Exercise 721

(V) Prove that the empty set \emptyset has measure $m^*(\emptyset) = 0$!

 \square

D

all open sets cover Ø, including those with Zero volume, so

 $\inf \{ \{ [I_i] : (I_i)_{i \in J} \text{ covers } \emptyset \} = 0 \}$

- (Vi) Prove that 0 ≤ m*(Ω) ≤ too for all measurable
 set Ω:
 Since Vol(·) is a nonnegative function,
 the sum of volumes can never be megative
- (Vii) Proof that if A & B & R, then m*(A) & m*(B); Since A is a subset of B, B covers A. Thus we find that

 $m^{*}(A) = inf \{ \{ \{ \{ V_{0}\} (1_{j}^{A}) : (1_{j}^{A}) \} (1_{j}^{A}) \} (overs A \} \}$ $\leq inf \{ \{ \{ V_{0}\} (1_{j}^{B}) : (1_{j}^{B}) \} (1_{j}^{B}) \} (overs B \}$ $= m^{*}(B)$

(Viii) Prove: If $(A_j)_{j \in J}$ are a finite collection of subsets of R^n , then $m^*(\bigcup_{j \in J} A_j) \leq \sum_{j} m^*(A_j)$

We know that the collection is finite, and
that for all
$$A_j$$
 exists $(I_{k_j})_{k\in K}$ such that
 $m^*(A_j) = \xi V_0 (I_{k_j})$
for an $\xi \ge 0$, it holds that for all $j \in j$:
 $\xi V_0 ((I_{k_j})_{k\in K} \le m^*(A_j) + \frac{\xi}{101}$
Since A_j is covered by $(I_{k_j})_{k\in K}$ and $A \ge V_{j\in j} A_j$.
 $(I_{k_j})_{k\in K, j\in j}$ covers A and
 $m^*(A) \le \xi \xi V_0 (I_{k_j}) \le \xi(m^*(A_j) + \frac{\xi}{101}) = \xi m^*(A_j) + \xi$
And as $\xi \ge 0$ we find that
 $m^*(V_{j\in j}A_j) = m^*(A) \le \xi m^*(A_j)$
 $V_{\xi ing}$ the same argument as previously we
now have a countable set $(A_j)_{j\in j}$. for every
 A_j exists $(I_{k_j})_{k\in K}$ such that for every $\xi \ge 0$
 $\xi V_0 (I_{k_j}) \le m^*(A_j) + \frac{\xi}{2}$
 $k = 1 \text{ or } (A_j) + \frac{\xi}{2}$
 $k = 1 \text{ or } (A_{j,j}) + \frac{\xi}{2}$
 $k = 1 \text{ or } (A_{j,j}) + \frac{\xi}{2}$
and as j is compable, $\xi \frac{\xi}{2} : \xi \in A_s \in 0$, we find
 $m^*(V_{j\in j}A_j) = m^*(A) \le \xi m^*(A_j)$

(×)

(xiii)

