HW5

Wei-Hsiang Sun

8.2.7

Let p > 2 and c > 0. Using the Borel-Contelli lemma, show that the set

$$\{x \in [0,1] : |x - \frac{a}{q}| \le \frac{c}{q^p}$$
 for infinitely many positive integers a,q $\}$

has measure zero.

Proof. Let $\Omega_{p,a} = \{x \in [0,1] : |x - \frac{a}{q}| \leq \frac{c}{q^p}\}$. We want to show that $\sum_{q,a}^{\infty} \Omega_{q,a}$ is measurable, and $\sum_{q,a}^{\infty} m(\Omega_{q,a}) < \infty$. First we try to divide q, a into cases. Suppose we fix q, then let

$$x \in \Omega_{p,a} \Rightarrow x \in \left[\frac{a}{q} - \frac{c}{q^p}, \frac{a}{q} + \frac{c}{q^p}\right]$$
 (1)

Since both the bounds tends toward infinity, there exists some N_q such that if $a > N_q$, $\Omega_{n,p} = \emptyset$. Also, there exists some N such that if q > N then $\frac{4c}{q^{p-1}} < 1$, suppose a > 2q, then $\frac{a}{q} - \frac{c}{q^p} > 1$, thus $\Omega_{q,a} = \emptyset$. To summarize,

$$\begin{cases} \forall q \leq N, \quad a > N_q \Rightarrow \Omega_{q,a} = \emptyset \\ \forall q \leq N, \quad a \leq N_q \Rightarrow m(\Omega_{q,a}) \leq 1 \\ \forall q > N, \quad a > 2q \Rightarrow \Omega_{q,a} = \emptyset \\ \forall q > N, \quad a \leq 2q \Rightarrow m(\Omega_{q,a}) = \frac{2c}{q^p}. \end{cases}$$

Thus,

$$\sum_{q=1}^{\infty} \sum_{a=1}^{\infty} m(\Omega_{q,a}) = \sum_{q=1}^{N} \sum_{a=1}^{N_q} m(\Omega_{p,q}) + \sum_{q=N+1}^{\infty} \sum_{a=1}^{2q} m(\Omega_{q,a})$$
(2)
$$\leq \infty$$
(3)

$$(3)$$

Thus by Borel-Contelli lemma, $m(\{x\in\Omega_{q,a}:a,q\in\mathbf{N}^+\})=0$

8.2.9

For every positive integer n, let $f_n : \mathbf{R} \to [0, \infty)$ be a non-negative measurable function such that

$$\int_{\mathbf{R}} f_n \le \frac{1}{4^n}$$

Show that for every $\epsilon > 0$ there exists a set E of Lebesgue measurable $m(E) \leq \epsilon$ such that $f_n(x)$ converges pointwise to zero for all $x \in \mathbf{R} \setminus E$.

Proof. Let $\epsilon > 0$. Let $A_n = \{x \in \mathbf{R} : f_n(x) > \frac{1}{\epsilon^{2n}}\}$, define a simple function

$$s_n = \begin{cases} \frac{1}{\epsilon^{2^n}} & x \in A_n \\ 0 & \text{otherwise} \end{cases}$$

then $\int s_n = \frac{1}{\epsilon 2^n} m(A_n)$. $\therefore s_n \le f_n$ for all n, so

$$\int s_n \leq \int f_n \leq \frac{1}{4^n}$$
$$\rightarrow \frac{1}{\epsilon 2^n} m(A_n) \leq \frac{1}{4^n}$$
$$\rightarrow m(A_n) \leq \frac{\epsilon}{2^n}$$

Let $E = \bigcup_{n=1}^{\infty} A_n$, $\therefore A_n$ is preimage of an open set in the range of a measurable function f_n , $\therefore A_n$ is measurable, and so is $E = \bigcup_{n=1}^{\infty} A_n$.

$$m(E) = m\left(\bigcup_{n=1}^{\infty} A_n\right)$$
$$\leq \sum_{n=1}^{\infty} m(A_n) = \epsilon$$

E is a zero set. If $x \in R \setminus E$, then $f_n(x) \leq \frac{\epsilon}{2^n}$ True for all *n*, thus $f_n \to 0$.

8.2.10

For every positive integer n, let $f_n : [0, 1] \to [0, \infty)$ be a non-negative measurable function such that f_n converges pointwise to zero. Show that for every $\epsilon > 0$, there exists a set E of Lebesgue measure $m(E) \leq \epsilon$ such that $f_n(x)$ converges uniformly to zero for all $x \in [0, 1] \setminus E$

Proof. Let $m \in Z^+$, $A_n = \{x \in [0,1] | f_n(x) > \frac{1}{m}\}$, then let $B_n = \bigcup_{i=n}^{\infty} A_n$, then $B_1 \supset B_2 \supset \ldots$, so $m(\bigcap_{n=1}^{\infty} B_n) = \lim m^*(B_n)$. Claim that $\lim m^*(B_n) = \lim m^*(\emptyset) = 0$. Suppose otherwise, $\exists x \in \bigcap_{n=1}^{\infty} B_n \Rightarrow \forall n \quad x \in B_n$, but $f_n \rightarrow 0$, so there exists some N such that n > N, then $f_n(x) < \frac{1}{m}$, $x \notin A_n$, a contradiction. Thus $\lim m^*(B_n) = \lim m^*(\emptyset) = 0$. So there $\exists N_m$ such that if $n > N_m$, then $m^*(B_n) \leq \frac{\epsilon}{2^m}$. Let $E = \bigcup_{m=1}^{\infty} B_{N_m}$, then $m(E) \leq \sum m(B_{N_m}) \leq \sum \frac{\epsilon}{2^m} = \epsilon$. Let $\epsilon > 0$, choose M s.t. $\frac{1}{M} < \epsilon$. Suppose $x \in [0,1] \setminus E$, then $x \notin B_{N_M}$ and thus $x \notin A_n$ for all $n > N_M$. i.e. $f_n(x) \leq 1/M < \epsilon$.

No consider the function mentioned in class, the sequence of indicator functions lumping in [n, n + 1]. does not converge uniformly to zero.