HW7

Wei-Hsiang Sun

Ex 39

Suppose that f and g are measurable and their squares are integrable. Prove that $f g$ is measurable, integrable, and

$$
\int f g \leq \sqrt{\int f^{2}} \sqrt{\int g^{2}}
$$

Proof. WTS $\int f g \leq \sqrt{\int f^{2}} \sqrt{\int g^{2}}$, but since $\int f g \leq \int|f g|$,
thus, it suffices to show that $\int|f g| \leq \sqrt{\int f^{2}} \sqrt{\int g^{2}} \Leftrightarrow \int \frac{|f g|}{\sqrt{\int f^{2}} \sqrt{\int g^{2}}} \leq 1$.
First we claim that $\forall a, b \geq 0, a b \leq \frac{a^{2}}{2}+\frac{b^{2}}{2}$. Since

$$
\begin{aligned}
a b & =\exp \{\ln (a b)\} \\
& =\exp \left\{\frac{1}{2} \ln (a)^{2}+\frac{1}{2} \ln (b)^{2}\right\} \\
& \leq \frac{1}{2} \exp \left\{\ln (a)^{2}\right\}+\frac{1}{2} \exp \left\{\ln (b)^{2}\right\} \quad \text { by convexity of } e^{x} \\
& =\frac{a^{2}}{2}+\frac{b^{2}}{2}
\end{aligned}
$$

Now, set $a=\frac{|f(x)|}{\sqrt{\int f^{2}}}, b=\frac{|g(x)|}{\sqrt{\int g^{2}}}$ applying the claim, we get

$$
\frac{|f(x)||g(x)|}{\sqrt{\int f^{2}} \sqrt{\int g^{2}}} \leq \frac{|f(x)|^{2}}{2 \sqrt{\int f^{2}}}+\frac{|g(x)|^{2}}{2 \sqrt{\int g^{2}}}
$$

By taking integral of both sides

$$
\int \frac{|f(x)||g(x)|}{\sqrt{\int f^{2}} \sqrt{\int g^{2}}} \leq \frac{1}{2}+\frac{1}{2}=1
$$

Thus

$$
\int f g \leq \sqrt{\int f^{2}} \sqrt{\int g^{2}}
$$

Ex 48

The Devil's ski slope. Recall from Chapter 3 that the Devil's staircase function $H:[0,1] \rightarrow[0,1]$ is continuous, nondecreasing constant on each interval complementary to the standard Cantor set, and yet is surjective. For $n \in \mathbf{Z}$ and $x \in[0,1]$ we define $\widehat{H}(x+n)=H(x)+n$. This extends H to a continuous surjection $\mathbf{R} \rightarrow \mathbf{R}$. Then we set

$$
H_{k}(x)=\widehat{H}\left(3^{k} x\right) \quad \text { and } \quad J(x)=\sum_{k=0}^{\infty} \frac{H_{k}(x)}{4^{k}}
$$

Prove that J is continuous, strictly increasing, and yet $J^{\prime}=0$ a.e.

Ex 53

Consider the function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{1}{y^{2}} & \text { if } 0<x<y<1 \\ \frac{-1}{x^{2}} & \text { if } 0<y<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a)
show that the iterated intergrals exist and are finite (calculated them) but the double integral does not exist.
The iterated integral

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{x} \frac{-1}{x^{2}} \mathrm{~d} y \mathrm{~d} x+\int_{0}^{1} \int_{x}^{1} \frac{1}{y^{2}} \mathrm{~d} y \mathrm{~d} x \\
= & \int_{0}^{1} \frac{-1}{x} \mathrm{~d} x+\int_{0}^{1}-1+\frac{1}{x} \mathrm{~d} x \\
= & -1<\infty
\end{aligned}
$$

Thus the integral exists. Similarly,

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{y} \frac{1}{y^{2}} \mathrm{~d} x \mathrm{~d} y+\int_{0}^{1} \int_{y}^{1} \frac{-1}{x^{2}} \mathrm{~d} x \mathrm{~d} y \\
= & \int_{0}^{1} \frac{1}{y} \mathrm{~d} y+\int_{0}^{1} 1-\frac{1}{y} \mathrm{~d} y \\
= & 1<\infty
\end{aligned}
$$

But the double integral does not exist.
(b)

Explain why (a) does not contradict Corollary 43.