Let
$$(I_{i})_{i \in j}$$
 be a collection that covers Ω .
If we translate Ω by x to Ω tx we find that
 $m^{\alpha}(\Omega + x) \leq \sum Vol(I_{j} + x)_{j \in j} = \sum Vol(I_{j})_{j \in j} + \sum Vol(\Omega)$
if we let $T = \Omega + x$ and let $(I_{j})_{j \in j} = m^{\alpha}(\Omega)$
if we let $T = \Omega + x$ and let $(I_{j})_{j \in j} = m^{\alpha}(\Omega)$
if we let $T = \Omega + x$ and let $(I_{j})_{j \in j} = m^{\alpha}(\Omega + x)$
And $(I_{j} - x)_{j \in j} = \cos \Omega$ and
 $m^{\alpha}(\Omega) \leq \sum Vol(I_{j} - x)_{j \in j} = \sum Vol(I_{j})_{j \in j} = m^{\alpha}(\Omega + x)$
And by this
 $m^{\alpha}(\Omega) = m^{\alpha}(\Omega + x)$
 $\varepsilon = Vol(-) Vol(1)$
 $(0, 1) \times (0, 1) = ((0, 0), (1, 1)) \in \mathbb{R}^{2}$
 $0 = \Omega$
 $(0, 1) \times N = ((6, 1), (0, 2), (0, 3), ...) \propto$ essentially
 T thought proces of the proof : We can cover $A \times B$ with
 $A_{j} \times B_{n}$
 $x = Let (A_{j})_{j \in j}$ be open bases covering B .
Then $SV_{0}(T_{j}) \leq m^{\alpha}(A) + \varepsilon$ and $EVol(B_{p,j}) < m^{\alpha}(B) + \varepsilon$ $E > 0$
Because of x and x we know that
 $V_{1,j}A_{j} \times B_{j}$ coves $A \times B$.
Thus by temma $7 \geq 5 (x)$

$$m_{ntn}^{*}(A \times B) = m_{ntn}^{*}(U A_{j} \times B_{k}) \leq \sum_{\substack{j,k \\ m \neq m}} m_{jk}^{*}(A_{j} \times B_{k}) = \sum_{\substack{j,k \\ j,k \\ m \neq m}} m_{m}^{*}(A_{j}) = \sum_{\substack{j,k \\ j,k \\ m \neq m}} m_{m}^{*}(A_{j}) \leq \sum_{\substack{j,k \\ j,k \\ m \neq m}} m_{m}^{*}(A_{j}) \leq \sum_{\substack{j,k \\ j,k \\ m \neq m}} m_{m}^{*}(A_{j}) \leq m_{m}^{*}(A_{j}) = m_{m}^{*}(B)$$

Fx or cise 9.2.3

a) ex for case of $A_{j} \leq A_{2}$. By monotonicity,

 $m_{m}^{*}(A \cup B) = m_{m}^{*}(B)$.

As $A \leq B$, $A \cup B = B$ and the result is trivia.

Prove that for $A_{j} \leq A_{2} \leq \dots$ we have $m_{m}^{*}(U_{j}A_{j}) = \lim_{j \neq B} m_{m}^{*}(A_{j})$

هن

PROOF by induction on i

$$j=2:A_{j} \in A_{z}$$
. As A_{z} covers A_{j} and $A_{j} \in A_{z} \iff A \lor A_{z} \in A_{z}$
we have that
 $m^{*}(A_{1} \lor A_{z}) = m^{*}(A_{z})$
Induction step - $k = n + 1$
Assume that up until $n_{j} \And (\bigcup_{j=1}^{n} A_{j}) = m^{*}(A_{n})$.
then by using our induction hypothesis we
find that since $A_{n} \subseteq A_{n} \subseteq A_{n} \lor A_{n} = A_{n}$, so
 $m^{*}(\bigcup_{j=1}^{n} A_{j}) = m^{*}(A_{n} \lor A_{n}) = m^{*}(A_{n})$.

by Prove that for
$$A_1 \ge A_2 \ge \dots$$

 $m^*(\bigcap_{i}^{n} A_j) \ge \lim_{s \ge \infty} m^*(A_{ij})$
PROOF by induction on j
 $j \ge 2 : A_1 \ge A_2 \ge A \cap A_2 = A_2$
Which means that
 $m^*(\bigcup_{j}^{n} A_j) = \lim_{s \ge \infty} m^*(A_j) \ge m^*(A_2)$
Induction step: $k \ge n+1$
Assume that from 2 to n it holds that
 $m^*(\bigcup_{j}^{n} A_j) \ge \lim_{s \ge \infty} m^*(A_j)$
then by using our induction hypothesis on A_k .
Since $A_n \ge A_{n+1} = A_k$ we find that
 $A_n \cap A_k = \bigcap_{j}^{n} A_j \cap A_k = \bigcap_{k=1}^{n} A_k = A_k$

