Exercise 39
we have
(1) F.s measurable
(2) $f^{2}, g^{2}$ integrable.

By (1), and Exercise 28, iss is measurable and thus $\int 6 s$ exist, By (2) $\int f^{2} \int s^{2}$ exists and

$$
\int f^{2} \int g^{2}=\int|p|^{2} \int|s|^{2}
$$

By the cauchy - Schwartz inequality for integrals we find

$$
\left.\int \mid f\right)^{2} \delta\left(\left.g\right|^{2} \geq|\delta f s \delta f y|=|\delta f s|^{2}\right.
$$

and thus

$$
\begin{aligned}
\sqrt{\int f^{2} \int g^{2}} & =\sqrt{\int|f|^{2} \int|g|^{2}} \geq \int|f g| \\
& =\int f g^{t}+\int f g^{-} \geq \int f^{+}-\int f f_{s}^{-} \geq \int f_{s}
\end{aligned}
$$

* works by prop 38. Only thing left to show is that $\int f y$ for $f, g$ is an inner product: $\langle f, g\rangle=\int f g$
Lemma: for $f, y$, measurable, $\langle f, g\rangle=\int f g$ is inner prod. Pf:

Conjugate symmetry:

$$
\int f_{b}=\int g f \text { since } f_{g}=g f
$$

linear mapping:

$$
\int(a f+b g) h=\int a f h+\int b g h=a \int f h+b \int g h
$$

Positive definiteness:
$\int f f=\int f^{2}=\int|f|^{2}>0$ since $|f|$ is nonnegative.

Exercise 48.
To be honest I found this very difficult in the since of just wrapping my head around it was hard. I also had difficulties with the other questions which took time away from this. I will probably return to this, if it is alright.

Exarise 53
a)

$$
f(x, y)= \begin{cases}\frac{1}{y^{2}} & 0<x<y<1 \\ -\frac{1}{x^{2}} & 0<y<x<1\end{cases}
$$

Let us start by integrating iteratively. We use Pugh corollary 70 which states that If Riemann integral exists, then it is equal to lebesque integral (Thanks Griffin!), [ also include Michaels plot, as it is a very intuitive way of looking at the function We start with $\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y$.

$$
f(x, y)=\frac{1}{y^{2}}
$$

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} f(x, y) d x d y \\
= & \int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right) d y
\end{aligned}
$$

now

$$
\begin{aligned}
& \int_{0}^{1} f(x, y) d x=\int_{0}^{y} f(x, y) d x+\int_{y}^{1} f(x, y) d x \\
= & \int_{0}^{y} \frac{1}{y^{2}} d x+\int_{y}^{1}-\frac{1}{x^{2}} d x=\left[\frac{1}{y^{2}} x\right]_{0}^{y}+\left[\frac{1}{x}\right]_{y}^{1} \\
= & \frac{1}{y}+1-\frac{1}{y}=1
\end{aligned}
$$

So $\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right) d y=\int_{0}^{1}+d y=[y]_{0}^{1}=1$
In the same way we find

$$
\begin{aligned}
\int_{0}^{1} f(x, y) d y & =\int_{0}^{x} f(x, y) d x+\int_{x}^{1} f(x, y) d x \\
& =\int_{0}^{x}-\frac{1}{x^{2}} d y+\int_{x}^{1} \frac{1}{y^{2}} d x=\left[-\frac{1}{x^{2}} y\right]_{0}^{x}+\left[-\frac{1}{y}\right]_{y}^{1} \\
& =-\frac{1}{y}-1+\frac{1}{y}=-1
\end{aligned}
$$

so

$$
\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right) d x=\int_{0}^{1}-1 d x=[-x]_{0}^{1}=-1
$$

Now for the double integral. We know that since the above integrals anent equal, the Riemann double integral doesn't exist.
b) This does not breate corollary 43 because $f$ is hesative and the corollary requires our fans to be non - negative.

Exercise 58
a) Since $E$ is measurable. for almost all $x \in E, X$ is a density point, Thus for a decreasing sequence of boxes $\left\{Q_{;}\right\}$.

$$
\lim _{a_{i}, b x} \frac{m\left(a_{i} \cap E\right)}{m\left(a_{i}\right)}=1
$$

now fur each box, make a ball that contains that box and is centered at $p$.
(J)

Take $E=[0,1] \subset R$. for an $\alpha \in[0.1]$, let

$$
x^{\prime}=\left\{\begin{array}{ll}
\frac{1-\alpha}{\alpha} & \alpha<\frac{1}{2} \\
1 & \alpha \geq \frac{1}{2} v \alpha=0 \\
0 & \alpha=1
\end{array} \quad x^{+}= \begin{cases}\frac{\alpha}{1-\alpha} & \alpha>\frac{1}{2} \\
1 & \alpha \leq \frac{1}{2} v \alpha=1 \\
0 & \alpha=0\end{cases}\right.
$$

