Exercise 7.2.1
(V) Prove that the empty set \emptyset has measure $m^{*}(\phi)=0$:
all open sets cover \varnothing, including those with zero volume, so
$\inf \left\{\left\{\left|I_{i}\right|:\left(I_{i}\right)_{i \in]} \operatorname{cor} \theta=\emptyset\right\}=0\right.$
(Vi) Prove that $0 \leq m^{*}(\Omega) \leq+\infty$ for all measurable set Ω
Since Vol () is a nonnegative function, the sum of volumes con never be negative
(Vii) Proof that if $A \subseteq B \subseteq \mathbb{R}$, then $m^{*}(A) \leq m^{*}(B)$:

Since A is a subset of B, B covers A Thus we find that

$$
\begin{align*}
m^{*}(A) & \left.=\operatorname{int}\left\{\sum_{j} V_{0}\right)\left(I_{j}^{A}\right):\left(I_{j}^{A}\right)_{j t} \text { covers } A\right\} \\
& \left.\leq \inf \left\{\sum_{j} V_{0}\right)\left(I_{j}^{B}\right):\left(I_{j}^{B}\right)_{j t J} \text { covers } B\right\} \\
& =m^{*}(B)
\end{align*}
$$

(viii) Prove: If $\left(A_{j}\right)_{j \in J}$ are a finite collection of subsets of R^{n}, then

$$
m^{x}\left(\bigcup_{j \in J} A_{j}\right) \leq \sum_{j} m^{*}\left(A_{j}\right)
$$

We know that the collection is finite, and that for all A_{j} exists $\left(I_{k j}\right)_{k \in k}$ such that

$$
m^{*}\left(A_{j}\right)=\sum_{k} V_{0} \mid\left(I_{k j}\right)
$$

for an $\varepsilon>0$, it holds that for all $j \in J$:

$$
\sum_{k} \operatorname{Vo} \left\lvert\,\left(I_{k j}\right)_{k \in k} \leq m^{*}\left(A_{j}\right)+\frac{\varepsilon}{|כ|}\right.
$$

Since A_{j} is covered by $\left(I_{k j}\right)_{k \in k}$ and $A=V_{j \epsilon J} A_{j}$, $\left(I_{k j}\right)_{k \in K, j \in]}$ covers A and

$$
m^{*}(A) \leq \sum_{j} \sum_{k} V_{0} \left\lvert\,\left(I_{k j}\right) \leq \sum_{j}\left(m^{*}\left(A_{j}\right)+\frac{\varepsilon}{|j|}\right)=\sum_{j} m^{*}\left(A_{j}\right)+\varepsilon\right.
$$

And as $\varepsilon \rightarrow 0$ we find that

$$
m^{*}\left(U_{j \in j} A_{j}\right)=m^{*}(A) \leq \sum_{j} m^{*}\left(A_{j}\right)
$$

(x) Vising the same argument as previously we now have a countable set $\left(A_{j}\right)_{j \in J}$, for every A. exists $\left(I_{k j}\right)_{k \in K}$ such that fo every $\varepsilon>0$

$$
\sum_{k} V_{0} \left\lvert\,\left(I_{k j}\right)\left(m^{*}\left(A_{j}\right)+\frac{\varepsilon}{2^{j}}\right.\right.
$$

Again, $\left(I_{k j}\right)_{k \in k, j \in J}$ covers A and

$$
m^{*}(A) \leq \sum_{j} \sum_{k} V_{0} \left\lvert\,\left(I_{k j}\right)<\sum_{j}\left(m^{*}\left(A_{j}\right)+\frac{\varepsilon}{i^{j}}\right)=\sum_{j} m^{*}\left(A_{j}\right)+\epsilon\right.
$$

and as J is commonable, $\left\{\frac{\varepsilon}{z^{j}}=\varepsilon\right.$, As $\varepsilon \geqslant 0$, we find

$$
m^{*}\left(U_{j \in J} A_{j}\right)=m^{*}(A) \leq \sum_{j} m^{*}\left(A_{j}^{j}\right)
$$

(xiii)