Enercise 7.2.4

Prove that for any
$$q > 1$$
, that the open box
 $(0, 1/q)^{n} = \mathcal{E}(X_1 \cdots X_n) \in \mathbb{R}^n : 0 < X_j \subset 1/q$ for $0 \le j \le n3$
and the closed box
 $[0, 1/q]^{n} = \mathcal{E}(X_1 \cdots X_n) \in \mathbb{R}^n : 0 \le X_j \le 1/q$ for $0 \le j \le n3$
both measure q^{-n}

PF: open box; Imagine an open box [0,1]" with measure 7. This Lox can be covered by 9 boxes of size (0, 1/4)" such that each box is translated by Mg n E Zo in each direction Since each box is disjoint and tagether are a subset of [0, 1]" by monotonicity we get $m^{*}([0,1]^{n}) = 1 \ge q^{n} m^{*}([0, \frac{1}{q})^{n}) = m^{*}([0, \frac{1}{q})^{n}) \le q^{-n} +$ Non it we look at qn translates of the open box $[0, \frac{1}{q}]^n$ since $U_n([0, \frac{1}{q}] + \frac{n}{q}) \sim [0, 1]^n$, by sub additivity we get $m^{*}([0,1]^{n}) = 1 \leq q^{n} m^{*}([0,\frac{1}{q}]) \Leftrightarrow M^{*}([0,\frac{1}{q}]) \geq q^{n}$

Exercise 7.9.1

Show that if A is an open interval in R, then
(U, d) is measurable, i.e.
$$m^{k}(A) = m^{*}(A \cap (0, \infty)) + m^{*}(A/(0, \infty))$$

we note that $A/(0, \infty) = A \cap (-\infty, 0]$. As in the lecturus,
Lets define that $A_{+} = A \cap (0, \infty)$ and $A = A \cap (-\infty, 0]$
Since $A_{+} \sqcup A_{-}$, by sub additivity
 $m^{*}(A) \leq m^{*}(A_{+}) + m^{*}(A_{-}) \leq m^{*}(A \cap (0, \infty)) + m^{*}(A/(0, \infty))$
now to show \geq consider a collection $(B_{j})_{j \in J}$ that
covers A such that
 $\approx \xi$ vol $(B_{-}) \leq m^{*}(A) + \xi$,
Now let $B_{j}^{+} = B_{j} \cap (0, 4)$ and $B_{j}^{-} \equiv B_{j} \cap (\infty, 0]$
then $B_{j} = B_{j}^{+} \cup B_{j}^{+}$ and using another ξ
 $Vol(B_{j}) + \frac{\epsilon}{2^{j+1}} \geq Vol(B_{j}^{+}) + Vol(B_{j}^{-}) \geq Vol(B_{j})$
New since $\bigcup B_{j}^{+} \geq A_{j}^{+}$ and $\bigcup B_{j}^{-} \geq Vol(B_{j}) + \frac{\epsilon}{2^{j+1}}$
 $\leq \xi Vol(B_{j}) + \frac{\epsilon}{2} \leq m^{*}(A) + \epsilon \frac{\epsilon}{2}$
and by letting $\xi \Rightarrow 0$ we find that
 $m^{*}(A) \geq m^{*}(A \cap (0, \infty)) + m^{*}(A/(0, \infty))$

Exercise 7.4.2 Prove that if A is an open box in \mathbb{R}^n and \mathbb{G} is the half plane $\mathbb{F} = \mathcal{E}(X_1 \cdots X_n) \in \mathbb{R}^n : X_n > 0$, then \mathbb{F} is measurable.

