Hw 5

Tao 8,2,9

we start by noticing that for the set $\{x \in [0,1] : | x - \frac{\alpha}{q}\} \le \frac{c}{q^{p}}$ for infinitely many integers $a, q\}$ it is obvious that we can limit a to a 20 and q to q 20 since if the condition is folse for a ≥ 0, q>0, then it is false for (-a.g), (a,-g), and (-a,-g). Using the same argument to the relationship between a and q we find that we only have to consider $0 \le a \le q$. for m a.q, let $S_{aq} = \{ x \in [0, 1] : | x - aq \} \le \frac{c}{a} \}$. This is [0, 1] if GT 21 and [g-G, a+G]. This is an interval: $S_{q,q} = [0,1] \cap [\frac{a}{q} - \frac{a}{q}, \frac{a}{q} + \frac{a}{q}], by monotonicity, since$ $S_{\alpha,q} \leq \left[\frac{\alpha}{q} - \frac{\alpha}{q} + \frac{\alpha}{q} + \frac{\alpha}{q} \right] - \tilde{S}_{\alpha,q}$ we have $m(S_{q,q}) \leq m(\widetilde{S}_{q,q}) \equiv 2 \overline{q} P$ We now find the measure of $\sum_{a=1}^{\infty} \sum_{a=1}^{q} m(s_{a,q})$ by $\frac{2}{2} \sum_{q=1}^{\infty} w(S_{q,q}) \leq \sum_{q=1}^{\infty} \sum_{w=1}^{q} 2 \frac{c}{q^{p}} \leq 2c \sum_{q=1}^{\infty} q \frac{1}{q^{p}} = 2c \sum_{q=1}^{\infty} \frac{1}{q^{p-1}}$ and since P^{2} , $2C \tilde{\Sigma}^{\frac{1}{2}}$ converses and thus $q \leq 1 q^{p_{-1}}$ E Em(s, q) has finite measure. By Barel-cantelli, the Set $\{x \in [0, 1] : | x - \frac{\alpha}{q}\} \le \frac{c}{q^{p}}$ for infinitely many integers $a, q\}$ has measure Zoro \Box

Exercise 8.2.9
We start by noting that
$$\int_R f_n \leq \frac{1}{4^n}$$
, so on R f_n is measurable.
and $M(f(R)) \leq \frac{1}{4^n}$, for an $\epsilon > 0$ and $n \in \mathbb{N}$ let
 $X = \xi \times \epsilon R$; $f_1(R) > \frac{1}{32^n}$.
Then $X_n = f_n^{-1}((\frac{1}{32^n}; \infty))$ and $\int_R f_n(X_n) = M(f(X_n) \leq \int_R f_n \leq \frac{1}{4^n}$.

Got stuck hore. Credit for next step goes to Shugi Ke!

) efine

$$S_{n} = \begin{cases} \frac{1}{\epsilon n^{2}} & x \in X_{n} \\ 0 & x \notin X_{n} \end{cases}$$
for all $x \in X_{n} \quad S_{n} \leq f_{n} \quad \text{and} \quad \int_{R} S_{n} = m(x) \cdot \frac{1}{\epsilon 2^{n}} \leq \frac{1}{\epsilon n} \quad (-) \quad m(x) \leq \frac{\epsilon}{2^{n}},$

Now we have shown that for an
$$\varepsilon > 0$$
 the 1
m($\{x \in \mathbb{R} : f_n(x) > \frac{1}{\varepsilon 2^n}\}$) $\leq \frac{\varepsilon}{2^n}$.

0

Now conside $X = \bigcup X$ for each $\varepsilon > 0$. We know that X_n is measurable, so $\bigcup X_n$ is measurable, and by sub-additivity, $m(X) \leq \tilde{\varepsilon} m(X) \leq \varepsilon \tilde{\varepsilon} + \varepsilon \varepsilon$

We now have that for
$$\varepsilon > 0$$
, $n \ge 1$ there exists X
st $m(X) < \varepsilon$. Lets now look at $R \setminus X$, for all $\overline{X} \in R \setminus X$,
because $\overline{X} \notin X$, there exists an $N \ge 1$ s.t. for all $n \ge N$
 $f_n(\overline{X}) \le \frac{1}{\varepsilon^2} < \varepsilon$, and with the same N ,
 $\int f_n(\overline{X}) - 0 = f_n(X) < \varepsilon$.
Thus $f_n(X) = 0$ for $X \in R \setminus X$