Let $\left(I_{j}\right)_{j t J}$ be a collection that covers Ω. If we translate Ω by x to $\Omega+x$ we find that

$$
\begin{aligned}
m^{*}(\Omega+x) \leqq \sum_{j} V_{0} \mid\left(I_{j}+x\right)_{j \in J} & =\sum_{j} V_{0}\left|\left(I_{j}\right)_{j \epsilon J}+\sum_{j} V_{\theta}\right|(x) \\
& =\sum_{j} V_{0} \mid\left(I_{j}\right)_{j t J}=m^{x}(\Omega)
\end{aligned}
$$

If we let $T=\Omega+x$ and let $\left(I_{j}\right)_{j \in}$ cover T.
Then $\left(I_{j}-x\right)_{j \in J}$ covers Ω and

$$
m^{*}(\Omega) \leq \sum_{j} V_{0}\left|\left(I_{j}-x\right)_{j \in J}=\sum_{j} V_{0}\right|\left(I_{j}\right)_{j \in J}=m^{*}(\Omega+x)
$$

And by this

$$
m^{x}(\Omega)=m^{*}(\Omega+x)
$$

Exorcise 7.2.2

\uparrow thought graces of the proof: We can coven $A \times B$ with

$$
A_{j} \times B_{k}
$$

* Let $\left(A_{j}\right)_{j t s}$ be open boxes covering A and
* let $\left(B_{k}\right)_{k \in K}$ be open boxes covering B.

Then $\left.\sum V_{0}\right)\left(A_{j}\right)<m_{n}^{*}(A)+\varepsilon$ and $\sum_{k} \operatorname{Vol}\left(B_{k}\right)<m_{m}^{*}(B)+\varepsilon$ for $\varepsilon>0$
Because of $*$ and $*$ we know that

$$
V_{i . j} A_{j} \times B_{i} \text { covers } A \times B .
$$

Thus by lemma 7.2.5(x)

$$
\begin{aligned}
& m_{m+m}^{*}(A \times B)=m_{n+m}^{*}\left(\cup_{j, k} A_{j} \times B_{k}\right) \leq \sum_{j, k} m_{m+n}^{*}\left(A_{j} \times B_{k}\right) \\
= & \sum_{j, k}^{*} m_{n}^{*}\left(A_{j}\right) m_{m}^{*}\left(B_{k}\right)=\sum_{j} m_{n}^{*}\left(A_{j}\right) \sum_{k} m_{m}^{*}\left(B_{k}\right) \\
< & \left(m_{n}^{*}(A)+\varepsilon\right)\left(w_{m}^{*}(B)+\varepsilon\right)
\end{aligned}
$$

* because we use open boxes, we just multiply areas of boxes
and as we let $\varepsilon \rightarrow 0$ we find that

$$
m_{n+m}^{x}(A \times B) \leq m_{n}^{x}(A) m_{m}^{x}(B)
$$

Exercise 9.2 .3
a)
ex for case of $A_{1} \subseteq A_{2}$. By monotonicity,
$m^{*}(A) \leq m^{*}(B)$ We wed to show that

$$
m^{*}(A \cup B)=m^{*}(B)
$$

As $A \subseteq B, A \cup B=B$ and the result is trivial

Prove that for $A_{1} \subseteq A_{2} \subseteq \ldots$ we have $m^{*}\left(U_{j} A_{j}\right)=\lim _{j \rightarrow \infty} m^{*}\left(A_{j}\right)$
PROOF by induction on j

$$
j=2: A_{1}^{\prime} \subseteq A_{2} \text {. As } A_{2} \text { covers } A_{1} \text { and } A_{1} \subseteq A_{2} \Leftrightarrow A_{1} \cup A_{2}=A_{2}
$$

we have that

$$
m^{*}\left(A_{1} \cup A_{2}\right)=m^{*}\left(A_{2}\right)
$$

Induction step - $k=n+1$
Assume that up until $n, w^{*}\left(\cup_{j}^{n} A_{j}\right)=m^{*}\left(A_{n}\right)$, then by using our induction hypothesis we find that since $A_{w} \in A_{k} \Leftrightarrow A_{n} \cup A_{k}=A_{k}$, so

$$
m^{*}\left(\cup_{j}^{k} A_{j}\right)=m^{*}\left(A_{n} \cup A_{k}\right)=m^{*}\left(A_{k}\right)
$$

b) Prove that for $A_{1} \supseteq A_{2} \geq \ldots$

$$
m^{*}\left(\bigcap_{j}^{\infty} A_{j}\right)=\lim _{j \rightarrow \infty} m^{*}\left(A_{i j}\right)^{2}
$$

