HW9

Wei-Hsiang Sun

1.

If $f(0,0)=0$ and

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}} \quad \text { if }(x, y) \neq(0,0)
$$

prove that $\left(D_{1} f\right)(x, y)$ and $\left(D_{2}\right)(x, y)$ exist at every point of \mathbf{R}^{2}, although f is not continuous at $(0,0)$.

Proof. Without loss of generality, we show that $\left(D_{1} f\right)(x, y)$ is differentiable everywhere. Fix y, let $x \in \mathbf{R}$

$$
\begin{aligned}
\frac{\partial f(x, y)}{\partial x} & =\frac{y\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}-\frac{2 x^{2} y}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{y^{3}-x^{2} y}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

When $x=0$, by L'Hospital's rule, $\left(D_{1} f\right)(0, y) \left\lvert\,=\frac{0}{2}=0\right.$.. Now we prove that f is not continuous at $(0,0)$. Set $\epsilon=\frac{1}{10}$, let $\delta>0$, choose $z=\left(x_{0}, y_{0}\right)=(\delta / 4, \delta / 4)$, then $|z|<\delta$ and $|f(z)-f(0)|=\left|\frac{x_{0} y_{0}}{x_{0}^{2}+y_{0}^{2}}\right|=\frac{1}{2}<\frac{1}{10}=\epsilon$. This is true for all $\delta>0$, thus f is not continuous at $(0,0)$.
2.

Suppose that f is a real-valued function defined in an open set $E \subset \mathbf{R}^{n}$, and that the partial derivative $D_{1} f, \ldots, D_{n} f$, are bounded in E. Prove that f is continuous in E.

Proof. Here we follow the hint in rudin. Let $\epsilon>0$, let $x \in E$, and set $\delta=\frac{\epsilon}{2 n M}$, let $M=\sup \left(\bigcup_{i} D_{i} f(E)\right)$ let $\mathbf{h}=\sum h_{j} e_{j}, v_{0}=0, v_{k}=h_{1} e_{1}+\ldots+h_{k} e_{k}$, for $1 \leq k \leq n$, since E is open, we can choose $\mathbf{h},|\mathbf{h}|<\delta$ such that $B_{|\mathbf{h}|}(x) \subset E$, then by construct, $x+h \in E,|x-(x+h)|=|h|<\delta$, and that

$$
f(x+h)-f(x)=\sum_{j=1}^{n}\left[f\left(x+v_{j}\right)-f\left(x+v_{j-1}\right)\right]
$$

by the Mean Value Theorem

$$
=\sum_{j=1}^{n} h_{j}\left(D_{j} f\right)\left(x+v_{j-1}+\theta_{j} h_{j} e_{j}\right)
$$

for some $\theta_{j} \in(0,1)$
Then

$$
\begin{aligned}
|f(x+h)-f(x)| & =\left|\sum_{j=1}^{n} h_{j}\left(D_{j} f\right)\left(x+v_{j-1}+\theta_{j} h_{j} e_{j}\right)\right| \\
& \leq\left|\sum_{j=1}^{n} h_{j} M\right| \quad M \text { is the supremum } \\
& \leq \sum_{j=1}^{n}\left|h_{j} M\right| \quad \text { triangle inequality } \\
& \leq \sum_{j=1}^{n}|\mathbf{h}||M|=\epsilon / 2<\epsilon
\end{aligned}
$$

Thus f is continuous on E.

3.

Show that, for any closed subset $E \subset \mathbf{R}^{2}$, there is a continuous function f : $\mathbf{R}^{2} \rightarrow \mathbf{R}$, such that $f^{-1}(0)=E$.

Proof. The distance between a point and the set E satisfies the property.

$$
d(x, E)=\inf \{d(x, y) \mid y \in E\}
$$

It suffices to prove that $f: x \mapsto d(x, E)$ is continuous. Want to show:

$$
\forall x_{0} \in \mathbf{R}^{2} \quad \forall \epsilon>0 \quad \exists \delta>0 \quad \text { s.t } \forall x \in \mathbf{R}^{2} \quad\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

let $x_{0} \in \mathbf{R}^{2}$, let $\epsilon>0$, choose $\delta=\epsilon$. for every $x \in \mathbf{R}^{2}$, if $\left|x-x_{0}\right|<\delta$, we then want to show that $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$. It suffice to show that $\left|f(x)-f\left(x_{0}\right)\right|<$ $\delta+\sigma$, for all $\sigma>0$. We divide into cases, let $\sigma>0$

1. suppose $f(x)>f\left(x_{0}\right)$, that is $d(x, E)>d\left(x_{0}, E\right)$, then there exists $y \in E$ such that $d\left(x_{0}, E\right)+\sigma>d\left(x_{0}, y\right)$. Then

$$
\begin{array}{r}
d(x, y)-d\left(x_{0}, y\right)<d\left(x, x_{0}\right) \\
\Rightarrow d(x, E)-d\left(x_{0}, y\right)<d\left(x, x_{0}\right) \\
\Rightarrow d(x, E)-d\left(x_{0}, E\right)-\sigma<d\left(x, x_{0}\right) \\
\Rightarrow d(x, E)-d\left(x_{0}, E\right)<d\left(x, x_{0}\right)+\sigma
\end{array}
$$

True for all $\sigma>0$, thus $d(x, E)-d\left(x_{0}, E\right) \leq d\left(x, x_{0}\right)$.
2. Similarly, suppose $f\left(x_{0}\right)>f(x)$, that is $d\left(x_{0}, E\right)>d(x, E)$, then there exists $y \in E$ such that $d(x, E)+\sigma>d(x, y)$. Then

$$
\begin{array}{r}
d\left(x_{0}, y\right)-d(x, y)<d\left(x, x_{0}\right) \\
\Rightarrow d\left(x_{0}, E\right)-d(x, y)<d\left(x, x_{0}\right) \\
\Rightarrow d\left(x_{0}, E\right)-d(x, E)-\sigma<d\left(x, x_{0}\right) \\
\Rightarrow d\left(x_{0}, E\right)-d(x, E)<d\left(x, x_{0}\right)+\sigma
\end{array}
$$

True for all $\sigma>0$, thus $d\left(x_{0}, E\right)-d(x, E) \leq d\left(x, x_{0}\right)$.
Thus for for any $x_{0}, x,\left|f(x)-f\left(x_{0}\right)\right| \leq d\left(x, x_{0}\right)$
$\left|f(x)-f\left(x_{0}\right)\right| \leq d\left(x, x_{0}\right)<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$

Intuition:
let (x, y) be the solution to

$$
f\left(x_{0}, y_{0}\right)=80,
$$

then, \exists some radius r such that

$$
\forall(x, y) \in \mathbb{R}^{n} \text { if }(x, y) \in \operatorname{Br}((x, y, y))
$$

the collection of such (x, y) is can be written as function of x,

$$
\text { i.e }(x, g(x))
$$

