Mw 3
Ex 3: we wits. that a line $y=x$ has measure Zero. Pf: Consider the live in the plot of $y=x$
Let $L=\{(x, y): y=x\}$. The linear map

$$
A=\left[\begin{array}{cc}
\cos \left(\frac{\pi}{4}\right) & -\sin \left(\frac{\pi}{4}\right) \\
\sin \left(\frac{\pi}{4}\right) & \cos \left(\frac{\pi}{4}\right)^{4}
\end{array}\right]
$$

can be used with Pugh 6.3.9 to take $L$ to $L^{\prime}=\{(x, y), y=0\}$ by rotating it by $\frac{\pi}{4}$.
We know by Pugh 6.3.9 that

$$
m(L)=m\left(L^{\prime}\right)
$$

And we have previously seen that we can cover I' by countably many boxes like this:
for an $\varepsilon>0$ let $B_{i}=\left(-2^{i}, 2^{i}\right) \times\left(-\frac{\varepsilon}{2^{2 i+2}}, \frac{\varepsilon}{2^{2 i+2}}\right)$. Sa ser vi ot

$$
\left|B_{i}\right|=\left|2 \cdot 2^{i}\right| \cdot\left|2 \frac{\varepsilon}{2^{2 i+2}}\right|=2^{i+1} \frac{\varepsilon}{2^{2 n+1}}=\frac{\varepsilon}{2^{i}}
$$

and since $\bigcup_{i}^{\infty}\left(B_{i}\right)$ covers $L^{\prime}$,

$$
m\left(L^{\prime}\right) \leq m\left(U_{i}^{i}\left|B_{i}\right|\right) \leq \varepsilon \quad \text { (Sub-additivity) }
$$

and as $\varepsilon \rightarrow 0$ we find that $m\left(L^{\prime}\right)=0 \Leftrightarrow m(L)=0$

Ex 6
Thur 16
Using Pugh lemma 28, we can Separate E into a countable union of disjoint open cubes and a zero set, Lot these open cubes be $B_{i}$, then $E=\cup_{i} B_{i} \cup$ ? For each cube $B_{i}$. We have a Box surrounding it called $A_{i}$, decreasing and open sequences $U_{n i} V_{n,}$ and increasing and closed sequence $K_{n i}=A_{i} \backslash V_{n i}$. Since each $F_{i}=U_{n} K_{n i}$ is an $F_{\sigma}$-set contained in $B_{i}$ and each $G_{i}=\cap_{n} V_{n i}$ is a $G_{g}$-set containing $B_{i}$.

Since Let $F=U_{i} F_{i}$ and $G_{i}=U_{i} G_{i}$. There are $F_{\sigma}$ and $G_{\delta}$ sets and Thus $F C E \subset G$ furthermore $m(G \backslash F)=0$ as $m\left(U_{i} G_{i} \backslash U_{i} f_{i}\right)=\sum_{i} m\left(G_{i} \backslash F_{i}\right)=0$ disjoint ness and additivity The other way holds by the proof in Pugh.

Thu 21 -unbounded and n-dimensional case
The $n$-dimensional case holds by the sump proof as Push if $A \subset I^{n}, B \subset I^{n}$ whee $I^{n}$ and $I^{k}$ are unit boxes Assume now that either $A$ or $B$ (or both) are unbounded. Let the unbounded set be $A$. $A$ can be written as a countable union of disjoint open boxes plus a zero set:

$$
A=U_{i} \bar{A}_{i} \cup Z_{.}
$$

If $B$ is mounded, let $B=U_{i} \bar{B}_{i} \cup z^{\prime}$
We can now describe $m(A)=\sum_{j} m\left(\bar{A}_{j}\right)+m(2)=\sum_{j} m\left(\bar{A}_{j}\right)$ and $m(B)=\sum_{i} m\left(\bar{B}_{i}\right)$. Turthe ware, $A \times B=U_{j} \sqcup_{i} \bar{A}_{j} \times \bar{B}_{i}$ we know that $m\left(\bar{A}_{j} \times \bar{B}_{i}\right)=m\left(\bar{A}_{j}\right) m\left(\bar{B}_{i}\right)$, so

$$
m\left(U_{j} U_{i}\left(\bar{A}_{j} \times \bar{B}_{i}\right)\right)=\sum_{i} \sum_{j} m\left(\bar{A}_{j}\right) m\left(\bar{B}_{i}\right)=\sum_{j} m\left(\bar{A}_{i}\right) \sum_{i} m\left(B_{i}\right)=m(A) m(B)
$$

So $m(A \times B)=m(A) m(B)$

Ex 3:
Prove $J^{*}(A)=J^{*}(\bar{A})=m(A)$.
We know that for a bounded set $A \subset R$ : $J^{*}(A)=\inf \left\{\sum_{i=1}^{n}\left|I_{i}\right|: I_{i}\right.$ open interval| and $\left.A \subset U_{i=1}^{n} I_{i}\right\}$ as - means the closure of a set, $I_{\text {; }}$ are closed intervals.
Pf: $\quad J^{*}(A) \leq J^{*}(\bar{A})$
This holds by monotonicity $\sin c e \quad A C \bar{A}$.

$$
J^{x}(A) \geq J^{A}(\bar{A})
$$

for each $\varepsilon>0$ we can cover $\bar{I}_{i}=[a, b]$ by $a$ $\tilde{I}_{i}=(a-\varepsilon, b+\varepsilon)$. Thus
$U \bar{I}_{i} \subset \cup \tilde{I}_{i}$ and $J^{*}(\bar{A}) \leq J^{*}(\tilde{A})$ for $\tilde{A} \subset U_{j} \tilde{I}_{j}$
letting $\varepsilon \rightarrow 0$ we get $J^{*}(\tilde{A})=J^{*}(A)$, so

$$
J^{\star}(A) \geq J^{\star}(\bar{A})
$$

Thus $J^{*}(A)=J^{*}(\bar{A})$

By Property 5 of Pugh ex 11. if $A$ is compact, then $J^{*}(A)=m(A)$. $A$ is bounded, so $\bar{A}$ is compact and $\partial^{*}(\bar{A})=m(\bar{A})$, $T$ hus $J^{*}(A)=J^{*}(\bar{A})=m(\bar{A})$

