HW9

Wei-Hsiang Sun

1.

If f(0,0) = 0 and

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$

prove that $(D_1 f)(x, y)$ and $(D_2)(x, y)$ exist at every point of \mathbb{R}^2 , although f is not continuous at (0, 0).

Proof. Without loss of generality, we show that $(D_1f)(x, y)$ is differentiable everywhere. Fix y, let $x \in \mathbf{R}$

$$\frac{\partial f(x,y)}{\partial x} = \frac{y(x^2+y^2)}{(x^2+y^2)^2} - \frac{2x^2y}{(x^2+y^2)^2}$$
$$= \frac{y^3 - x^2y}{(x^2+y^2)^2}$$

When x = 0, by L'Hospital's rule, $(D_1 f)(0, y) = \frac{0}{2} = 0$. Now we prove that f is not continuous at (0, 0). Set $\epsilon = \frac{1}{10}$, let $\delta > 0$, choose $z = (x_0, y_0) = (\delta/4, \delta/4)$, then $|z| < \delta$ and $|f(z) - f(0)| = \left| \frac{x_0 y_0}{x_0^2 + y_0^2} \right| = \frac{1}{2} < \frac{1}{10} = \epsilon$. This is true for all $\delta > 0$, thus f is not continuous at (0, 0).

Suppose that f is a real-valued function defined in an open set $E \subset \mathbf{R}^n$, and that the partial derivative $D_1 f, \ldots, D_n f$, are bounded in E. Prove that f is continuous in E.

Proof. Here we follow the hint in rudin. Let $\epsilon > 0$, let $x \in E$, and set $\delta = \frac{\epsilon}{2nM}$, let $M = \sup(\bigcup_i D_i f(E))$ let $\mathbf{h} = \sum h_j e_j$, $v_0 = 0$, $v_k = h_1 e_1 + \ldots + h_k e_k$, for $1 \leq k \leq n$, since E is open, we can choose \mathbf{h} , $|\mathbf{h}| < \delta$ such that $B_{|\mathbf{h}|}(x) \subset E$, then by construct, $x + h \in E$, $|x - (x + h)| = |h| < \delta$, and that

$$f(x+h) - f(x) = \sum_{j=1}^{n} [f(x+v_j) - f(x+v_{j-1})]$$

by the Mean Value Theorem
$$= \sum_{j=1}^{n} h_j (D_j f) (x+v_{j-1} + \theta_j h_j e_j)$$
for some $\theta_i \in (0, 1)$

for some $\theta_j \in (0,1)$

Then

$$|f(x+h) - f(x)| = |\sum_{j=1}^{n} h_j(D_j f)(x+v_{j-1} + \theta_j h_j e_j)|$$

$$\leq |\sum_{j=1}^{n} h_j M| \quad M \text{ is the supremum}$$

$$\leq \sum_{j=1}^{n} |h_j M| \quad \text{triangle inequality}$$

$$\leq \sum_{j=1}^{n} |\mathbf{h}| |M| = \epsilon/2 < \epsilon$$

Thus f is continuous on E.

Show that, for any closed subset $E \subset \mathbf{R}^2$, there is a continuous function $f : \mathbf{R}^2 \to \mathbf{R}$, such that $f^{-1}(0) = E$.

Proof. The distance between a point and the set E satisfies the property.

$$d(x, E) = \inf\{d(x, y) | y \in E\}$$

It suffices to prove that $f: x \mapsto d(x, E)$ is continuous. Want to show:

$$\forall x_0 \in \mathbf{R}^2 \quad \forall \epsilon > 0 \quad \exists \delta > 0 \quad \text{s.t } \forall x \in \mathbf{R}^2 \quad |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

let $x_0 \in \mathbf{R}^2$, let $\epsilon > 0$, choose $\delta = \epsilon$. for every $x \in \mathbf{R}^2$, if $|x - x_0| < \delta$, we then want to show that $|f(x) - f(x_0)| < \epsilon$. It suffice to show that $|f(x) - f(x_0)| < \delta + \sigma$, for all $\sigma > 0$. We divide into cases, let $\sigma > 0$

1. suppose $f(x) > f(x_0)$, that is $d(x, E) > d(x_0, E)$, then there exists $y \in E$ such that $d(x_0, E) + \sigma > d(x_0, y)$. Then

$$d(x, y) - d(x_0, y) < d(x, x_0)$$

$$\Rightarrow d(x, E) - d(x_0, y) < d(x, x_0)$$

$$\Rightarrow d(x, E) - d(x_0, E) - \sigma < d(x, x_0)$$

$$\Rightarrow d(x, E) - d(x_0, E) < d(x, x_0) + \sigma$$

True for all $\sigma > 0$, thus $d(x, E) - d(x_0, E) \le d(x, x_0)$. 2. Similarly, suppose $f(x_0) > f(x)$, that is $d(x_0, E) > d(x, E)$, then there exists $y \in E$ such that $d(x, E) + \sigma > d(x, y)$. Then

$$\begin{aligned} d(x_0, y) - d(x, y) &< d(x, x_0) \\ \Rightarrow d(x_0, E) - d(x, y) &< d(x, x_0) \\ \Rightarrow d(x_0, E) - d(x, E) - \sigma &< d(x, x_0) \\ \Rightarrow d(x_0, E) - d(x, E) &< d(x, x_0) + \sigma \end{aligned}$$

True for all $\sigma > 0$, thus $d(x_0, E) - d(x, E) \le d(x, x_0)$. Thus for for any $x_0, x, |f(x) - f(x_0)| \le d(x, x_0)$ $|f(x) - f(x_0)| \le d(x, x_0) < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$

3.

