zero set iff \ldots.
9. [Lemma] If $W \subset I^{n}$ is open and $X_{\alpha}=X_{\alpha}(W)=\left\{x: m\left(W_{x}\right)>\alpha\right\}$ then $m W \geq \ldots$

Lecture 6 Questions

1. If $E c R^{n}$ is measurable if $\exists a G_{\delta}-\operatorname{set} G$ and $F_{\delta}-\operatorname{set} F$ s.t
a. What is the relation between $\mathrm{E}, \mathrm{F}, \mathrm{G}$?
b. $m(G / F)=$?
2. What is the relation between G and $F(2)$
3. If $\mathrm{G} 1, \mathrm{G} 2$ are nulls of F , then what are $\mathrm{G} 1 / \mathrm{G} 2, \mathrm{G} 2 / \mathrm{G} 1$?
4. If $\mathrm{G} 1, \mathrm{G} 2, \ldots$ are G_{δ} sets then $\cap G_{i}$ is a \ldots..
5. If $\mathrm{F} 1, \mathrm{~F} 2, \ldots$ are F_{σ} sets then $\cup F_{i j}$
6. Draw a slice in a diagram
7. If $E \subset R^{n}, F \subset R^{k}$ are measurable sets then:
a. $m(E \times F)=$?
b. If $m(E)=0$ or $m(F)=0$ then what is $m(E \times F)=$?
8. If $E c R$ has $m(E), m(E \times R)=$?
9. What are the 3 situations when $m(E \times F)=m(E) m(F)$?
10. Any open set $U \subseteq R^{n}$ can be written as (1) and measure ... set
11. Does $m\left(H_{E} x H_{F} \backslash K_{E} x K_{F}\right)=0$?

Lecture 7 Lebesgue Integral

Pugh 6.6 - Lebesgue Integral

1. Define the undergraph of f
2. The function f is (Lebesgue) measurable if Uf is, and if it is then the lebesgue integral of f is
3. The undergraph is the Set of f
4. Can an infinite set have infinite measure?
a. Hence what can $\int f=$?
5. Define a Lebesgue Integrable function
a. Does the integral of a measurable non negative function exist even if the function is not integrable?
6. [Theorem] Monotone convergence theorem: Assume fn is a sequence of measurable functions and ... as n goes to infinity. Then ...
7. Define the completed undergraph
8. The completed undergraph is measurable iff ... is measurable, and if it is their ... are equal
9. $f_{n} \uparrow f$ implies $U f_{n} \ldots$
10. The completed undergraph = what intersection ? except for what points?
11. Does the x axis have an effect on measurability?
12. What does the measure of the completed undergraph equal
13. [Corollary] If $\left(f_{n}\right)$ is a sequence of integrable functions that converges monotonically downward to a limit function f almost everywhere then ...
14. Define the envelope sequences of the function f
15. $\mathrm{U}(\mathrm{fn}($ upper $))=\mathrm{U}$?
16. U[closed](fn) $=$??
17. [Theorem] Dominated Convergence Theorem
18. [Corollary] The pointwise limit of measurable functions is
19. [Lemma] Fataou's Lemma
20. [Theorem] 8 properties about measurable functions f, g
21. Define the f-translation T
a. Tf slides points along ...
b. $T_{f} \circ T_{g}=\ldots=\ldots$
22. If f is integrable then Tf preserves
23. [Corollary] If fk is a sequence of integrable functions then $\sum_{k=0}^{\infty} \int f_{k}=$?
24. If f takes both positive and negative values we define $f_{+}(x), f_{-}(x)$
a. Define $\int f$ in terms of f_{+}and f_{-}

