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1 Introduction
Lebesgue measure theory, named after French mathematician Henri Lebesgue,
defines integration via measurability of sets and functions in Rn. This is
needed, as Riemann integration which, we learn of in high school and de-
velop further in college doesn’t suffice when working with more complicated
functions and subsets of Rn. In this Essay I cover Riemann integration
quickly, followed by an example of why this theory does not suffice when in-
tegrating some functions. Following this I cover the main points of Lebesgue
measure theory used to develop the Lebesgue integral, and finally I use this
theory to integrate one such function that Riemann integration is unable to
solve.

2 Riemann Integration
While we have already, in homework 6, covered a small comparison between
Riemann integration and Lebesgue integration, we find it more interesting
to cover Riemann integration a bit more in depth, using [Pugh, 2015] as a
reference, since this ties in nicely with his definition of Lebesgue integra-
tion.

Take a function f : [a, b]→ R. The integral of f is the area of the undergraph
of f , U(f), given by ∫ b

a

f(x) dx = area(U),

where
U = {(x, y) : a ≤ x ≤ b, 0 ≤ y < f(x)} .

Using Riemann integration, this area is computed by partitioning the domain
of the function, [a, b], into two sets of points P, T where P = {x0, ..., xn} and
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T = {t1, ..., tn} such that

a = x0 ≤ t1 ≤ x1 ≤ t2 ≤ ... ≤ tn ≤ xn = b

This interlacing of points ti, xi along with the definition of ∆xi = xi − xi−1

is used to define the Riemann sum as

R(f, P, T ) =
n∑
i=1

f(ti)∆xi

This can be interpreted as every point ti being surrounded by two xi’s such
that xi−1 ≤ ti ≤ xi. Pugh defines the mesh of P as the longest existing
interval [xi−1, xi], and thus the Riemann integral is defined as∫ b

a

f(x) dx = I = lim
mesh(P )→0

R(f, Ph, T )

One note on the Riemann integral is that if P (h) and T are defined such that
for all intervals [xi−1, xi], their length are all equal to h, we can define the
Riemann integral as ∫ b

a

f(x) dx = I = lim
h→0

R(f, P (h), T )

I note this, because this is how I initially learned the definition of the Riemann
integral, and the notation relates it nicely to the definition of the ordinary
derivative of f .

3 Why is this not enough?
Note that in the definition of the Riemann integral we define the domain of
f to be closed and bounded, i.e., f : [a, b]→ R.

Consider example 4.1 from [Bernard R Gelbaum, 2003]. This famous con-
struction, called the Dirichlet function, lets f : [0, 1]→ {0, 1} be the charac-
teristic function of the rational numbers, i.e.

f(x) =

{
0 x ∈ Q
1 x /∈ Q

2



In order to analyse if the integral of this function exists we have to look at
integrability, which can be defined as follows. Let

L(f, P ) =
n∑
i=1

mi∆xi mi = inf {f(t), xi−1 ≤ t ≤ xi}

U(f, P ) =
n∑
i=1

Mi∆xi Mi = sup {f(t), xi−1 ≤ t ≤ xi} ,

And note that
L(f, P ) ≤ R(f, P, T ) ≤ U(f, P ).

The upper and lower integrals of f are defined as

I = sup
P
L(f, P ) Ī = inf

P
U(f, P )

over all possible partitions of [a, b] into P . By Pugh theorem 3.20 if f is
Riemann Integrable, then I = I = Ī.

Looking back at the Dirichlet function, due to its definition we find that

I = 0 nad Ī = 1.

As Q is dense in R, meaning that between every real number exists both a
rational number and an irrational number. As such, for any partition of [a, b]
we can find both a rational and an irrational number in every interval, the
lower integral will always be 0 and the upper integral will always be 1.

By theorem 3.20 this function thus isn’t integrable. This is an example of an
issue with Riemann integration: While it works well on functions we often
meet, it fails to generalise to more complicated domains and functions we
want to analyse.

4 Outer Measure and Measurable Sets
The following chapters are written based on Chapter 6 of Real Mathematical
Analysis by Pugh.

We can intuitively define the length of an interval (a, b) to be b−a, but with
more complicated sets, like the Cantor set, how is this done? We define the
outer measure of a set A ⊂ Rn by

m∗(A) = inf

{
∞∑
k

|Bk| : {Bk} is a collection of open boxes that covers A

}
,
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where an open box is defined as the cartesian product of open intervals:
B =

∏
i(ai, bi). Along with this definition follows the axioms of outer mea-

sures:

(a) The outer measure of the empty set is 0.

(b) if A ⊂ B, then m∗(a) ≤ m∗(b) (monotonicity)

(c) if A = ∪∞n=1An, then m∗(A) ≤
∑∞

i=1m
∗(An) (countable sub-additivity)

(d) the outer measure of a closed, open, or half open half closed box B ⊂ Rn

is m∗(B) =
∏n

i (bi − ai).

