Exercise 39

HW 7

 \Box

We have
(1)
$$f \cdot g$$
 measurable
(2) f^{2}, g^{2} integrable.
By (2), and Experise 28, fig is measurable and thus
 $\int bg = x_{1}it$, By (2) $\int f^{2} \int g^{2} = x_{1}its$ and
 $\int f^{2} \int g^{2} = \int |f|^{2} \int |g|^{2}$
By the Cauchy $-Schwartz$ inequality for integrals
we find
 $\int |f|^{2} \int |g|^{2} \ge |\int fg \int fg |= |\int fg|^{2}$
and thus
 $\int \int f^{2} \int g^{2} = \sqrt{\int |f|^{2} \int |g|^{2}} \ge \int |fg|^{2}} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} = \int fg^{2} + \int fg \ge \int fg^{2} = \int fg^{2} = \int fg^{2} + \int fg^{2} = \int fg^{2} = \int fg^{2} + \int fg^{2} = \int fg^{2} = \int fg^{2} + \int fg^{2} = \int fg^{2} = \int fg^{2} + \int fg^{2} = \int fg^{$

PŦ:

Conjugate symmetry "

Sfy=Sgf since fg=gf

linear mapping !

 $\int (af + bg) h = \int afh + \int bgh = a \int fh + b \int gh$

Positive definiteness.

 $\int ff = \int f^2 = \int |f|^2 > 0$ since |f| is non-nogative.

Exocise 48.

To be honest I found this voy difficult in the sence of just wrapping my head around it was hard. I also had difficulties with the other questions which took time away from this. I will probably return to this, if it is alright. Frontise 53

$$\begin{array}{c} \omega \\ f(x,y) \\ c \\ \end{array} \\ \begin{array}{c} \frac{1}{y^2} \\ -\frac{1}{x^2} \\ 0 \\ -\frac{1}{x^2} \\ 0 \\ -\frac{1}{y^2} \\ 0 \\ -\frac{1}{x^2} \\ \end{array} \\ \begin{array}{c} 0 \\ -\frac{1}{x^2} \\ 0 \\ -\frac$$

Let us start by integrating iteratively. We use Pugh Corollary 70 which states that If Riemann integral exists, then it is equal to Lebesque integral (Thanks Griffin!). I also include Michaels plot, as it is a very infuitive way of looking at the function We start with $\int \int \int f(x,y) dx dy$. $f(x,y) = \frac{1}{y^2}$

1

0 -

1

 $f(x,y) = -\frac{1}{\sqrt{2}}$

- $\int \int f(x,y) dx dy$ $= \int \left(\int f(x,y) dx \right) dy$ NOW $\int_{a}^{1} f(x,y) dx = \int_{a}^{y} f(x,y) dx + \int_{y}^{1} f(x,y) dx$
- $= \int_{0}^{y} \frac{1}{y^{2}} dx + \int_{y}^{1} \frac{1}{x^{2}} dx = \left[\frac{1}{y^{2}}x\right]^{y} + \left[\frac{1}{x}\right]^{1}$ $=\frac{1}{y}+1-\frac{1}{y}=1$
- So $\int_{0}^{1} (\int_{0}^{1} f(x,y) dx) dy = \int_{0}^{1} 1 dy = [y]_{0}^{1} = 1$

In the same way we find

$$\int_{0}^{x} f(x,y) \, dy = \int_{0}^{x} f(x,y) \, dx + \int_{0}^{x} f(x,y) \, dx$$

$$= \int_{0}^{x} - \frac{1}{x} \, dy + \int_{x} \frac{1}{y} \, dx = \left[-\frac{1}{x^{2}} y \right]_{0}^{x} + \left[-\frac{1}{y} \right]_{y}^{1}$$

$$= -\frac{1}{y} - \frac{1}{y} + \frac{1}{y} = -1$$

 $\int_{0}^{1} \left(\int_{0}^{1} f(x, y) \, dy \right) \, dx = \int_{0}^{1} - 1 \, dx = \left[-x \right]_{0}^{1} = -1$

