Hwb

Tao 8.2.7

we start by noticing that for the set $\{x \in [0,1]: |x - \frac{\infty}{q}| \leq \frac{c}{q^p}$ for infinitely many integers a, 9} it is obvious that we can limit a to $\alpha \ge 0$ and q to $q \ge 0$ since if the condition is false for $a \ge 0$, $q > 0$, then it is false for $(-\alpha, q)$, $(\alpha, -q)$, and $(-\alpha, -q)$. Using the same argument for the $rel[a\text{th}]$ on shi p between a and q we find that we only have to consider $0 \leq a \leq 4$. for an a.g, let $S_{q,q} = \{ x \in [0, 1] : |x - q| \leq \frac{c}{q} \}$. This is $[0, 1]$ if $\frac{6}{9}$ 2 1 and $\frac{2}{9}$ $\frac{6}{9}$ $\frac{2}{9}$ $\frac{6}{9}$ $\frac{6}{9}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{3}$ \frac $S_{a,q}$ = [0,9] \bigcap $\big[\frac{a}{q} - \frac{c}{q^p}, \frac{a}{q} + \frac{c}{q^p} \big]$, by manotonicity, since $S_{\alpha,q} \subseteq \mathbb{Z}$ $\frac{c}{q} - \frac{c}{q}$, $\frac{c}{q} + \frac{c}{q} = \frac{c}{q}$, $\frac{c}{q}$ we have $m(S_{a,q}) \le m(S_{a,q}) = 24$ W_e now find the measure of $\sum_{i=1}^{n}$ ζ c mi(ζ a g) by $\begin{array}{ccc} \hline \circ & q & c & \hline \end{array}$ $\frac{a}{\sum_{n=1}^{\infty} \sum_{q=1}^{q}}$ $\frac{a}{\sum_{q=1}^{\infty} \sum_{q=1}^{q}}$ $\frac{a}{\sum_{q=1}^{\infty} \sum_{q=1}^{q}}$ $\frac{a}{\sum_{q=1}^{\infty} \sum_{q=1}^{q}}$ $\frac{a}{\sum_{q=1}^{\infty} \sum_{q=1}^{q}}$ $9 - 7$ $9 - 9$ $9 - 9$ $9 - 9$ $9 - 9$ $9 - 9$ $9 - 9$ and since $P > 2$, $2C \sum_{q \leq 1} \frac{1}{q^{p-1}}$ converges and thus $\sum_{n=1}^{\infty} \sum_{i=1}^{n} m(s_{n,i})$ has finite measure. By Barel-cuntalli, the <mark>9</mark>ा ^{का} Set $\{x \in [0,1]: |x - \frac{\alpha}{q}| \leq \frac{c}{q^p}$ for infinitely many integers a, $q\}$ has measure Zero \Box

Exercise 8.29

We start by noting that
$$
\int_{R} f_{n} \le \frac{1}{4^{n}}
$$
, so on R f_{n} is measurable
and $m(f(R)) \le \frac{1}{4^{n}}$, for an $\epsilon > 0$ and $n \in N$ let
 $X = \{x \in R : f_{n}(x) > \frac{1}{2^{n}}\}$.
Then $X_{n} = f_{n}^{-1}((\frac{1}{2^{n}} \times \infty))$ and $\int_{R} f_{n}(X) = m(f(X)) \le \int_{R} f_{n} \le \frac{1}{4^{n}}$.

Got stuck have. Credit for next step goes to Shuqi Ke!

$$
Define\nn = \begin{cases}\n\frac{1}{\epsilon n^{2}} & x \in X_{n} \\
0 & x \notin X_{n}\n\end{cases}
$$
\nfor all $x \in X_{n}$, $S_{n} \leq f_{n}$ and\n
$$
\int_{R} S_{n} = W(x) \cdot \frac{1}{\epsilon_{2}^{n}} \leq \frac{1}{4^{n}} \quad \Rightarrow \quad W(X) \leq \frac{\epsilon}{2^{n}}
$$

Now we have shown that
$$
6
$$
 an $6>0$, $4n \ge 1$
\n
$$
m\left(\left\{x \in R : f(x) > \frac{1}{62n}\right\}\right) \le \frac{6}{2^n}
$$

Now consider $X \subset \bigcup X_n$ for each $\varepsilon > 0$. We know that X_n is measurable, so UX, is measurable, and by Subadditivity, $w(X) \leq \sum_{i=1}^{\infty} w(X_i) \leq \sum_{i=1}^{\infty} \frac{1}{2^{i}} \leq \sum_{i=1}^{\infty}$

We now have that for
$$
6 > 0
$$
, $n \ge 1$ there exists X
\n
$$
M(X) < \xi
$$
 lets new last at R\n
$$
X
$$
, for all $\overline{x} \in R \setminus X$, because $\overline{x} \notin X$, there exists an N \ge 1 s.t for all $n \ge N$
\n
$$
f_{n}(\overline{x}) \le \frac{1}{\epsilon x} < \xi
$$
, and with the same N
\n
$$
f_{n}(\overline{x}) - 0 = f_{n}(x) < \xi
$$
.