PROOF by induction on j

$$
j=2: A_{1} \supseteq A_{2} \Leftrightarrow A_{1} \cap A_{2}=A_{2}
$$

Which means that

$$
m^{*}\left(U_{j}^{2} A_{j}\right)=\lim _{j \rightarrow 2} m^{*}\left(A_{j}\right)=m^{*}\left(A_{2}\right)
$$

Induction step: $k=n+1$
Assume that from 2 to n it holds that

$$
m^{*}\left(\bigcup_{j} A_{j}\right)=\lim _{j \rightarrow n} m^{*}\left(A_{j}\right)
$$

then by using our induction hypothesis on A_{k}, since $A_{n} \supseteq A_{n+1}=A_{k}$ we find that

$$
A_{n} \cap A_{k}=\bigcap_{j}^{n} A_{j} \cap A_{k}=\bigcap_{j}^{n} A_{j}=A_{k}
$$

and therefore

$$
m^{*}\left(\cap_{j}^{k} A_{j}\right)=\lim _{j \rightarrow k} m^{*}\left(A_{j}\right)
$$

Exercise 7.2.4
Prove that for any $q>1$, that the open box
$(0,1 / q)^{n}=\left\{\left(x_{1} \cdots x_{n}\right) \in R^{n}: 0<x_{j} ; 1_{q}\right.$ for $\left.0 \leq j \leq n\right\}$
and the closed box

$$
[0,1 / q]^{n}=\left\{\left(x_{1} \cdots x_{n}\right) \in \mathbb{R}^{n}: 0 \leq x_{j} \leq 1 / q \text { for } 0 \leq j \leq n\right\}
$$

both measure q^{-n}
PF: open box) Imagine aw open box $[0,1]^{n}$ with measure 1 . This box can be covered by q^{n} boxes of $\operatorname{size}\left(0, \frac{1}{q}\right)^{n}$ such that each box is translated by $\frac{n / q, n \in I_{0}^{+} \text {in each direction Since }}{}$ each box is disjoint and together are a subset of $[0.1]^{n}$ by monotonicity we set

$$
m^{*}\left([0,1]^{n}\right)=1 \geq q^{n} m^{*}\left(\left(0, \frac{1}{q}\right)^{n}\right) \Leftrightarrow m^{*}\left((0,1 / q)^{n}\right) \leq q^{-n} .
$$

Now if we loot at q^{n} translates of the open box $[0,1 / 9]^{n}$, since $U_{n}\left(\left[0, \frac{1}{9}\right]+\frac{n}{9}\right)=[0,1]^{n}$, by sub additivity we get

$$
m^{*}\left([0,1)^{n}\right)=1 \leq q^{n} m^{*}\left(\left[0, \frac{1}{q}\right]\right) \Leftrightarrow m^{*}([0,1 / q]) \geq q^{-n} .
$$

Exercise 7.4.1
show that if A is an open interval in R, then $(0, \infty)$ is measurable, i.e. $m^{*}(A)=m^{*}(A \cap(0, \infty))+m^{*}(A /(0, \infty))$ we note that $A /(0, \infty)=A \cap(-\infty, 0]$. As in the lectures, Lets define that $A_{+}=A \cap(0, \infty)$ and $A=A \cap(-\infty, 0)$ Since $A_{+} \cup A_{-}$, by sub add itivity

$$
m^{*}(A) \leq m^{*}\left(A_{+}\right)+m^{*}\left(A_{-}\right)=m^{*}(A \cap(0, \infty))+m^{*}(A /(0 . \infty))
$$

now to show \geq consider a collection $\left(B_{j}\right)_{j \in J}$ that covers A such that

$$
* \sum_{j} \operatorname{Vol}\left(B_{j}\right) \leq m^{*}(A)+\frac{\varepsilon_{1}}{2}
$$