Now for the double integral. We know that since the above integrals avant equal, the Riemann double integral doesn't exist.

b) This does not break corollary 43 because f is negative and the corollary requires our fons to be non-negative. Exorise 58

g) Since E is measurable, for almost all $X \in E$, X is a donsity point, Thus for a decreasing sequence of hoxes $\{Q_i\}$. lim $\frac{m(Q_i \cap E)}{q_i + x} = 1$. Aby $m(Q_i)$ how for each box, make a ball that contains

that box and is centered at p

C) Take E=[0,1]CR. for m & E[0,1], let Let $Q_n = \begin{bmatrix} x & x^t \\ n & n \end{bmatrix}$. Then $E \cap Q_n = \begin{bmatrix} 0 & x^t \\ n & n \end{bmatrix}$. Let p = 0. thm if $\alpha = 0$ brivially S(P,E) = 0 and if $\alpha = 1$ δ(P,E)= 1. if α= ½ then $\lim_{\substack{n \in \mathbb{P} \\ a_n \in \mathbb{P} \\ m(a_n) \\ n \neq a}} \frac{m(a_n \cap E)}{m(a_n)} = \lim_{\substack{n \neq a \\ n \neq a}} \frac{m(a_n)}{m(a_n)} = \frac{m(a_n)}{m(a$ $f_{\sigma} = 1 > \alpha > \frac{1}{2}$ $\lim_{\substack{m(a_{m} \cap E) \\ a_{n} \downarrow p \mid m(a_{m}) \\ c_{m} = 1}} = \lim_{\substack{m(a_{m} \cap E) \\ m \neq \infty}} \frac{\alpha}{(1-\alpha)n} = \lim_{\substack{m(a_{m} \cap E) \\ m \neq \infty}} \frac{\alpha}{(1-\alpha)n} = \lim_{\substack{m(a_{m} \cap E) \\ m \neq \infty}} \frac{\alpha}{(1-\alpha)n} = 1$ $\lim_{\substack{m(a_{m} \cap E) \\ m \neq \infty}} \frac{\alpha}{(1-\alpha)n} = 1$ $\lim_{\substack{m(a_{m} \cap E) \\ m \neq \infty}} \frac{\alpha}{(1-\alpha)n} = 1$ $\lim_{\substack{m(a_{m} \cap E) \\ m \neq \infty}} \frac{\alpha}{(1-\alpha)n} = 1$ $\lim_{\substack{m(a_{m} \cap E) \\ m \neq \infty}} \frac{\alpha}{(1-\alpha)n} = 1$ $\lim_{\substack{n \neq p \\ n \neq p \\ n \neq q}} \frac{w(a_n \cap E)}{m(a_n)} = \lim_{\substack{n \neq q \\ n \neq q}} \frac{1}{n} \frac{1}{n} = \lim_{\substack{n \neq q \\ n \neq q}} \frac{1}{n} \frac{1}{n} = \lim_{\substack{n \neq q \\ n \neq q}} \frac{1}{n} \frac{1}{n} = \lim_{\substack{n \neq q \\ n \neq q}} \frac{1}{n} = \lim_{\substack{n \neq q \atop n \neq q}} \frac{1}{n} = \lim_{\substack{n \neq q \atop n \neq q}} \frac{1}{n} = \lim_{\substack{n \neq q \atop n \neq q}} \frac{1}{n} = \lim_{\substack{n \neq q \atop n \neq q}} \frac{1}{n} = \lim_{\substack{n \neq q \atop n \neq q}} \frac{1}{n} = \lim_{\substack{n \neq q \atop n \neq q}} \frac{1}{n} = \lim_{\substack{n \neq q \atop n \neq q}} \frac{1}{n} = \lim_{\substack{n \neq q \atop n \neq q}} \frac{1}{n} = \lim_{\substack{n \neq q \atop n \neq q}} \frac{1}{n} = \lim_{\substack{n \neq q \atop n \neq q}} \frac{1}{n} = \lim_{\substack{n \neq q \atop n \neq q}} \frac{1}{n} = \lim_{\substack{n \neq q \atop n \neq q} \frac{1}{n} = \lim_{\substack{n \neq q \atop n$