Lecture 7 Slices/Lebesgue Integral

1. $m(E)=0$ iff ..
2. If $z=\oslash$, is E bounded or unbounded?
3. Define undergraph $\mathrm{U}(\mathrm{f})$
a. We say f is measurable if $U(f)$ is ...
b. $\int f:=$ \qquad
i. Can this equal infinity?
c. If $\int f<\infty$, what can we say about f ?
4. What does a.e = "almost everywhere" mean?
a. Give an example for $f(x)=0$ a.e
5. [Theorem 27]
let $f_{n}=R \rightarrow>[0, \infty)$ be a sequence of measurable functions and fn>f a.e as $n \rightarrow \infty$
then $\int f_{n}$ converges to what?
6. Define a completed undergraph $\hat{U}(f)$
7. [Proposition] if $f_{n}: R \rightarrow[0$, inf $]$ is a sequence of integrable functions that fn converges to f a.e, what does the $\int f_{n}$ converge to?
8. If $f_{n}(x)$ is a sequence of functions then what is $f_{n}^{b a r}(x)$ and $f_{n, b a r}(x)$ (couldn't write these properly on G.docs)
9. $U\left(f^{b a r}{ }_{n}\right)=$?
10. $\hat{U}(f)=$?
11. [Theorem] if $f_{n}: R \rightarrow[0$, inf $]$ is a sequence of integrable functions that fn converges to
fa.e, $g(x) \geq f_{n}(x)$ a.e, $\int g<\infty$ then $\int f_{n}->\int f$
What can we say about $\mathrm{U}(\mathrm{fn})$ and $\mathrm{m}(\mathrm{U}(\mathrm{fn}))$ and their relation to $\mathrm{g}, \mathrm{U}(\mathrm{g})$

Lecture 8 - Lebesgue Integral

Pugh 6.6 (Done Above)

Lecture 8 - Lebesgue Integral

1. Define a Lebesgue Integral
2. State the dominated convergence theorem
3. If g is integrable $=>\int g \ldots$
4. [Corollary] The pointwise limit of measurable functions is
5. [Factous Lemma] $f: R \rightarrow[0, \infty)$ is measurable and fn is measurable then

$$
\int \liminf f_{n} \leq
$$

6. [Theorem] if f, g are measurable then $\int f+g=$?
7. What is a mesomorphism?
8. What is mesometry?
9. Is the translation of a box measurable?

Lecture 9 - Simple Functions

Tao 8.1

1. Define simple functions
2. Definite the characteristic function
3. Give the 3 basic properties of simple functions
4. State the 3 lemmas about properties of simple functions
5. Define the lebesgue integral of a simple function
6. Let Ω be a measurable set, and let f and g be non-negative simple functions. Give the 4 properties

