Hw

w 9
Rudin 8.6
let f:
$$\hat{R} \Rightarrow \hat{R}$$
 be defined by
 $f(x,y) = \begin{cases} \frac{xy}{x_1y} & x_1y \neq 0 \\ 0 & \text{else} \end{cases}$
To Clavify we use notation $D_yf = D_xf$ and $D_yf = D_yf$ as we
wark in \hat{R}^* . $(D_xf)(x,y)$ is just the partial devicative web x_1
and likewise D_yf . if they exist. They exist if the following
limits exist:
 $(D_xf(x,y): | \lim_{t \to 0} \frac{f(p+te_1) - f(p)}{t} = \lim_{t \to 0} \frac{f(x+t,y) - f(x,y)}{t}$
 $| \text{iterrise for } D_yf((x,y): \lim_{t \to 0} \frac{f(x+t,y) - f(x,y)}{t}$
 $| \text{iterrise for } D_yf((x,y): \lim_{t \to 0} \frac{f(x+t,y) - f(x,y)}{t}$
 $| \text{iterrise for } D_yf((x,y): \lim_{t \to 0} \frac{f(x+t,y) - f(x,y)}{t}$
 $| \text{they exist:}$
 $(D_xf(x,y) = \frac{2}{y}f = \frac{y(x^2y^2) - xy(xy)}{x^2+y^2+x^2y^2}$
 $(D_xf)(x,y) = \frac{2}{y}f = \frac{x(x^3y^2) - xy(xy)}{x^2+y^2+x^2y^2}$
These devicatives we defined everywhere but $(0,0)$. Here,
 $D_yf(0,0) = \lim_{t \to 0} \frac{f(x-t) - f(x,0)}{t} = \frac{1}{y} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x-t) - f(x,0)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x-t) - f(x,0)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x-t) - f(x,0)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x-t) - f(x,0)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x-t) - f(x,0)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x-t) - f(x,0)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x-t) - f(x,0)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x-t) - f(x,0)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x-t) - f(x,0)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x-t) - f(x,0)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x-t) - f(x,0)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x,y) - f(x,y) - f(x,y)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x,y) - f(x,y)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x,y) - f(x,y) - f(x,y)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x,y) - f(x,y) - f(x,y)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x,y) - f(x,y)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x,y) - f(x,y)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x,y) - f(x,y)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x,y) - f(x,y)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f(x,y) - f(x,y)}{t} = 0$
 $\frac{1}{y}f(x,y) = \lim_{t \to 0} \frac{f($

but f(0,0)=0 f(x,y) is not cont at f(0,0).

- Rudin 9.7
 - Suppose first that f is defined on $E \in \mathbb{R}^{n}$ and $\mathbb{P}_{i}f$ we hounded in E, $1 \le i \le n$. We have that $\mathbb{P}_{i}f = \frac{\partial f}{\partial x_{i}}$. f is cont if $\forall e > o \in S > o$ st $||f(x) - f(p)|| < \varepsilon$ for all ||x - p|| < sWe know that each $\mathbb{P}_{i}f$ is bounded on E. $M = \sup \{ \{ \} \} \mathbb{P}_{i}f || : x \in E \} < \infty$. We can use $M \vee T$ to show that for any point $x, y \in E$. $|f(x) - f(y)| \le M ||x - y|$. By letting $\varepsilon = M \cdot S$. Now $\forall \cdot S > o$ whenever ||x - y| < s we have $|f(x) - f(y)| < \varepsilon$.
- ³. Let $E \subset \mathbb{R}^2$ be any closed subset. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be def by $f(x) = \begin{cases} 0 & x \in E \\ inf \{ | x - y | : y \in E \} \\ x \notin E \end{cases}$ $inf \{ | x - y | : y \in E \} \\ x \notin E \end{cases}$
 - Then by construction, $f^{-1}(0) = E$ and since f(x) = 0 xEE is cont.
- 4. The idea is that from f(x,y)we can isolate y with x as g(x,y) where f(x,y) = 0, This is useful for the point where f(x,y) = (0.0)

÷