b) My ultimately unsucces ful try at a overing was b
define
$$E_n = [\frac{1}{2^n}, \frac{n+1}{2^m}]$$
 st that each E_i was defined
to be sequents of $[\frac{1}{2^n}, \frac{1}{2^m}]$ of length $d/2^n$.
This can be seen in the line $\Rightarrow \int_{0}^{1+\frac{1}{2^m}} \frac{1}{2^n} \frac{1}{2^n}$
By placing a left with center O and radius $\frac{1}{2^n}$: $B_i(o)$
My goal was to somehow show that for
 $E = \bigcup E_i$, $E_N = E \setminus [\bigcup E_i]$
 $\lim_{i \to 0} \frac{m(B_{i(D)} \cap E)}{m(B_{i(D)}(P) \cap E)} = \lim_{n \to \infty} \frac{m(E_i^{-1}, \frac{1}{2^n}) \cap E_n}{m(E_i^{-1}, \frac{1}{2^n})}$
My intuition suys that this will work as there an over lep
wher the numerator has an infinite sum as measure
 $\hat{\Sigma} = \frac{n}{2^n} = \alpha \hat{\Sigma} = \frac{1}{1^n}$
Harever I could to make the colculations nork.
d) Dive to me not finishing C i didn't yet a chance
to answer this, Michael did heaveyer share a lengthy

paper on this, which i might read in order to understand this further. Exercise 66.

Example used from Counter examples. com by

Jean-Pierre Marx

- Let $F = \sum P_n$ be a convergent series of positive numbers. e.g. $P_n = \frac{1}{n^2}$. Let $f: [0,1] \rightarrow R$ be defined as $f(x) = \sum \frac{1}{n^2}$
- for a $d_n \in Q \cap [0, 1]$, $n \in \mathbb{N}$, i.e. d_n is the nth element in the countable set $Q \cap [0, 1]$. for a $0 \le x \le y \le 1$.

 $f(y) - f(x) = \sum_{x < d} \frac{1}{x^{2}} > 0$

since $\forall n = \frac{1}{n^2} > 0$ and there always exists a d_n : $x < d_n \leq y$. Thus f is monotone.

Lemma 1: f is right cant on [0,1]

PF: pick X E [a,b]. For any E>O there exist NEN st

 $0 < \sum_{h \ge N} \frac{1}{2} < \xi$

Let $\delta > 0$ be small enough that no point $\xi = \frac{1}{1} - \frac{1}{N^3}$ in $(x, x + \delta)$. Then

1

 $0 < f(y) - f(x) \le \xi \frac{1}{n^2} < \xi$ for $y - x < \xi$

with $y \in (x, x + \delta)$

Lemma 2! l'is discont on an (0,1]

PF! Take a x=d_EQN[0.1], for any 0 4 y < x

$$f(x) - f(y) = \sum_{n=1}^{1} \sum_{n=1}^{1} \sum_{m=1}^{1}$$

so it is not left can't at $x \in Q_n \cap [0,1]$

Lemma 3. f is can't at all XE[0.1] \Q.

Pf. Lot N(x)= En EIN | d < x3. Since x & an [0.1],

$$f(x) = \sum_{n \in N(x_1)} \frac{1}{n}$$

for any E>O there exists a finite subset No EN(x) st

$$\sum_{x \in N_0} \frac{1}{x^2} > f(x) - \xi$$

for any S > 0 st the interval (X - S, X) does not contain any $\frac{1}{2}$ for $n \in \mathbb{N}$, we have for $y \in (X - S, X)$

$$f(x) - \varepsilon \leq f(y) = \xi = \frac{1}{2} < f(x)$$

and thus f(x) is cant on $x \notin Q \cap [0, 1]$