Now let $B_{j}^{4}=B_{j} \cap(0, \infty)$ and $B_{j}^{-}=B_{j} \cap(\infty, 0]$
then $B_{j}=B_{j}^{+} \cup B_{j}^{-}$and using another ε

$$
\left.V_{0}\left(B_{j}\right)+\frac{\varepsilon}{2^{2+1}} \geq V_{01}\left(B_{j}^{+}\right)+V_{o i}\left(B_{j}^{-}\right) \geq V_{0} \right\rvert\,\left(B_{j}\right)
$$

Nav since $U_{j} B_{j}^{+} \geq A_{j}^{+}$and $U_{j} B_{j}^{-} \supseteq A_{j}^{-}$we find

$$
\begin{aligned}
m^{*}\left(A^{+}\right)+m^{*}\left(A^{-}\right) & \leq \sum_{j} \operatorname{Vol}\left(B_{j}^{+}\right)+\sum_{j} \operatorname{Vol}\left(B_{j}^{-}\right) \leq \sum_{j} \operatorname{Vol}\left(B_{j}\right)+\frac{\varepsilon}{2^{2+1}} \\
& \leq \sum_{j} \operatorname{Vol}\left(B_{j}\right)+\frac{\varepsilon}{2} \leq m^{*}(A)+2 \frac{\varepsilon}{2}=m^{*}(A)+\varepsilon
\end{aligned}
$$

and by letting $\varepsilon \rightarrow 0$ we find that

$$
m^{*}(A) \geq m^{\star}(A \cap(0, \infty))+m^{*}(A /(0, \infty))
$$

Exercise 7. 7.2
Prove that if A is an open box in R^{r}, and E is the half plane $E=\left\{\left(x_{1} \cdots x_{n}\right) \in R^{n}: x_{n}>0\right.$, then E is measurable.

Pt: Let $A_{+}=\left\{\left(x_{1}, \cdots x_{n}\right) \in R^{n}: x_{n}>0\right\}$,

$$
A_{-}=\left\{\left(x_{1} \cdots x_{n}\right) \in \mathbb{R}^{n}: x_{n} \leq 0\right\}
$$

we then wart to prove that

$$
m^{*}(A)=m^{*}\left(A \cap A_{+}\right)+m^{*}\left(A / A_{+}\right)=m^{*}\left(A_{+}\right)+m^{*}(A)
$$

we know that $m^{*}(A)=\operatorname{Vol}(A), m^{*}\left(A_{+}\right)=\operatorname{Vol}\left(A_{t}\right)$, and $m^{*}\left(A_{-}\right)=\operatorname{Vol}\left(A_{-}\right)$by definition of an open box.
We first show that $m^{*}(A) \geq m^{*}\left(A_{+}\right)+m^{*}\left(A_{-}\right)$:
for any $\varepsilon_{i}>0$, find a $\left\{B_{j}\right\}$ that covers A such that

$$
\begin{aligned}
m^{*}(A)+\varepsilon_{1} \geq \varepsilon_{i} \operatorname{Vol}\left(B_{i}\right) & =\sum_{i}\left(\operatorname{Vol}\left(B_{i}^{+}\right)+\operatorname{Vol}\left(B_{i}^{-}\right)\right) \\
& =\sum_{i} \operatorname{Vol}\left(B_{i}^{+}\right)+\sum_{i} \operatorname{Vol}\left(B_{i}^{-}\right) *
\end{aligned}
$$

Where $\left\{B_{i}^{+}\right\}$then covers A_{+}and $\left\{B_{i}^{-}\right\}$covers A, and where

$$
\begin{aligned}
& B_{i}^{+}=B_{i} \cap\left\{\left(x_{1} \cdots x_{w}\right): x_{n}>0\right\} \\
& B_{i}^{-}=B_{i} \cap\left\{\left(x_{i} \cdots x_{n}\right): x_{n} \leq 0\right\}
\end{aligned}
$$

tate another $\varepsilon_{2}>0$ and by $*$ and $*$

$$
\begin{aligned}
& m^{*}\left(A_{+}\right) \leq \sum_{i} m^{*}\left(B_{i}^{+}\right)=\sum_{i} \operatorname{Vol}\left(B_{i}^{+}\right) \\
& m^{*}\left(A_{-}\right) \leq \sum_{i} m^{*}\left(B_{i}^{-}\right)=\sum_{i} \operatorname{Vol}\left(B_{i}^{-}\right)
\end{aligned}
$$