Lecture 9 - Simple Functions

1. Define an indicator function/ characteristic function
2. $1_{E}(x)=\{1 \ldots \ldots ., 0 \ldots .$.
3. Define simple functions in terms of indicators
4. $\int 1_{E}=$?
5. $\int \sum c_{i} 1_{E}=$?
6. For a non-negative measurable function
a. Simple function $f_{n}: R^{n} \rightarrow[0, \infty)$ s.t. $f_{n} \nearrow \ldots$
b. Define $\int f=$ lim..
7. [Tao 7.5] Definition of a measurable function.
$f: R^{n} \rightarrow R$ is measurable if for all open sets $\vee \mathrm{c} R, \ldots$
8. $\Omega c R^{n}$ a measurable set, $f: \Omega \rightarrow R$:
a. Is f measurable?
b. Is f^{-1} (open) measurable?
9. [Lemma] $f: \Omega \rightarrow R^{n}$ measurable $f: \Omega \rightarrow R$ continuous, then is f measurable?
10. If $f: \Omega \rightarrow R^{k}$ is measurable and $\mathrm{g}: f(\Omega) \rightarrow R^{L}$, then is $g \circ f$ measurable?
11. [Corollary] if f is measurable $R \rightarrow R$, then is $|\mathrm{f}|$ measurable?
12. If $\mathrm{f} 1, \mathrm{f} 2$ are measurable $R \rightarrow R$ then $\mathrm{f} 1+\mathrm{f} 2$ is measurable
13. [Lemma] a function $f: R^{k} \rightarrow R^{n}, f=\left(f_{1}, \ldots \ldots ., f_{n}\right)$ is measurable iff ?
14. Let $f: R \rightarrow[0, \infty)$ Uf measurable $\Leftrightarrow \forall V$ open in $R^{+} \Leftrightarrow \forall(a, \infty) a \geq 0$
15. $f^{-1}((-\infty, a])=[. .]^{c}$ is measurable
16. $a<b \operatorname{then} f^{-1}((a, b])=f^{-1}((.) /.(\ldots))=f^{-1}(\ldots.) / f^{-1}(\ldots . .$.
17. If $E c R^{2}$ is measurable, is $\pi i(E)$ measurable?
18. If $f: R \rightarrow R^{2}$ continuous function $E \subset R^{2}$ measurable, is $f^{-1}(E) c R$ measurable?
a. Give an example
19. Is the pre image of measurable sets always measurable for measurable functions?
20. What is a cantour set?
21. What is a homomorphism?
22. If f is a simple function, then $\exists E_{1}, \ldots . . ., E_{n}$ disjoint meas. Subsets of R
$c_{1}, \ldots, c_{n} \in R$ s.t. $f(x)=\sum \ldots$
23. [Proposition] the set of simple functions form a vector space i.e.
$\forall c \in R \forall f$ are simple functions, (i) are cf simple? (ii) if g is simple, are $f+g$ simple?
24. Let f be a simple function where λ is the height. What is $\int f=$?
25. Let f be measurable, then there exists fn sequence of nonmeasurable simple functions of bounded support st fn converges to what and how?
a. What does bounded support mean?
26. f is a pointwise limit of a sequence of simple functions \Leftrightarrow ?

Lecture 10 Lebesgue Integral

Tao 8.2 Integration of non-negative measurable functions

1. Define Majorization
2. Define Lebesgue integral for non-negative functions
3. Let Ω be a measurable set, and let $\mathrm{f}: \Omega \rightarrow[0, \infty]$ and $\mathrm{g}: \Omega \rightarrow[0, \infty]$ be non-negative measurable functions. State the 5 properties (iff $f(x)=0, c>0, f<g, f=h,: \Omega{ }^{\prime}$
4. [Theorem] Lebesgue Monotone Convergence Theorem
5. [Lemma] Interchange of addition and integration.
6. [Lemma] Fataou's Lemma
7. [Lemma] ... then f is finite almost everywhere
8. [Lemma] Borel-Cantelli
9.

Lecture 10

1. If f and g are simple functions $\int f+g=$?
2. Let $f \geq 0$ be measurable $f: \Omega \rightarrow[0, \infty)$. $\int f=\sup \left\{\int s \mid s \ldots \ldots ..\right\}$
3. [Proposition] if $f, g: \Omega \rightarrow[0, \infty]$
a. $\int f \geq 0$ and $\int f=0$ iff \ldots...
b. For all $c>0 \int c f=$?
4. $f \leq g \Rightarrow \int f ? \int g$
5. If $f=g$ a.e then $\int f$? $\int g$
6. [Theorem] Given measurable functions $f: \Omega \rightarrow[0, \infty] f_{n}: \Omega \rightarrow[0, \infty]$
$0 \leq f_{1}(x) \leq f_{2}(x) \leq \ldots$
Then $\int \sup f_{n}(x)=$?
7. Show this ${ }^{\wedge} \wedge$
8. If $f: \Omega \rightarrow[0, \infty]$ is measurable $\int f<\infty$ then $\mathrm{f}(\mathrm{x})$ is A.e.
9. [Corollary] Borel - Cantelli

Lecture 11 - Dominated Convergence theorem, Fubini Theorem

Tao 8.5, Pugh 6.7

Pugh 6.7 Italian Measure Theory

1. Definte x-slice and y-slice
2. State Cavalieri's Principle. (measureable slices)
3. [Corollary] The y-slices of an undergraph decrease monotonically as y....., and the following formulas hold:
4. What does it mean to be preimage measurable?
5. [Theorem] State the fubini-tonelli theorem
6. [Corollary] Does the order of integration count for measurable functions?

