Mw 10
12)
we are given

$$
\begin{aligned}
& f_{1}(s, t)=(b+a \cos s) \cos t \\
& f_{2}(s, t)=(b+a \cos \delta) \sin t \\
& f_{3}(s, t)=a \sin s
\end{aligned}
$$

with

$$
f(s, t)=\left(f_{1}(s, t), f_{2}(s, t), f_{3}(s, t)\right)
$$

Since $\sup \{\cos \}=\sup \{\sin \}=1, \inf \{\cos \}=\inf \{\sin \}=-1$
The range of K is $([-b-a, b+a],[-b-a, b+a],[-a, a])$
a)
we first find thant

$$
\nabla f_{y}(s . t)=(-a \sin s \cos t,-(b+a \cos s) \sin t)
$$

This is 0 when
(1) $a \sin s \cos t=0$
(2) $(b+a \cos s) \sin t=0$
for (1) This happens when $\sin s=0$ or $\cos t=0$ and for (2) when $\sin t=0$. When $\sin t=0, \cos t \neq$, so for (1) $\sin s=0$ is the only option. These hold when $t=0$ or $t=\pi, s=0$ or $\delta=\pi$, for all these values $f_{2}(s, t)=f_{3}(s, t)=0$ fully, the points are

$$
P_{1}=\left[\begin{array}{c}
b+a \\
0 \\
0
\end{array}\right], P_{2}=\left[\begin{array}{c}
b-a \\
0 \\
0
\end{array}\right] \quad P_{3}=\left[\begin{array}{c}
-b+a \\
0 \\
0
\end{array}\right], P_{4}=\left[\begin{array}{c}
-b-a \\
0 \\
0
\end{array}\right]
$$

b)
we first find that

$$
\nabla f_{3}(s, t)=(a \cos s, 0)
$$

Thus $\nabla_{3} f(s . t)=0$ when $\cos s=0$ so $s^{\prime}=\left(\frac{1}{2}+k\right) \Pi \quad k \in \mathbb{N}$ for $a \| s^{\prime}, f_{3}(s, t)=0$. Since t is still variable, $f_{2}(s, t)$ and $f_{1}(s, t)$ can have all values in the range Thus for $a l l a \in[-b \cos t, b \cos t] \times[-b \sin t, b \sin t] \times\{-a, a\}$,

$$
t \in[0,2 k \pi), \nabla f_{3}\left(f^{-1}(q)\right)=0
$$

c)
we have

$$
\begin{aligned}
& f_{1}(s, t)=(b+a \cos s) \cos t \\
& \nabla f_{y}(s, t)=(-a \sin s \cos t,-(b+a \cos s) \sin t)
\end{aligned}
$$

we found the points

$$
P_{1}=\left[\begin{array}{c}
b+a \\
0 \\
0
\end{array}\right], P_{2}=\left[\begin{array}{c}
b-a \\
0 \\
0
\end{array}\right] \quad P_{3}=\left[\begin{array}{c}
-b+a \\
0 \\
0
\end{array}\right], P_{4}=\left[\begin{array}{c}
-b-a \\
0 \\
0
\end{array}\right]
$$

At these point's we have $t=0$ or $t=\Pi$ II $S=0$ or $S=\pi$ wat $t=0$ cos t will only decrease with a change in t. at $t: \pi$ it will only increase. For both. Sin changes in the same direction as t. This also holds for $s=0$ and $s=\pi$, Given $b>a>0$, so $f(0,0)>f(0, \pi)$ and $f(\pi, 0)<f(\pi, \pi)$. By the above, sin will flip sign, so $f(0,0)$ is a local maximum. $f(\pi, \pi)$ is a local minimum and $f(\pi, u)$ and $f(0, \pi)$ ore saddle points.
Since The points ae on the boundary only they
hoed to be cons idered (Maximum value Theorem)
13)

Let $f: R^{1} \rightarrow R^{3}$ be differentiable, and $|f(t)|=1 \quad \forall t$,

$$
h(t)=f(t) f(t)=f(t)^{2}=|f(t)|^{2}=1
$$

Then

$$
h^{\prime}(t)=f(t) f^{\prime}(t)+f^{\prime}(t) f(t)=0
$$

so $f^{\prime}(t) f(t)=0$
Geometrically since $|f(t)|=\sqrt{f_{1}(t)^{2}+f_{2}(t)^{2}+f_{3}(t)^{2}}$ we would We can think of $f(t)$ as mapping a value to a point on a unit sphere in 3D space. Since f is diff \Rightarrow cont this mapping is a continuous curve on the surface. Think of $f^{\prime}(t)$ as the normal vector to a point on the sphere $f(t)$.

