HW10

Wei-Hsiang Sun

12.

Fix two real numbers a and $b, 0<a<b$. Define a mapping $\mathbf{f}=\left(f_{1}, f_{2}, f_{3}\right)$ of \mathbf{R}^{2} into \mathbf{R}^{3} by

$$
\begin{aligned}
& f_{1}(s, t)=(b+a \cos s) \cos t \\
& f_{2}(s, t)=(b+a \cos s) \sin t \\
& f_{3}(s, t)=a \sin s .
\end{aligned}
$$

(a)

Show that there are exactly 4 points $\mathbf{p} \in \mathbf{K}$ such that

$$
\left(\nabla f_{1}\right)\left(\mathbf{f}^{-1}(\mathbf{p})\right)=\mathbf{0}
$$

Proof. First note that

$$
\nabla f_{1}=\binom{-a \sin s \cos t}{-(b+a \cos s) \sin t}
$$

Now consider when $\nabla f_{1}=(\mathbf{0})$, then either

$$
\left\{\begin{array}{l}
\sin t=0 \text { and } \sin s=0 \\
\cos t=0 \text { and } \cos s=\frac{-b}{a} \quad \text { not possible since } b>a
\end{array}\right.
$$

thus $t, s \in\{\pi, 0\}$.
(b)

Determine the set of all $\mathbf{q} \in \mathbf{K}$ such that

$$
\left(\nabla f_{3}\right)\left(\mathbf{f}^{-1}(\mathbf{q})\right)=0
$$

Proof. We apply a similar approach to that of part (a), we first get

$$
\nabla f_{3}=a \cos s
$$

Thus the corresponding solution goes is $s \in\{\pi / 2,3 \pi / 2\}$.
(c)

Show that one of the points \mathbf{p} found in part (a) corresponds to a local maximu of f_{1}, one corresponds to a local minimum and that the other two are neither. What about for (b)

Proof. We look at the second order total derivative and plug in the solutions obtained in (a)

$$
D^{2} f_{1}=D \circ D f_{1}=\left(\begin{array}{cc}
-a \cos s \cos t & a \sin s \sin t \\
a \sin s \sin t & (b+a \cos s) \cos t
\end{array}\right)
$$

plugging in $t, s \in\{\pi, 0\}$. We get For (b) since we know the max value of f_{3}

t	s	description
π	π	saddle
π	0	min
0	π	saddle
0	0	max

would be when $\sin s=1$, thus when $s=\pi / 2$ we get the max, $s=3 \pi / 2$ we get the min.

13

Suppose \mathbf{f} is a differentiable mapping of \mathbf{R}^{1} into \mathbf{R}^{3} such that $|\mathbf{f}(t)|=1$ for every t. Prove that $\mathbf{f}^{\prime}(t) \cdot \mathbf{f}(t)=0$.

Proof.

$$
\begin{aligned}
|\mathbf{f}(t)| & =1 \\
\Rightarrow \sum_{i=1}^{3} f_{i}^{2}(t) & =1 \\
\Rightarrow \frac{\partial}{\partial t} \sum_{i=1}^{3} f_{i}^{2}(t) & =0 \\
\Rightarrow 2 \sum_{i=1}^{3} f_{i}(t) f_{i}^{\prime}(t) & =0
\end{aligned}
$$

Thus proven.

19

Show that the system of equations

$$
\begin{aligned}
3 x+y-z+u^{2} & =0 \\
x-y+2 z+u & =0 \\
2 x+2 y-3 z+2 u & =0
\end{aligned}
$$

can be solved in terms of x, y, z respectively, but not u.
Proof. We write out the augmented matrix. In terms of x

$$
\left(\begin{array}{ccc|c}
1 & -1 & u^{2} & -3 \\
-1 & 2 & u & -1 \\
2 & -3 & 2 u & -2
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & -1 & u^{2} & -3 \\
0 & -1 & -u^{2}+3 & 4 \\
0 & 0 & -u^{2}+4 u+3 & -4
\end{array}\right)
$$

In terms of y

$$
\left(\begin{array}{ccc|c}
3 & -2 & u^{2} & -1 \\
1 & 2 & u & 1 \\
2 & -3 & 2 u & -2
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & -1 / 3 & u^{2} / 3 & -1 / 3 \\
1 & 2 & u & 1 \\
0 & -7 & 0 & -4
\end{array}\right)
$$

In terms of z

$$
\left(\begin{array}{ccc|c}
3 & 1 & u^{2} & 1 \\
1 & -1 & u & -2 \\
2 & 2 & 2 u & 3
\end{array}\right) \sim\left(\begin{array}{ccc|c}
3 & 1 & u^{2} & 1 \\
1 & -1 & u & -2 \\
0 & 4 & 0 & 7
\end{array}\right)
$$

In terms of u

$$
\left(\begin{array}{ccc|c}
3 & 1 & -1 & -u^{2} \\
1 & -1 & 2 & u \\
0 & 2 & -3 & 2 u
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & -1 & u^{2} \\
1 & -1 & 2 & u \\
0 & 4 & -7 & 0
\end{array}\right)
$$

y has to be written in z or the other way around in order for the equation to be solved.

24

$$
\begin{align*}
& \quad f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} \\
& \begin{aligned}
\frac{\partial f(x, y)}{\partial x}= & \left(3 x^{2} y-y^{3}\right)\left(x^{2}+y^{2}\right)^{-1}+\left(x^{3} y+x y^{3}\right)(-1)\left(x^{2}+y^{2}\right)^{-2} 2 x \\
= & \frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned} \\
& \frac{\partial f(x, y)}{\partial y}= \\
& = \tag{1}
\end{align*}
$$

Then

$$
\begin{aligned}
& \frac{\partial f(0,0)}{\partial x}=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=0 \\
& \frac{\partial f(0,0)}{\partial y}=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=0
\end{aligned}
$$

and so

$$
\begin{aligned}
\frac{\partial f(0,0)}{\partial x \partial y} & =\lim _{h \rightarrow 0} \frac{\partial f(0,0+h) / \partial x-\partial f(0,0) / \partial x}{h}=-1 \\
\frac{\partial f(0,0)}{\partial y \partial x} & =\lim _{h \rightarrow 0} \frac{\partial f(0+h, 0) / \partial x-\partial f(0,0) / \partial x}{h}=1
\end{aligned}
$$

Thus the partial derivative exists but the the partial derivatives are different.