Pf: Let
$$A_{+} = \xi(x_{1} \cdots x_{n}) \in \mathbb{R}^{n} : x_{n} > 0 \ge A_{-} = \xi(x_{1} \cdots x_{n}) \in \mathbb{R}^{n} : x_{n} \le 0 \ge 0$$

We then wort to prove that
 $m^{\infty}(A) = m^{\ast}(A \cap A_{+}) + m^{\ast}(A / A_{+}) = m^{\ast}(A_{+}) + m^{\ast}(A_{-})$
we know that $m^{\ast}(A) = Vol(A)$, $m^{\ast}(A_{+}) = Vol(A_{+})$, and
 $m^{\ast}(A_{-}) = Vol(A_{-})$ by definition of an open box.
We first show that $m^{\ast}(A) \ge m^{\ast}(A_{+}) + m^{\ast}(A_{-})$:
for any $\varepsilon_{+} > 0$, find a $\xi B_{3} \ge m^{\ast}(A_{+}) + m^{\ast}(A_{-})$:
 $m^{\ast}(A) + \varepsilon_{+} \ge Vol(B_{+}) = \xi(Vol(B_{+}^{+}) + Vol(B_{-}^{-}))$
 $= \xi Vol(B_{+}^{+}) + \xi Vol(B_{-}^{-}) \ast$

Where
$$\{B_i^{\dagger}\}$$
 then covers A_i and $\{B_i^{\dagger}\}$ covers A_i and where
 $B_i^{\dagger} = B_i \cap \{(X_1 \cdots X_m) : X_m > G\}$
 $B_i^{\dagger} = B_i \cap \{(X_1 \cdots X_m) : X_m \leq G\}$
 $fake$ another $\xi_2 > 0$ and by $*$ and $*$
 $m^*(A_i) \leq \xi m^*(B_i^{\dagger}) = \xi \text{ Vol } (B_i^{\dagger})$
 $m^*(A_i) \leq \xi m^*(B_i^{\dagger}) = \xi \text{ Vol } (B_i^{\dagger})$
 $m^*(A_i) \leq \xi m^*(B_i^{\dagger}) = \xi \text{ Vol } (B_i^{\dagger})$
 $m^*(A_i) \leq m^*(A_i) + m(A_i) \leq m^*(A_i) + \xi_2 \text{ and when } \xi_1, \xi_2 \neq 0$
 $m^*(A) = m^*(A_i) + m^*(A_i)$

Exercise 7.4.3
Prove that the half space
$$\{(X_1 - X_n) \in \mathbb{R}^n : X_n > 0\}$$

is measurable.
Pf. This follows from exercise 7.4.2 since for an
open box A ,
 $m^*(A) = m^*(A_1) + m^*(A)$
with A_1 being the half space and $A_1 = A/A_1$
Exercise 7.4.4
 a_1 if E is measurable, then E^C is measurable
Pf: We have that
 $m^*(A) = m^*(A \cap E) + m^*(A/E)$
 $= m^*(A \cap E) + m^*(A \cap E^C)$
b) If E is measurable and $x \in \mathbb{R}^n$, then
 $x + E$ is measurable and $m(x + E) = m(E)$
Pf: We have that $m(x + E) = m(E)$
Pf: We have that $m(x + E) = m(E)$
 $pf: We have that $m(x + E) = m(E)$
 $pf: We have that $m(x + E) = m(E)$
 $pf: We have that $m(x + E) = m(E)$
 $pf: We have that outer measure is translation invariant, i.e., $m^*(A \cap x + E) + m^*(A/(E + x))$
 $e^{m^*(A - x) - m^*((A - x) \cap E)} + m^*(A/(E + x))$
 $e^{m^*(A - x) - m^*((A - x) \cap E)} + m^*(A - x)/E)$
and by translation in variance of $O[M]$, it holds $\square$$$$$

c Prove that if
$$E_1$$
 and E_2 measurable then
 $E_1 \land E_2$ and $E_1 \lor E_2$ measurable.