We define measurability of a set A by the Carathéodory criterion: A set
A ⊆ Rn is measurable if for all E ⊆ Rn, we have

m∗(A) = m∗(A ∩ E) +m∗(A ∪ E) = m∗(A ∩ E) +m∗(A ∩ Ec)

If this holds, we say m(A) = m∗(A) is the measure of A. At face value
this definition might seem gratuitous since most sets we think of fulfils this
requirement, but in the following example we show that measurability is a
nontrivial condition (example 8.11 from [Bernard R Gelbaum, 2003])

5 A counter example to measurability
In a simplified view of abstract measure theory, let S be a set. Then 2S is
the set of all subsets of S. A subset MS ⊂ 2S is called a σ-algebra if

• ∅ ∈MS, S ∈MS

• For all A1, A2, ... ∈MS, d∞i Ai ∈MS, e∞i Ai ∈MS, and Aci ∈MS.

A measure function µ on a measurable space (S,MS) is a function such
that

• µ : Ms → [0,+∞]

• µ(∅)

• For Ai ∈MS, countable addition holds

A measurable space with an associated measure function (S,Ms, µ) is called
a measure space. The Lebesgue measure function was described earlier as
m∗(A), and when m(A) exists, A is Lebesgue measurable.

Let µ be a measure function define for all the sets A of real numbers, let it
be finite for bounded sets, and let it be such that µ(x+A) = µ(A) for every
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x ∈ R. Let the equivalence relation ∼ defined on (0, 1]× (0, 1] be such that
x ∼ y if and only if x − y ∈ Q. This binary equivalence relation can be
partitioned into many disjoint equivalence classes C. An equivalence class
on an element a is the set Sa = {s ∈ S : x ∼ a}. Applying the axiom of
choice on these equivalence classes produces a set B that has the following
properties: no two points of B are equivalent to each other, and every point
x on (0, 1] is equivalent to some member of B.

We can define for each r ∈ (0, 1] an operation on the set B, called the
translation modulo 1 by

(r + B)(mod 1) = {(r + B) ∩ (0, 1]} ∪ {((r − 1) + B ∩ (0, 1]}

Claim: B is not measurable.

Proof: The two properties of the set B implies that (1) for any two sets
(r + B)(mod 1) and (s + B)(mod 1) for distinct rational numbers r, s ∈ Q
are disjoint, and (2) that every real number x ∈ (0, 1] is a member of a set
(r + B)(mod 1) for some rational number r ∈ Q∩(0, 1]. Because of this, we
can express the interval (0, 1] as a union of the pair-wise disjoint countable
collection {(r + B)(mod 1)}, where r ∈ Q∩(0, 1]. By the following:

µ ((r + B)(mod 1)) = µ ((r + B) ∩ (0, 1]) + µ (((r − 1) + B ∩ (0, 1])

= µ ((r + B) ∩ (0, 1]) + µ ((r + B) ∩ (1, 2])

= µ ((r + B) ∩ (0, 2])

= µ (r + B)

= µ(B),

showing that all sets obtained from translation modulo 1 on B have the same
measure as B. We note that the Lebesgue measure function has positive finite
measure for all bounded intervals. Assuming that this holds for our measure
function we find that

µ((0, 1]) =
∑

r∈Q∩(0,1]

µ((r + B)(mod 1)) =
∑

r∈Q∩(0,1]

µ(B) = +∞.

As ∈ Q∩(0, 1] is countably infinite and each µ(B) must be positive. This
cannot hold since (0, 1] is bounded, and therefore µ(B) = 0. Thus the set B
is not Lebesgue measurable.
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6 Properties of measurability
Apart from the properties inherited from outer measures, the following is
a list of properties that hold for the Lebesgue measure of a subset A ⊂
Rn:

(a) If A is measurable, then Ac is measurable.

(b) If A is measurable, then A+ x is measurable for an x ∈ Rn.

(c) If A1, A2 measurable, then A1 ∪ A2 and A1 ∩ A2 are measurable.

(d) For a finite collection of disjoint setsA1, A2, ..., An,m(tni Ai) =
∑n

i m(Ai)
(finite additivity).

(e) For a countable collection of disjoint setsA1, A2, ...,m(t∞i Ai) =
∑∞

i m(Ai)
(countable additivity).

(f) If m∗(A) = 0, then A is measurable.

Before describing Lebesgue Integrals we quickly cover some lemmas of Lebesgue
measurability, as Lebesgue measurability is tied very strongly to Lebesgue
integration. These lemmas are the following:

(a) If A,B are measurable and A ⊂ B, then m(B \ A) = m(B)−m(A)

(b) All open sets in Rn are countable unions of open boxes and thus mea-
surable.