Tao 8.5 Fubini's Theorem

1. Once we know how to integrate on R^{2}, we can integrate on Of R^{2}. why?
2. State fubini's theorem

Lecture 11

1. Given $f: R^{n} \rightarrow>$, define:
a. E_{+}, E
b. f_{+}, f_{-}and hence f
2. Define an absolutely integrable function
3. State the dominated convergence theorem (hint:lim...)
4. State Fatou's Lemma

L12 Vitali Covering. Upper and Lower Lebesgue Integrals

Pugh 6.8 Vitali coverungs and density points

1. Every open covering of a closed and bounded subset of Euclidean space reduces to a
2. Define a vitali covering
3. State the vitali covering lemma
a. What are the three characteristics
4. State the vitali covering lemma for cubes
5. Define the density of $\mathrm{E}, E \subset R^{n}$
6. Define the density points of E
7. Define the concentration of E in Q
8. What is balanced density?
9. State the Lebesgue Density Theorem
10.

Lecture 12

1. Define the upper and lower lebesgue integrals of any function f
a. Give the 2 properties of these
2. [Lemma] if the upper and lower lebesgue integrals are equal, then what exists? And where?
3. [Theorem] Fubini Theorem
4. Define a vitali covering
a. Are the elements always open?
5. [Theorem] Vitali Covering Lemma

L13 Vitali Covering, Lebesuge Density Theorem

Pugh 6.8

Lecture 13

1. Proving the Vitali Covering Lemma

L14 Lebesgue Mean Value Theorem, Density Theorem

Pugh 6.9-Calculus à la Lebesgue

1. Define the average of a locally integrable function over a measurable set A
2. How do you denote the concentration of f on A ?
3. What do we mean by locally integrable?
4. State the average value theorem
5. Definite absolutely continuous
6. Every absolutely continuous function is Continuous. If (Ii) is a sequence of disjoint intervals then the following are equivalent for a continuous function G :
7. If G is absolutely continuous and Z is a zero set, what does $\mathrm{GZ}=$?
8. If G is absolutely continuous then it is \qquad continuous in the sense that given $\epsilon>0$, there exists a $\delta>0$ such that $\mathrm{mE}<\delta=>$?
9. [Theorem] Let f be a Lebesgue integrable and let F be its indefinite integral $F(x)=\ldots$ Give 3 properties:
a. For almost every x the derivative $\mathrm{F}^{\prime}(\mathrm{x})=$?
b. F is ... continuous
c. If G is an absolutely continuous function and $G^{\prime}(x)=f(x)$ for almost every x then G differs from
10. State Lebesgue's Antiderivative Theorem

Lecture 14

1. What does the density theorem say? (normal words)
2. Recall the formula for the approximate density
3. What are the properties of the approximate density δ ?
a. (range)
b. (what happens if it exists)
4. [Theorem] If E is measurable, then almost all ... i.e
5. [Lemma] if Then $d p(E 1)=d p(E 2)$
6. [Theorem] let f be locally integrable then for a.e p...... exists and it equals ...
7. If $g: R^{n} \rightarrow>[0, \infty)$ integrable for $\forall \alpha>0$ then $\ldots . \mathrm{n}^{*}(\ldots . .<\ldots$.

Lecture 15 - Absolute Continuous Function, Lebesgue Main Theorem

 Pugh 6.9 (Done)Lecture 15

1. What is the Lebesgue density theorem?
2. Define an absolutely continuous function f
3. Where does an absolutely continuous function send a null set to?
