HW5

Wei-Hsiang Sun

8.2.7

Let $p>2$ and $c>0$. Using the Borel-Contelli lemma, show that the set

$$
\left\{x \in[0,1]:\left|x-\frac{a}{q}\right| \leq \frac{c}{q^{p}} \text { for infinitely many positive integers a, } \mathrm{q}\right\}
$$

has measure zero.
Proof. Let $\Omega_{p, a}=\left\{x \in[0,1]:\left|x-\frac{a}{q}\right| \leq \frac{c}{q^{p}}\right\}$. We want to show that $\sum_{q, a}^{\infty} \Omega_{q, a}$ is measurable, and $\sum_{q, a}^{\infty} m\left(\Omega_{q, a}\right)<\infty$. First we try to divide q, a into cases. Suppose we fix q, then let

$$
\begin{equation*}
x \in \Omega_{p, a} \Rightarrow x \in\left[\frac{a}{q}-\frac{c}{q^{p}}, \frac{a}{q}+\frac{c}{q^{p}}\right] \tag{1}
\end{equation*}
$$

Since both the bounds tends toward infinity, there exists some N_{q} such that if $a>N_{q}, \Omega_{n, p}=\emptyset$. Also, there exists some N such that if $q>N$ then $\frac{4 c}{q^{p-1}}<1$, suppose $a>2 q$, then $\frac{a}{q}-\frac{c}{q^{p}}>1$, thus $\Omega_{q, a}=\emptyset$.
To summarize,

$$
\begin{cases}\forall q \leq N, & a>N_{q} \Rightarrow \Omega_{q, a}=\emptyset \\ \forall q \leq N, & a \leq N_{q} \Rightarrow m\left(\Omega_{q, a}\right) \leq 1 \\ \forall q>N, & a>2 q \Rightarrow \Omega_{q, a}=\emptyset \\ \forall q>N, & a \leq 2 q \Rightarrow m\left(\Omega_{q, a}\right)=\frac{2 c}{q^{p}}\end{cases}
$$

Thus,

$$
\begin{align*}
\sum_{q=1}^{\infty} \sum_{a=1}^{\infty} m\left(\Omega_{q, a}\right) & =\sum_{q=1}^{N} \sum_{a=1}^{N_{q}} m\left(\Omega_{p, q}\right)+\sum_{q=N+1}^{\infty} \sum_{a=1}^{2 q} m\left(\Omega_{q, a}\right) \tag{2}\\
& \leq \infty \tag{3}
\end{align*}
$$

Thus by Borel-Contelli lemma, $m\left(\left\{x \in \Omega_{q, a}: a, q \in \mathbf{N}^{+}\right\}\right)=0$

8.2.9

For every positive integer n, let $f_{n}: \mathbf{R} \rightarrow[0, \infty)$ be a non-negative measurable function such that

$$
\int_{\mathbf{R}} f_{n} \leq \frac{1}{4^{n}}
$$

Show that for every $\epsilon>0$ there exists a set E of Lebesgue measurable $m(E) \leq \epsilon$ such that $f_{n}(x)$ converges pointwise to zero for all $x \in \mathbf{R} \backslash E$.

Proof. Let $\epsilon>0$. Let $A_{n}=\left\{x \in \mathbf{R}: f_{n}(x)>\frac{1}{\epsilon 2^{n}}\right\}$, define a simple function

$$
s_{n}= \begin{cases}\frac{1}{\epsilon 2^{n}} & x \in A_{n} \\ 0 & \text { otherwise }\end{cases}
$$

then $\int s_{n}=\frac{1}{\epsilon 2^{n}} m\left(A_{n}\right)$.
$\because s_{n} \leq f_{n}$ for all n, so

$$
\begin{aligned}
\int s_{n} & \leq \int f_{n} \leq \frac{1}{4^{n}} \\
\rightarrow \frac{1}{\epsilon 2^{n}} m\left(A_{n}\right) & \leq \frac{1}{4^{n}} \\
\rightarrow m\left(A_{n}\right) & \leq \frac{\epsilon}{2^{n}}
\end{aligned}
$$

Let $E=\bigcup_{n=1}^{\infty} A_{n}$,
$\because A_{n}$ is preimage of an open set in the range of a measurable function f_{n}, $\therefore A_{n}$ is measurable, and so is $E=\bigcup_{n=1}^{\infty} A_{n}$.

$$
\begin{aligned}
m(E) & =m\left(\bigcup_{n=1}^{\infty} A_{n}\right) \\
& \leq \sum_{n=1}^{\infty} m\left(A_{n}\right)=\epsilon
\end{aligned}
$$

E is a zero set. If $x \in R \backslash E$, then $f_{n}(x) \leq \frac{\epsilon}{2^{n}}$ True for all n, thus $f_{n} \rightarrow 0$.

8.2.10

For every positive integer n, let $f_{n}:[0,1] \rightarrow[0, \infty)$ be a non-negative measurable function such that f_{n} converges pointwise to zero. Show that for every $\epsilon>0$, there exists a set E of Lebesgue measure $m(E) \leq \epsilon$ such that $f_{n}(x)$ converges uniformly to zero for all $x \in[0,1] \backslash E$
Proof. Let $m \in Z^{+}, A_{n}=\left\{x \in[0,1] \left\lvert\, f_{n}(x)>\frac{1}{m}\right.\right\}$, then let $B_{n}=\bigcup_{i=n}^{\infty} A_{n}$, then $B_{1} \supset B_{2} \supset \ldots$, so $m\left(\bigcap_{n=1}^{\infty} B_{n}\right)=\lim m^{*}\left(B_{n}\right)$. Claim that $\lim m^{*}\left(B_{n}\right)=$ $\lim m^{*}(\emptyset)=0$. Suppose otherwise, $\exists x \in \bigcap_{n=1}^{\infty} B_{n} \Rightarrow \forall n \quad x \in B_{n}$, but $f_{n} \rightarrow$ 0 , so there exists some N such that $n>N$, then $f_{n}(x)<\frac{1}{m}, x \notin A_{n}$, a contradiction. Thus $\lim m^{*}\left(B_{n}\right)=\lim m^{*}(\emptyset)=0$. So there $\exists N_{m}$ such that if $n>N_{m}$, then $m^{*}\left(B_{n}\right) \leq \frac{\epsilon}{2^{m}}$. Let $E=\bigcup_{m=1}^{\infty} B_{N_{m}}$, then $m(E) \leq \sum m\left(B_{N_{m}}\right) \leq$ $\sum \frac{\epsilon}{2^{m}}=\epsilon$. Let $\epsilon>0$, choose M s.t. $\frac{1}{M}<\epsilon$. Suppose $x \in[0,1] \backslash E$, then $x \notin B_{N_{M}}$ and thus $x \notin A_{n}$ for all $n>N_{M}$. i.e. $f_{n}(x) \leq 1 / M<\epsilon$. f_{n} converges uniformly on $[0,1] \backslash E$.

No consider the function mentioned in class, the sequence of indicator functions lumping in $[n, n+1]$. does not converge uniformly to zero.