A subset E ⊂ Rn is a zero set or a nullset if m(E) = 0. For nullsets the
following hold:

(a) ∀A ∈ Rn, m(A ∪ E) = m(A) and m(A ∩ Ec) = m(A)

(b) If Ē ⊂ E, then Ē is a nullset.

(c) If m(E) = 0, then E is measurable.

(d) F ⊂ Rn is measurable if and only if F ∪ E is measurable

This leads to the following two definitions: If S is a topological space, and
u1, u2, ... is a countable collection of open sets, then ∩∞i ui is called af Gδ-set.
If f1, f2, ... is a countable collection of closed sets, then ∪∞i fi is called a Fσ-set.
Lebesgue measurability can then be defined such that a set A is measurable
if and only if there exists an Fσ-set of closed subsets F and a Gδ-set of open
subsets we have G where F ⊂ A ⊂ G we have m(F \G) = 0.

The two final theorems covered are the Product theorem and the slice theo-
rem. As can be seen, these two theorems work as opposites of each other:
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The product theorem states that if A ⊂ Rn and B ⊂ Rk are measurable, then
A×B ⊂ Rn×Rk is measurable and m(A×B) = m(A)m(B). A specific case
of this theorem is that {x} × R ⊂ R2 has measure 0 as an element in R has
measure 0.

The slice theorem says that for a set A ⊂ Rn×Rk, m(A) = 0 if for almost
every slice Ax =

{
y ∈ Rk : (x, y) ∈ Rn×Rk

}
has measure zero, i.e., m(Ax) =

0. Here, almost every means that this holds for all sets except for a small
subset, which is a nullset.

7 Lebesgue Integrability
Let f : R → [0,∞). We define it’s undergraph, like with the Riemann
integral, as

U(f) = {(x, y) : 0 ≤ y < f(x)}

Following Pugh’s definition of measurability and integrability we say that f is
a measurable if the undergraph U(f) is measurable. If so, then we say∫

f = m(U(f))

if
∫
f <∞ then we say that f is integrable. This type of integral is called the

Lebesgue integral. Initially this is defined only for functions with a positive
range, and the definition for functions with negative range and full range
follows later on. Accompanying this definition is a list of theorems regard-
ing integrability of functions. The first is the Monotone Convergence
Theorem, which says that given a sequence of measurable functions {fn},
fn : R→ [0,∞), and fn ↑ f a.e. as n→∞, then∫

fn ↑
∫
f

If fn ↓ f a.e. as n→∞, then ∫
fn ↓

∫
f

The second theorem is the Dominated Convergence Theorem, which
states that given a sequence of integrable functions {fn} and fn → f a.e,
and g is an integrable function such that g(x) ≥ fn(x). Then∫

fn →
∫
f
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The third theorem is Fatou’s lemma, which states that if fn is a sequence
of measurable functions, then∫

lim inf fn ≤ lim inf

∫
fn

The following is furthermore a set of properties for integrable functions which
follow from the properties of measurability:

(a) If f ≤ g, then
∫
f ≤

∫
g

(b) If f(x) = g(x) a.e., then
∫
f =

∫
g

(c) If c ≥ 0 then
∫
cf = c

∫
f

(d) The integral of f is zero if and only if f(x) = 0 a.e.

(e)
∫

(f + g) =
∫
f +

∫
g

Next we cover Fubini’s theorem and the extension of Lebesgue integrability
to the real numbers.

proceeding as done in the lectures, the indicator function for a measurable
set E ⊂ R is defined as

IE(x) =

{
1 x ∈ E
0 x /∈ E

Given a function f : R→ R, we define

E+ = {x ∈ R : f(x) > 0} E− = {x ∈ R : f(x) < 0}

Notice that neither of these are defined when f(x) = 0, as the undergraph of
f does not include these points. Using E+ and E− we can define

f+ = f · IE+ f− = f · IE−

where f+ and f− both are non-negative functions. With this we get the
following:

f = f+ − f− |f | = f+ + f−

∫
f =

∫
f+ −

∫
f−

Using the above one can prove that the properties for the Lebesgue integrals
of non-negative functions extend to the real-valued ones.
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Fubini’s theorem is thus the final named theorem we mention in relation to
Lebesgue measure theory. It states that if f : R2 → [0,∞) is measurable
then there exists F (x), G(y) such that

F (x) =

∫
f(x, y) dy a.e.

G(y) =

∫
f(x, y) dx a.e.

and ∫
F (x) dx =

∫
f(x, y) dxdy =

∫
G(y) dy

Finally we cover two important statements. The following theory was derived
from Pughs definition of measurable function, and in corollary 41 he proves
that his undergraph measurability is equivalent to the traditional definition
of a function f : R→ R being measurable if and only if f−1(V ) is measurable
for every set V ∈ R. This is great because this means the definitions and
theorems named above agree with the traditional theory. Finally, with the
traditional definition of a measurable function, Tao proves that Riemann
integrability implies Lebesgue integrability, and that these results are equal
when a function is Riemann integrable.

