1 w 3

Ex 3: We with that a line yox has measure Zero. Pf: Consider the line in the plot of Y=X Let L= {(X, y): y=X3. The linear map $A = \begin{bmatrix} \cos\left(\frac{\pi}{9}\right) & -\sin\left(\frac{\pi}{9}\right) \\ \sin\left(\frac{\pi}{9}\right) & \cos\left(\frac{\pi}{9}\right) \end{bmatrix}$ y = x can be used with Pugh 6.3.9 to take L to L= { (x,y); y=03 by rotating it by the 7:0 We know by Pw3h 6.3.9 that m(L) = m(L')And we have previously seen that we can cover L by countably many boxes like this: for $m \in D$ o let $B_i = (-2^i, 2^i) \times (-\frac{\epsilon}{2^{2i+2}}, \frac{\epsilon}{2^{2i+2}})$ Sa ser v_i at $|B_i| = |2 \cdot 2| \cdot |2 - \frac{\varepsilon}{2^{2i+2}}| = 2^{i+1} - \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{2^i}$ and since (1/B) covers L $m(L) \leq m(\tilde{U}(B_1)) \leq \epsilon$ (Sub-additivity) and as $\varepsilon \neq 0$ we find that $m(L) = 0 \iff m(L) = 0$

Ex 6

Thm 16

Using Push lemma 24, we can Separate E into a countable union of disjoint open clubes and a zero set, Let these open cubes be B. then E= LIB; UZ. For each cube B. We have a Box surrounding it called Ai, decreasing and open sequences Uni Vni and increasing and closed sequence K, = A, V, Since each F= UK, is an Fr-set contained in B. and each G:= A Uni is a Gs-set containing B Since Let F= U, F, and G = U, G. These are for and Go sets and Thus FCECG further more m(GIF)=0 as $m(U,G, V, F_{i}) = \sum m(G, V, F_{i}) = 0$ disjoint mess and additivity

 \square

The other way holds by the proof in Pugh

Thus 21 - unbounded and n-drimonsional case
The n-drimensional case holds by the same proof es
Push if
$$A \subset I^n$$
, $B \subset I^h$ when $[I^h$ and I^h are unit boxes
Assume now that either A or B (or both) are unbounded.
Let the unbounded set be A . A can be written as a
countable union of disjoint open boxes plus a zero set:
 $A = U, \overline{A}, V Z$.
If B is inbounded, let $B = U, \overline{B}, V Z$.
We can now describe $m(A) = \sum_{i} m(\overline{R_i}) + m(z) = \sum_{i} m(\overline{A_i})$
and $m(B) = \sum_{i} m(\overline{B_i})$. Inrthe mare, $A \times B = U_i \sqcup_i \overline{A}, \times \overline{B_i}$.
We know that $m(\overline{A}, \times \overline{B_i}) = m(\overline{A}, M(\overline{B}))$, so
 $m(U, \sqcup_i (\overline{A}, \times \overline{B})) = \sum_{i} \sum_{i} m(\overline{A_i}) m(\overline{B_i}) = \sum_{i} m(\overline{A_i}) \sum_{i} \sum_{i} m(\overline{A_i}) m(\overline{B_i}) = \sum_{i} m($

Ex 3 !

Prove
$$J^*(A) = J^*(\overline{A}) = m(A)$$
.
We know that for a bounded set $A \subset R$:
 $J^*(A) = \inf\{\{\sum_{i=1}^{n} | I_i \} : I_i \text{ open interval and } A \subset \bigcup I_i \}$
as - means the closure of a set I_i are closed intervals
Pf: $J^*(A) \leq J^*(\overline{A})$
This holds by monotonicity since $A \subset \overline{A}$.
 $J^*(A) \geq J^*(\overline{A})$
for each $\varepsilon > 0$ we can cover $\overline{I}_i = [a, b]$ by a
 $\overline{I}_i = (a \cdot \varepsilon, b + \varepsilon)$. Thus
 $U \overline{I}_i \subset U \widetilde{I}_i$ and $J^*(\overline{A}) \leq J^*(\overline{A})$ for $\overline{A} \subset U_j \widetilde{I}_j$.
Let ting $\varepsilon \to 0$ we get $J^*(\overline{A}) = J^*(A)$, so
 $J^*(A) \geq J^*(\overline{A})$.
By Property S of Push ex 11. if A is compact,
then $J^*(A) = m(A)$. A is bounded, so \overline{A} is compact and

 $J^{*}(\bar{A}) = m(\bar{A})$, Thus $J^{*}(A) = J^{*}(\bar{A}) = m(\bar{A})$

 \Box