$\Leftrightarrow m^{*}\left(A_{+}\right)+m\left(A_{-}\right) \leq m^{*}(A)+\varepsilon_{2}$ and when $\varepsilon_{1} \cdot \varepsilon_{2} \rightarrow 0$

$$
m^{*}(A)=m^{*}\left(A_{+}\right)+m^{*}\left(A_{-}\right)
$$

Exercise 7.4.3
Prod that the half space $\left\{\left(x_{1}, \cdots x_{N}\right) \in R^{n}: x_{N}>0\right\}$ is measurable.
Pf. This follows frow exercise 7.9.2. since for an open box A,

$$
m^{*}(A)=m^{*}\left(A_{+}\right)+m^{*}\left(A_{)}\right)
$$

with A_{+}being the half space and $A_{-}=A / A_{+}$

Exercise 7.4 .8
Prove Lemma 7.4.4
a) if E is measurable, then E^{c} is measurable

Pf: We have that

$$
\begin{aligned}
m^{*}(A) & =m^{*}(A \cap E)+m^{*}(A / E) \\
& =m^{*}\left(A / E^{c}\right)+m^{*}\left(A \cap E^{c}\right)
\end{aligned}
$$

b) If E is measurable and $x \in R^{n}$, then
$x+E$ is measurable and $m(x+E)=m(E)$
Pf: We know that outer measure is translation invariant,
i.e., $h^{*}(A+x)=m^{*}(A)$, we hare that

$$
\begin{aligned}
& m^{*}(A)=m^{*}(A \cap(x+E))+m^{*}(A /(E+x)) \\
\Leftrightarrow & m^{*}(A-x)=m^{*}((A-x) \cap E)+m^{*}((A-x) / E)
\end{aligned}
$$

and by translation in variance of $O M$, it holds
c) Prove that if E_{1} and E_{2} measurable then $E_{1} \cap E_{2}$ and $E_{1} \cup E_{2}$ measurable.

Pf fo $E_{1} \cap E_{2}$: wis $m^{*}(A)=m^{*}\left(A \cap E_{1} \cap E_{1}\right)+m^{*}\left(A /\left(E_{1} \cap E_{2}\right)\right)$ we start by noticing that

$$
\left(E_{1} \cap E_{2}\right)^{c}=\left(E_{1} \cap E_{2}^{c}\right) \cup\left(E_{1}^{c} \cap E_{2}\right) \cup\left(E_{1}^{c} \cap E_{2}^{c}\right)
$$

we define

$$
\begin{aligned}
& A_{++}=A \cap E_{1} \cap E_{2}, A_{+-}=A \cap E_{1} \cap E_{2}^{c}, \\
& A_{-+}=A \cap E_{1}^{c} \cap E_{2}, A_{-}=A \cap E_{1}^{c} \cap E_{2}^{c}
\end{aligned}
$$

and notice that $A_{++} \sqcup A_{-+} \sqcup A_{+-} \sqcup A_{-}$.
With the se definitions we now need to show

$$
m^{*}(A)=m^{*}\left(A_{++}\right)+m^{*}\left(A_{+-} \cup A_{-+} \cup A_{--}\right)
$$

Looking at $m^{x}(A)$ we can deconstruct it bc disjoint

$$
* m^{*}(A)=m^{*}\left(A_{t+}\right)+m^{*}\left(A_{+-}\right)+m^{*}\left(A_{-+}\right)+m^{*}\left(A_{-}\right)
$$

and by the same argument we have

$$
* m^{*}\left(A_{+-} \cup A_{-+} \cup A_{--}\right)+m^{*}\left(A_{+-}\right)+m^{*}\left(A_{-+}\right)+m^{*}\left(A_{--}\right)
$$