8 The Lebesgue integral of the Dirichlet func-
tion

While we have covered a lot of theory we need only a sample of it to produce
the Lebesgue integral of the Dirichlet function.

We w.t.s that the Lebesgue integral of the Dirichlet function f : [0, 1] →
R:

f(x) =

{
1 x ∈ Q
0 x /∈ Q

is 0, i.e.
∫
f = 0. First we partition the undergraph of f into two sets: E0

and E1 defined by

E0 = {x : x /∈ Q} = [0, 1] ∩ (R \Q) E1 = {x : x ∈ Q} = [0, 1] ∩Q

Furthermore, let fE1 be f defined on E1 and fE0 likewise. Since E1 = [0, 1]∩Q
is a countable set, its measure is 0, since we can split into a sum of countable
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elements each with a measure of 0. Thus m(U(fE1)). The set E0 is uncount-
able, but f(x) = 0∀x ∈ E0, and thus m(U(fE0)) = 0. Therefore∫

f =

∫
fE0 +

∫
fE1 = 0 + 0 = 0

While the result above by itself is not groundbreaking, but it is a fun example
of the power of Lebesgue integration. This example, at least, helped me
understand why Lebesgue integration was needed what could be done with
it.

9 Lebesgue Integration and Probability The-
ory

One area where Lebesgue Integration reigns supreme is probability the-
ory. From the following notes https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.716.4061&rep=rep1&type=pdf from the University
of Western Ontario, London, Canada, The properties of Lebesgue integration
in probability theory is described, and it is fascinating. We will not delve into
great detail about probability theory, but we will cover enough definitions
and properties to show that core theorems described in the previous sections
can be used.

In section 5 we learned of the measure space, the measure function and the
measurable space. Now let Ω be a set we call the sample space and let MΩ

be a sigma algebra on this space. Then E ∈ MΩ is called an event of the
sample space. Now let (Ω,MΩ, P ) be a measure space such that the measure
function P has the property that P (Ω) = 1, i.e. that the measure of the
entire space is 1. This space is called a Probability space. We then define a
random variable as a measurable function X : Ω→ R. Because the measure
of space is translation variant and because of finite additivity, as well as the
product theorem, if X, Y , and α ∈ R are random variables, then so are

• Z = X + Y

• Z = αX

• Z = XY

Recalling our previous definition of the indicator function IA:

IA(ω) =

{
1 ω ∈ A
0 ω /∈ A
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If a random variable X has finite range, then it can be expressed as

X(ω) =
n∑
k=1

akIAk
(ω)

since we for each of the finite ai can let Ai = X−1({ai}). Following the
definition of non-negative functions for Lebesgue integrals, if (Ω,MΩ, P ) is
a probability space and X is a non-negative random variable that can be
represented as

X =
n∑
k=1

akIAk

Then its expectation is defined as

EP (X) =
N∑
k=1

AkP (Ak)

Finally, while we haven’t covered it in this essay, Tao (Analysis II) covers the
construction of the Lebesgue integrals using sums of simple functions. Using
this definition of the Lebesgue integral, By letting E(X) = E(X+) + E(X−)
we find that the expectation of a random variable is simply the Lebesgue
integral over the sample space:

E(X) =

∫
Ω

X(ω)dP (ω)

And E(X) is said to be integrable. Because of this we can utilise many of
the theorems covered above to describe expectation. Among these are

• The Monotone Convergence Theorem: Let X be a random variable
and let {Xn} be a sequence of non-negative random variables such
that Xn ↑ X. Then

lim
n→∞

E(Xn) = E(X)

• The Dominated Convergence Theorem: Let Y be an integrable random
variable and let {Xn} be a sequence of non-negative random variables
such that Xn → X and |Xn| ≤ Y for all n. Then

lim
n→∞

E(Xn) = E(X)

11



10 Conclusion
The following Essay has covered many details around measurability and
Lebesque integrability, and used it first to argue for the use of it in cases
where Riemann integrability cannot be used, and afterward as a tool to de-
scribe fundamental probability theory. We have covered the main definitions,
properties and theorems of measure theory and lebesgue integrability theory
from the perspective of Pugh, with the addition of showing why measure
theory is needed by finding a set that that fails the Carathéodory criterion.
We have also shown that the theory of the Riemann integral fails to be abl
to compute the integral of the Dirichlet function, and subsequently shown
that using the theory of the Lebesgue integral we can accurately compute
this integral. Finally we have covered initial probability theory using the
theory covered before and made connections between measure theory and
the Lebesgue integral and the expected value from probability theory.
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