Tao 8,2,9

we start by noticing that for the set $\{x \in [0,1]: | x - \frac{\alpha}{q} | \leq \frac{c}{q^p} \text{ for infinitely many integers a, } q \}$ It is obvious that we can limit a to $\alpha \geq 0$ and q to $q \geq 0$ since if the condition is folse for $\alpha \geq 0$, $q \geq 0$ then it is folse for $(-\alpha, q)$, $(\alpha, -q)$, and $(-\alpha, -q)$. Using the same argument for the telation ship between a and q we find that we only have to consider $0 \leq \alpha \leq q$.

In an α, q , let $S_{\alpha q} = \{x \in [0,1]: | x - \frac{\alpha}{q} | \leq \frac{c}{q^p} \}$. This is (0,1] if $\frac{c}{q^p} \geq 1$ and $\left(\frac{\alpha}{q} - \frac{c}{q^p}, \frac{\alpha}{q} + \frac{c}{q^p}\right)$. This is an interval: $S_{\alpha q} = [0,1] \cap \left(\frac{\alpha}{q} - \frac{c}{q^p}, \frac{\alpha}{q} + \frac{c}{q^p}\right)$. by manotonicity, since $S_{\alpha q} = \left(\frac{c}{q} - \frac{c}{q}, \frac{c}{q} + \frac{c}{q^p}\right) - \widetilde{S}_{\alpha,q}$ we have

 $m(S_{q,q}) \le m(\tilde{S}_{q,q}) = 2\tilde{q}P$ We now find the measure of $\tilde{S} \stackrel{Q}{\xi} m(S_{q,q})$ by $\tilde{S} \stackrel{Q}{\eta} m(\tilde{S}_{q,q}) \le \tilde{S} \stackrel{Q}{\xi} \sum_{q=1}^{2} \tilde{S}_{q=1}^{2} \tilde{S}_{q=1}^{2} = 2\tilde{S}_{q=1}^{2} = 2\tilde{S}_{q$

E & m(sa.q) has finite measure. By Borel-contelli, the

Set $\{x \in [0,1]: |x-\frac{\alpha}{q}| \le \frac{c}{qp} \text{ for infinitely many integers a, q} \}$ has measure zoro

We start by noting that $\int_{R} f_n \leq \frac{1}{4^n}$, so on R is measurable and $W(f(R)) \leq \frac{1}{4^n}$, for an $\epsilon > 0$ and $n \in \mathbb{N}$ let $X = \{x \in R: f(x) > \frac{1}{4^n}\}$

Then $X = f_n^{-1}((\frac{1}{32^n}, +\infty))$ and $\int_R f_n(X) = m(f(X)) \leq \int_R f_n \leq \frac{1}{4^n}$.

Got stuck hor. Crodit for next step goes to Shuqi Ke!

Define $\int_{0}^{1} x \in X_{n}$

for all $x \in X_n$ $S_n \leq f_n$ and $\int_{\mathbb{R}} S_n - m(x) \cdot \frac{1}{2^n} \leq \frac{1}{4^n} \quad (-) \quad m(x) \leq \frac{\varepsilon}{2^n}.$

Now we have shown that for an $\varepsilon > 0$, $\forall n \ge 1$ $m\left(\left\{x \in R : f_n(x) > \frac{1}{\varepsilon^2 n}\right\}\right) \le \frac{\varepsilon}{2^n}$.

Now conside X = UX for each E > 0. We know that X_n is measurable, so UX_n is measurable, and by sub-additivity, $m(X) \le \tilde{\xi} m(X_n) \le \tilde{\xi} \frac{1}{2} = \tilde{\xi}$

We now have that for $\varepsilon > 0$, $n \ge 1$ there exists X st $m(X) < \xi$ Lets now look at $R \setminus X$, for all $\bar{X} \in R \setminus X$, because $\bar{X} \notin X$, there exists an $N \ge 1$ s.t. for all $n \ge N$ $f_n(\bar{X}) \le \frac{1}{\varepsilon z^n} < \xi$, and with the same N,

 $|f_n(\bar{\chi}) - o| = f_n(\chi) < \xi.$

Thus $f_n(x)$ converses pointwise to 0 for $x \in R \setminus X$

The function $f_n:[0,1] \ni [0,\infty)$ is said to be uniformly convergent to f if $3 \ge > 0 \ge N$ $\forall x \in [0,1]$: $\forall n \ge N$ $|f_n(x) - f_n(x)| < \varepsilon$ $|f_n(x)| = \int_0^\infty |f_n(x)| = \int_0^\infty$

So far I've tried to use the same wothold as used In 8.2.9. But no matter what I've tried I haven't been able to create a limit, With a limit like $\frac{1}{4}$ here we could agree that $\forall x \ni N$ such that $\chi: VX$; would have measure $\langle \xi \rangle$ Since this holds for all $N \ge 1$ for $\chi \notin \chi$ there exists $N \ge 1$ St $\forall x$, $n \ge N$ f($\bar{\chi}$) $\le \frac{1}{n}$ $\forall m: |f_n(\bar{\chi}) - f(\bar{\chi})| \le \frac{1}{n}$ and with $\xi > \frac{1}{n}$ we get uniform convergence.

I will keep working and his and post a correction on the course website once I have found a solution,