By * and $*$ we have that

$$
m^{*}(A)=m^{*}\left(A_{++}\right)+m^{*}\left(A_{+-} \cup A_{-+} \cup A_{--}\right)
$$

Pf for $E_{1} \cup E_{2}$: wis $m^{*}(A)=m^{*}\left(A_{4}+A_{+} \cup A_{-+}\right)+m^{*}\left(A_{--}\right)$ using the same argument as above, bo disjoint set

$$
\begin{aligned}
m^{*}(A) & =m^{*}\left(A_{t+}\right)+m^{*}\left(A_{+-}\right)+m^{*}\left(A_{-+}\right)+m^{*}\left(A_{-}\right) \\
& =m^{*}\left(A_{+}+A_{+-} \cup A_{-+}\right)+m^{*}\left(A_{--}\right)
\end{aligned}
$$

d) if $E_{1} \cdots E_{N}$ we measurable, then $\bigcup_{j=1}^{N} E_{j}$ and $\bigcap_{j=1}^{N} E_{j}$ are also measurable.
Pf by induction on N :
base case $N=2$: Both are true by Lemma ${ }^{7}$.4.4 0
Induction step: $K=N+1$
Assuming the proposition holds for N, we investigate $N+T$ We first want to show that

$$
m^{*}(A)=m^{*}\left(A \cap\left(\cap_{j=1}^{k} E_{j}\right)\right)+m^{*}\left(A /\left(\cap_{j=1}^{k} E_{j}\right)\right)
$$

we can write

$$
\begin{aligned}
\cap_{j=1}^{k} E_{j}=\cap_{j=1}^{N+1} E_{j} & =\left(\bigcap_{j=1}^{N} E_{j}\right) \cap E_{N+1}-L \text { et } E^{*}=\cap \cap_{j=1}^{N} E_{j} \\
& =E^{*} \cap E_{N+1}
\end{aligned}
$$

Then by using te same argument as in c), split into disjoint sets and derive that the intersection of E^{*} and E_{N+1} is measurable, $\Rightarrow \cap_{j=1}^{N+1} E_{j}$ is measurable

Now show

$$
m^{*}(A)=m^{\star}\left(A \cap\left(U_{j=1}^{k} E_{j}\right)\right)+m^{*}\left(A /\left(U_{j=1}^{k} E_{j}\right)\right)
$$

we again write

$$
U_{j=1}^{k} E_{j}=U_{j=1}^{N+1} E_{j}=\left(U_{j=1}^{N} E_{j}\right) U E_{N+1}=E^{*} U E_{N+1} \text { with } E^{*}=U_{j=1}^{N} E_{j}
$$

and since the union of two measurable sets are measurable, $U_{j=1}^{K} E_{j}$ is measurable
e) Prove that every open or closed box is measurable
Ppi using interval notation for all boxes in R^{n} for simplicity. We can write

$$
\begin{aligned}
{[a, b] } & =(-\infty, b] \cap[a, \infty) \\
& =(-\infty, 0]+b \cap a+[0, \infty)
\end{aligned}
$$

and we know that translations and unions are measurable by Lemma 7.4.4 b). d). Thus the lased box $[a, b]$ is measurable. for the open box the same argument is proper.

Note: Half spaces are measurable by
Lemma 7.4 .2
f) Prove that if $m^{\star}(E)=0$, then E is measurable:

Pf: we w.t.s $m^{*}(A)=m^{*}(A \cap E)+m^{*}(A / E)$
We tunow that
$m^{*}(A \cap E) \leq m^{*}(E)=0 \Leftrightarrow m^{*}(A \cap E)=0 \quad \operatorname{since} m^{*}$ is non-
since $A / E \subseteq A$, we have negative

$$
m^{*}(A) \geq m^{*}(A / E)=m^{*}(A \cap E)+m^{*}(A / E)
$$

Now, since $(A / E) \cup(A \cap E)=A$ by subadditivity we have

$$
m^{\star}(A) \leq m^{*}(A \cap E)+m^{*}(A / E)
$$

And thus E is measurable