14,
we have the equations.
(1) $3 x+y-z+u^{2}=0$
(2) $x-y+2 z+n=0$
(3) $2 x+2 y-3 z+2 n=0$
we can write this as

$$
\begin{aligned}
& f_{1}(x, y, z, u)=3 x+y-z+u^{2} \\
& f_{2}(x, y, z, u)=x-y+2 z+u \\
& f_{3}(x, y, z, u)=2 x+2 y-3 z+2 u
\end{aligned}
$$

with $f=\left(f, f_{2}, f_{3}\right)$. We now wish to solve for $f(x, y, z, u)=0$ in terms of different variables. for this the implicit
function theorem comes in handy. By Rudin (I lite his version better.) we can solve $f(x, y, z, u)=(0,0.00)$ in terms of x, y, z, or u if conditions are met.: Let the variables we solve for be h and let the term be k. Then if $A_{h}=A(h .0)$ is invertible. we can write $f^{\prime}(x, y, z, n)$ as

$$
f(x, y, z, u)=\left(\begin{array}{cccc}
3 & 1 & -1 & 2 u \\
1 & -1 & 2 & 1 \\
2 & 2 & -3 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
u
\end{array}\right)=A v \quad v=(x, y, z, u)^{\top}
$$

we see that for $h=(x, y, u) \quad h=(x, z, w)$, and $h=(y, z, u)$ The submatrix A_{h} has non-zero determinant (Thank you Maple) for $w \neq \frac{3}{3}$. for $h=(x, y, 2) \operatorname{det}\left(A_{h}\right)=0$, ho by the implicit function theorem we can not solve wort. u, but we can for X.Y.Z

Pugh 14
Honestly i don't even know where bo begin with this question.. My sues was to use characterization of diagonalizable matrizes by liner independent eigenvectors But even with this I do not know how to proceed. I will astr around and see if anyone has any ideas and correct wy work if I get feedback
24)
we have

$$
f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{\lambda^{2}+y^{2}} & (x, y) \neq(0.0) \\ 0 & \text { else }\end{cases}
$$

first of all $f(x, 0)=f(y, 0)=0, \lim _{x \rightarrow 0} f(x, 0)=\lim _{y \rightarrow 0} f(0, y)=0$ and $f(0,0)=0$

$$
\lim _{t \rightarrow 0} f(t h, t)=\lim \frac{t^{2} h^{2}\left(t^{2} h^{2}-t^{2}\right)}{t^{2} h^{2} t t^{2}}=\lim _{t \rightarrow 0} \frac{t^{4} h^{4}-t^{4} h^{2}}{t^{2}\left(h^{2}+1\right)}=\lim _{t \rightarrow 0} \frac{t^{2}\left(h^{4}-h^{2}\right)}{h^{2}+1}=0
$$

for $k \in R$, So f is cont on R. Now. Since

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{y\left(x^{4}+4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}} \quad \frac{\partial f}{\partial y}=\frac{x\left(x^{4}-4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}} \quad f^{\prime}(0,0)=0 \\
& \lim _{\alpha \rightarrow 0} \frac{\partial f}{\partial \alpha}(0.0)=\lim _{y \rightarrow 0} \frac{\partial f}{\partial y}(0,0)=\lim _{t \rightarrow 0} \frac{\partial f}{\partial x}(t h, t)=\lim _{t \rightarrow 0} \frac{\partial f}{\partial y}(t h, t)=0
\end{aligned}
$$

so Partial derivatives are continuous and differentiable, meaning second devivetive exists, so portal ones do as well. But

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x \partial y}(0,0)=\lim _{h \rightarrow 0} \frac{f_{x}(0.0+h)-f_{x}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{-h}{h}=-1 \\
& \frac{\partial^{2} f}{\partial y \partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f_{y}(0+h, 0)-f_{y}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=1
\end{aligned}
$$

so $\frac{\partial^{2} f}{\partial x \partial y} \neq \frac{\partial^{2} f}{\partial y \partial x}$.