Let $Q_{w}=\left[-\frac{x^{-}}{n}, \frac{x^{\downarrow}}{n}\right]$. Then $E \cap Q_{n}=\left[0, \frac{x^{+}}{n}\right]$. Let $p=0$.
then if $\alpha=0$ trivially $\delta(P, E)=0$ and if $\alpha=1$
$\delta(P, E)=1$. if $\alpha=\frac{1}{2}$ then

$$
\lim _{Q_{n} \perp_{p}} \frac{m\left(Q_{n} \cap E\right)}{m\left(a_{n}\right)}=\lim _{n \rightarrow \infty} \frac{1 / n}{2 / n}=\frac{1}{2}
$$

for $1>\alpha>\frac{1}{2}$

$$
\lim _{a_{n} \perp p} \frac{m\left(a_{n} \cap E\right)}{m\left(a_{n}\right)}=\lim _{n \rightarrow \infty} \frac{\frac{\alpha}{(1-\alpha) n}}{\frac{\alpha}{(1-\alpha) n}+\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{\alpha}{(1-\alpha) n}}{\frac{1}{(1-\alpha)_{n}}}=\alpha
$$

for $0<\alpha<\frac{1}{2}$

$$
\lim _{a_{n} \downarrow p} \frac{m\left(a_{n} \cap E\right)^{2}}{m\left(a_{w}\right)}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n}+\frac{(-\alpha)}{n \alpha}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n \alpha}}=\alpha
$$

b) My ultimately unsuccesful try at a covering was to define $E_{n}=\left[\frac{1}{2^{n}}, \frac{\alpha+1}{2^{v}}\right]$ st that each $E_{i}$ was defined t. be segments of $\left[\frac{1}{2^{n}}, \frac{1}{2^{n+1}}\right]$ of length $\alpha / 2^{n}$.

This cunbe seen in the line $\rightarrow$ By placing bal with center 0 and radius $\frac{1}{2^{n}}: B_{1}(0)$ My goal was to somehow show that for

$$
\begin{aligned}
& E=\bigcup_{i=0}^{\infty} E_{i}, \quad \bar{E}_{N}=E \backslash\left(U_{i}^{N} E_{i}\right) \\
& \lim _{r \rightarrow 0} \frac{m\left(B_{r}(P) \cap E\right)}{m\left(B_{r}(P)\right)}=\lim _{n \rightarrow \infty} \frac{m\left(B_{1,2}(P) \cap E\right)}{m\left(B_{1 / 2^{n}}(P)\right)}=\lim _{n \rightarrow \infty} \frac{m\left(\left[-\frac{1}{2^{2}}, \frac{1}{2^{2}}\right] \cap \bar{E}_{n}\right)}{m\left(\left[-\frac{1}{2}, \frac{1}{2^{n}}\right]\right)}
\end{aligned}
$$

My intuition says that this will work as there an ova lap whet th numerator has an infinite sum as measure

$$
\sum_{n=1}^{\infty} \frac{\alpha}{2^{n}}=\alpha \sum_{k=n}^{\infty} \frac{1}{2^{n}}
$$

However I couldnt mater the calculations note.
d) Due to me not finishing $c i$ didn't get a chance to answer this. Michael did haverver share a lenglety paper on this, which i might read in order to undo stand this further.

Exercise 66 .
Example used from Counter examples.cam by Jean-Pierve Marx.
Let $P=\left\{P_{n}\right.$ be a convergent series of positive numbers. e.9. $P_{n}=\frac{1}{n^{2}}$. Let $f:[0,1] \rightarrow R$ be defined as

$$
f(x)=\sum_{d_{x} \leq x} \frac{1}{2}
$$

for a $d_{n} \in Q \cap[0,1], n \in \mathbb{N}$, ie. $d_{n}$ is the $n$th element in the countable set $a \cap[0,1]$
for a $0 \leq x<y \leq 1$.

$$
f(y)-f(x)=\sum_{x<d d_{n} \leq y} \frac{1}{n^{2}}>0
$$

since $\forall_{n} \frac{1}{n^{2}}>0$ and there always exists a $d_{n}: x<d_{n} \leq y$.
Thus $f$ is monotone.
Lemma 1: $f$ is right cant on [0.1]
PF: pick $x \in[a, b]$. for any $\varepsilon>0$ there exist $N \in \mathbb{N}$ st

$$
0<\sum_{n \geq n^{n^{2}}} \frac{1}{2^{2}}<\varepsilon
$$

Let $\delta>0$ be small enough that no point $\left\{\frac{1}{1} \cdots \frac{1}{N^{3}}\right\}$ in $(x, x+\delta)$. Then

$$
0<f(y)-f(x) \leq \sum_{n \geq N^{n^{2}}} \frac{1}{2} \text { for } y-x<\delta
$$

with $y \in(x, x+\delta)$

Lemma 2: $f$ is discant on $Q \cap[0,1]$
PF: Take a $x=d_{m} \in Q \cap[0,1]$, Fo any $0 \leq y<x$

$$
f(x)-f(y)=\sum_{y<d_{n} \leq x} \frac{1}{n^{2}}>\frac{1}{m^{2}}
$$

so it is not left cant at $x \in Q_{n} \cap[0,1]$
Lemme 3. $f$ is cant at all $x \in[0.1] \backslash Q$.
Pf. Let $N(x)=\left\{n \in \mathbb{N} \mid d_{n}<x\right\}$. Since $x \notin Q \cap[0.1]$,

$$
f(x)=\sum_{n \in \mathbb{N}(x)} \frac{1}{n^{2}}
$$

for any $\varepsilon>0$ there exists a finite subset $N_{0} \in N(x)$ st

$$
\sum_{n \in N_{0}} \frac{1}{2^{2}}>f(x)-\varepsilon
$$

for any $\delta>0$ st the interval $(x-\delta, x)$ doesnt contain any $\frac{1}{h^{2}}$ for $n \in N_{0}$ we have for $y \in(x-\delta, x)$

$$
f(x)-\varepsilon \leq f(y)=\sum_{d_{w^{2}} \leq y} \frac{1}{2}<f(x)
$$

and thus $f(x)$ is cant on $x \notin Q \cap[0.1]$

