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Ex 39

Suppose that f and g are measurable and their squares are integrable. Prove
that fg is measurable, integrable, and∫

fg ≤

√∫
f2

√∫
g2

Proof. WTS
∫
fg ≤

√∫
f2
√∫

g2,

but since
∫
fg ≤

∫
|fg|,

thus, it suffices to show that
∫
|fg| ≤

√∫
f2
√∫

g2 ⇔
∫ |fg|√∫

f2
√∫

g2
≤ 1.

First we claim that ∀a, b ≥ 0, ab ≤ a2

2 + b2

2 . Since

ab = exp{ln(ab)}

= exp{1
2
ln(a)2 +

1

2
ln(b)2}

≤ 1

2
exp{ln(a)2}+ 1

2
exp{ln(b)2} by convexity of ex

=
a2

2
+

b2

2

Now, set a = |f(x)|√∫
f2
, b = |g(x)|√∫

g2
applying the claim, we get

|f(x)||g(x)|√∫
f2
√∫

g2
≤ |f(x)|2

2
√∫

f2
+

|g(x)|2

2
√∫

g2

By taking integral of both sides∫
|f(x)||g(x)|√∫

f2
√∫

g2
≤ 1

2
+

1

2
= 1

Thus ∫
fg ≤

√∫
f2

√∫
g2
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Ex 48

The Devil’s ski slope. Recall from Chapter 3 that the Devil’s staircase function
H : [0, 1] → [0, 1] is continuous, nondecreasing constant on each interval com-
plementary to the standard Cantor set, and yet is surjective. For n ∈ Z and
x ∈ [0, 1] we define Ĥ(x + n) = H(x) + n. This extends H to a continuous
surjection R → R. Then we set

Hk(x) = Ĥ(3kx) and J(x) =

∞∑
k=0

Hk(x)

4k

Prove that J is continuous, strictly increasing, and yet J ′ = 0 a.e.
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Ex 53

Consider the function f : R2 → R defined by

f(x, y) =


1
y2 if 0 < x < y < 1
−1
x2 if 0 < y < x < 1

0 otherwise

(a)

show that the iterated intergrals exist and are finite (calculated them) but the
double integral does not exist.
The iterated integral

∫ 1

0

∫ x

0

−1

x2
dydx+

∫ 1

0

∫ 1

x

1

y2
dydx

=

∫ 1

0

−1

x
dx+

∫ 1

0

−1 +
1

x
dx

=−1 < ∞

Thus the integral exists. Similarly,∫ 1

0

∫ y

0

1

y2
dxdy +

∫ 1

0

∫ 1

y

−1

x2
dxdy

=

∫ 1

0

1

y
dy +

∫ 1

0

1− 1

y
dy

=1 < ∞

But the double integral does not exist.

(b)

Explain why (a) does not contradict Corollary 43.
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Ex 58

The balanced density of a measurable set E at x is the limit, if exists, of the
concentration of E in B where B is a ball centered at x that shrinks down to
x. Write δbalanced(x,E) to indicate the balanced density, and if it is 1, refer to
x as a balanced density point.

(a)

Why is it immediate from the Lebesgue Density Theorem that almost every
point of E is a balanced density point?
Since for every shrinking box, there is a smaller ball whose center is x, thus if by
shrinking boxes, we get density 1 at x, x would have a balanced density of 1. So
density equals to 1 everywhere implies balanced density equals to 1 everywhere.

(b)

Given α ∈ [0, 1], construct an example of a measurable set E ⊂ R that contains
a point x with δbalanced(x,E) = α.

(c)

Given α ∈ [0, 1], construct an example of a measurable set E ⊂ R that contains a
point x with δ(x,E) = α. Here, we construct the set according to Real Analysis
Exchange article:
First, we map out the proof outline:
Construct An, a infinite union of disjoint subintervals, get the measure closed
form by countable additivity. Consider a smaller interval, such that the measure

Proof. Let E = (a, b) ⊂ R, let m = b−a
2 let

An =

∞⋃
r=1

(
a+

nm

n+ r
, a+

nm

n+ r
+

αnm

(n+ r)(n+ r − 1)

)
then for any positive integer N , by countable additivity

m

( ∞⋃
r=N

(
a+

nm

n+ r
, a+

nm

n+ r
+

αnm

(n+ r)(n+ r − 1)

))
= α

(
nm

n+N − 1

)
And by such construct, we can find c ∈ (a, a +m), and some l ∈ N such that

nm
n+s+1 ≤ m(An ∩ (a, c)) ≤ αnm

n+s and nm
n+s+1 ≤ (c − a) ≤ nm

n+s , thus the limit of

the measure limn→∞
m(An∩(a,c))

c−a is bounded by two sequences that converges to
α.

(d)

Is there a single set that contains points of both types of density for all α ∈ [0, 1]?
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Ex 66

Construct a monotone function f : [0, 1] → R whose discontinuity set is exactly
the set Q ∩ [0, 1], or prove that such a function does not exist.

Proof. Let Q = {qn ∈ [0, 1] \Q|n ∈ N}. Then let

f(x) =
∑
qn≤x

1

n2

Then by the integral test, for every x ∈ R, f(x) converges absolutely. And for
every x′ > x, f(x′) > f(x), thus the function is monotone increasing. But for
every element q ∈ Q,

lim
x→q−

f(x) =
∑
qn<q

1

n2
<
∑
qn≤q

1

n2
= lim f(q)

And for p ∈ [0, 1] \Q,

lim
x→p

f(x) =
∑
qn≤p

1

n2
= lim f(p)
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