Pf for
$$E_1 \wedge E_2$$
: Wts $m^*(A) = m^*(A \cap E_1 \wedge E_1) + m^*(A / (E_1 \cap E_2))$
we start by noticing that
 $(E_1 \cap E_2)^c = (E_1 \wedge E_2^c) \cup (E_1^c \cap E_2) \cup (E_1^c \cap E_2^c)$
we define
 $A_{11} = A \cap E_1 \cap E_2, A_{1-} = A \cap E_1 \cap E_2^c$
and notice that $A_{1+} \sqcup A_{1+} \sqcup A_{1-} \sqcup A_{2-}$
With these definitions we now need to show
 $m^*(A) = m^*(A_{1+}) + m^*(A_{2-} \cup A_{2-})$
Looking at $m^*(A)$ we can deconstruct if be disjoint
* $m^*(A) = m^*(A_{1+}) + m^*(A_{1-}) + m^*(A_{2-}) + m^*(A_{2-})$
and by the same argument we have
 $m^*(A) = m^*(A_{1+}) + m^*(A_{1-}) + m^*(A_{2-}) + m$

$$= m^{*}(A_{q+}VA_{t-}VA_{-+}) + m^{*}(A_{--})$$

dj if
$$E_{1} = E_{N}$$
 we measurable, then $\bigcup_{j=1}^{N} E_{j}$ and $\bigcap_{j=1}^{N} E_{j}$
are also measurable.
Pt by induction on N:
base case $N = 2$: Both are true by Lemma 7.9.4 cj
Induction step: $K = N + 1$
Assuming the proposition holds for N. We investigate N+1
We first want to show that
 $m^{*}(A) = m^{*}(A \cap (\bigwedge_{j=1}^{K} E_{j})) + m^{*}(A/(\bigcap_{j=1}^{K} E_{j}))$
we can write
 $= E^{*} \cap E_{N+1}$
Then by using the same argument as in c), split
into disjoint cets and derive that the intersection
of E^{*} and E_{N+1} is measurable. $\Rightarrow \bigcap_{j=1}^{N+1} E_{j}$ is measurable.
Now show
 $m^{*}(A) = m^{*}(A \cap (\bigcup_{j=1}^{K} E_{j})) + m^{*}(A/(U_{j=1}^{K} E_{j}))$
we again write
 $\bigcup_{j=1}^{K} E_{j} = (\bigcup_{j=1}^{N} E_{j})) + m^{*}(A/(U_{j=1}^{K} E_{j}))$
we again write
 $\bigcup_{j=1}^{K} E_{j} = (\bigcup_{j=1}^{N} E_{j}) \cup U_{N+1} = E^{*} \cup U_{N+1}^{N}$ with $E^{*} = \bigcup_{j=1}^{N} E_{j}$.

e) Prove that every open or closed box is measurable

PF; Using interval notation for all boxes in R for simplicity. We can write

 $[a,b] = (-\infty,b] \wedge [a,\infty)$

= (- ~, 0] + b (~ + [°, ∞)

and we know that translations and unions are measurable by Lemma 7.4.4 b, d, Thus the closed box [a, b] is measurable. For the open box the same arsument is proper. Note: Hate spaces are measurable by

Lemma 7.4.2

 \square

f) Prove that if
$$m^{*}(E) = 0$$
, then E is measurable:
PF: We w.t.s. $m^{*}(A) = m^{*}(A \cap E) + m^{*}(A \cap E)$.
We know that
 $m^{*}(A \cap E) \leq m^{*}(E) = 0 = m^{*}(A \cap E) = 0$ since m^{*} is non-
since $A / E \subseteq A$, we have
 $m^{*}(A) \geq m^{*}(A / E) = m^{*}(A \cap E) + m^{*}(A / E)$
Now, since $(A / E) \cup (A \cap E) = A$, by subadditivity we have
 $m^{*}(A) \leq m^{*}(A \cap E) + m^{*}(A / E)$
And thus E is measurable