Ex 58

The balanced density of a measurable set E at x is the limit, if exists, of the concentration of E in B where B is a ball centered at x that shrinks down to x. Write $\delta_{\text {balanced }}(x, E)$ to indicate the balanced density, and if it is 1 , refer to x as a balanced density point.

(a)

Why is it immediate from the Lebesgue Density Theorem that almost every point of E is a balanced density point?
Since for every shrinking box, there is a smaller ball whose center is x, thus if by shrinking boxes, we get density 1 at x, x would have a balanced density of 1 . So density equals to 1 everywhere implies balanced density equals to 1 everywhere.

(b)

Given $\alpha \in[0,1]$, construct an example of a measurable set $E \subset R$ that contains a point x with $\delta_{\text {balanced }}(x, E)=\alpha$.

(c)

Given $\alpha \in[0,1]$, construct an example of a measurable set $E \subset R$ that contains a point x with $\delta(x, E)=\alpha$. Here, we construct the set according to Real Analysis Exchange article:
First, we map out the proof outline:
Construct A_{n}, a infinite union of disjoint subintervals, get the measure closed form by countable additivity. Consider a smaller interval, such that the measure
Proof. Let $E=(a, b) \subset \mathbf{R}$, let $m=\frac{b-a}{2}$ let

$$
A_{n}=\bigcup_{r=1}^{\infty}\left(a+\frac{n m}{n+r}, a+\frac{n m}{n+r}+\frac{\alpha n m}{(n+r)(n+r-1)}\right)
$$

then for any positive integer N, by countable additivity

$$
m\left(\bigcup_{r=N}^{\infty}\left(a+\frac{n m}{n+r}, a+\frac{n m}{n+r}+\frac{\alpha n m}{(n+r)(n+r-1)}\right)\right)=\alpha\left(\frac{n m}{n+N-1}\right)
$$

And by such construct, we can find $c \in(a, a+m)$, and some $l \in \mathbf{N}$ such that $\frac{n m}{n+s+1} \leq m\left(A_{n} \cap(a, c)\right) \leq \frac{\alpha n m}{n+s}$ and $\frac{n m}{n+s+1} \leq(c-a) \leq \frac{n m}{n+s}$, thus the limit of the measure $\lim _{n \rightarrow \infty} \frac{m\left(A_{n} \cap(a, c)\right)}{c-a}$ is bounded by two sequences that converges to α.

(d)

Is there a single set that contains points of both types of density for all $\alpha \in[0,1]$?

Ex 66

Construct a monotone function $f:[0,1] \rightarrow \mathbf{R}$ whose discontinuity set is exactly the set $\mathbf{Q} \cap[0,1]$, or prove that such a function does not exist.

Proof. Let $Q=\left\{q_{n} \in[0,1] \backslash \mathbf{Q} \mid n \in \mathbf{N}\right\}$. Then let

$$
f(x)=\sum_{q_{n} \leq x} \frac{1}{n^{2}}
$$

Then by the integral test, for every $x \in \mathbf{R}, f(x)$ converges absolutely. And for every $x^{\prime}>x, f\left(x^{\prime}\right)>f(x)$, thus the function is monotone increasing. But for every element $q \in Q$,

$$
\lim _{x \rightarrow q^{-}} f(x)=\sum_{q_{n}<q} \frac{1}{n^{2}}<\sum_{q_{n} \leq q} \frac{1}{n^{2}}=\lim f(q)
$$

And for $p \in[0,1] \backslash Q$,

$$
\lim _{x \rightarrow p} f(x)=\sum_{q_{n} \leq p} \frac{1}{n^{2}}=\lim f(p)
$$

