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1 Some Reminder

Definition (σ−algebra). σ−algebra is a collection of sets that includes the
empty set, is closed under complement, and is closed under countable union.

1.1 Properties of open sets

• Countable union of open sets is open.

• Finite intersection of open sets is open.

1.2 Cartesian Products and sets

• A× (B ∪ C) = (A×B) ∪ (A× C)

• A× (B ∩ C) = (A×B) ∩ (A× C)

• (A×B)c = (Ac ×B) ∪ (A×Bc) ∪ (Ac ×Bc)

1.3 Cardinality

Refer to the following document:
https://www3.cs.stonybrook.edu/ cse547/definitions3.pdf

1.4 Intersections and Unions of Sets

• Distributive
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

• Demorgan’s law
(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

1.5 Some topological concepts

Theorem 1.1 (Heine-Borel theorem). For S ∈ Rn, S compact if and only if S
is closed and bounded.
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Theorem 1.2 (Lebesgue’s Number Lemma). Let (X, d) be a compact metric
space. Then for every open cover U of X, there exists a number δ > 0, such
that every subset of X having diameter less than δ is covered in some member
of the cover U .
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2 Outer Measure

Axiom (Desired Properties of Measurable sets). A list of the nine properties

Measurability

(i) (Borel Property) Every open set in Rn is measurable, as is every closed
set.

(ii) (Complementarity) If Ω is measurable, then Rn \ Ω is also measurable.

(iii) (Boolean algebra property) If (Ωj)j∈J is any finite collection of measurable
sets (so J is finite), then the union

⋃
j∈J Ωj and intersection ∩j∈JΩj is also

measurable.

(iv) (σ-algebra property) If (Ωj)j∈J is any countable collection of measurable
sets (so J is countable), then the union

⋃
j∈J Ωj and intersection ∩j∈JΩj

is also measurable.

Other properties

(v) (Empty Set) The empty set ∅ has measure m(∅) = 0.

(vi) (Positivity) We have 0 ≤ m(Ω) < +∞ for every measurable set Ω.

(vii) (Monotonicity) If A ⊆ B, and A and B are both measurable, then m(A) ≤
m(B).

(viii) (Finite sub-additivity) If (Aj)j∈J are a finite collection of measurable sets,
then m(

⋃
j∈J Aj) ≤

∑
j∈J m(Aj).

(ix) (Finite additivity) If (Aj)j∈J are a finite collection of disjoint measurable
sets, then m(

⋃
j∈J Aj) =

∑
j∈J m(Aj).

(x) (Countable sub-additivity) If (Aj)j∈J are a countable collection of mea-
surable sets, then m(

⋃
j∈J Aj) ≤

∑
j∈J m(Aj).

(xi) (Countable additivity) If (Aj)j∈J are a countable collection of disjoint
measurable sets, then m(

⋃
j∈J Aj) =

∑
j∈J m(Aj).

(xii) (Normalization) The unit cube [0, 1]n = {(x1, . . . , xn) ∈ Rn : 0 ≤ xj ≤
1 for all 1 ≤ j ≤ n} has measure m([0, 1]n) = 1.

(xiii) (Translation invariance) If Ω is a subset of Rn, and x ∈ Rn, then x+Ω :=
{x+ y : y ∈ Ω} m∗(x+Ω) = m∗(x)

Definition (Open box). An open box (or box for short) B ∈ Rn is any set of
the form

B =

n∏
i=1

(ai, bi) := {(x1, . . . , xn) ∈ Rn : xi ∈ (ai, bi) for all 1 ≤}
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where bi ≥ ai are real numbers. We define the volume vol(B) of this box to be
the number

vol(B) :

n∏
i=1

(bi − ai)

Definition (Outer measure). If Ω is a set, we define the outer measure m∗(Ω)
of Ω to be the quantity

m∗(Ω) :=

∑
j∈J

vol(Bj) : (Bj)j∈J covers Ω; J at most countable


Lemma 2.1 (Properties of outer measure). Outer measure satisfies the follow-
ing properties

(v) Empty set

(vi) Positivity

(vii) Monotonicity

(viii) Finite sub-additivity

(x) Countable sub-additivity

(xiii) Translation invariance

Proposition 2.1 (Outer measure of closed box). For any closed box

B =

n∏
i=1

[ai, bi] := {(x1, . . . , xn) ∈ Rn : xi ∈ [ai, bi] for all 1 ≤ i ≤ n}

we have

m∗(B) =

n∏
i=1

(bi − ai)

Corollary 2.1. For any open box

B =

n∏
i=1

(ai, bi) := {(x1, . . . , xn) ∈ Rn : xi ∈ (ai, bi) for all 1 ≤ i ≤ n}

we have

m∗(B) =

n∏
i=1

(bi − ai)

In particular, outer measure obeys the normalization (xii).

Exercise 2.1. Let A be a subset of Rn and let B be a subset of Rm. Then
m∗

n+m(A × B) ≤ m∗(A) × m∗(B), in fact m∗
n+m(A × B) = m∗(A) × m∗(B)

(harder to prove).
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Exercise 2.2.
(a) If A1 ⊆ A2 ⊆ A3 . . . is an increasing sequence of measurable sets (i.e. Aj ⊆
Aj+1 for every positive integer j), then we have m(

⋃∞
j=1 Aj) = limj→∞ m(Aj).

(b) If A1 ⊇ A2 ⊇ A3 . . . is an decreasing sequence of measurable sets (i.e. Aj ⊇
Aj+1 for every positive integer j), then we have m(

⋂∞
j=1 Aj) = limj→∞ m(Aj)

Theorem 2.1 (Measure Continuity Theorem). If {Ek} and {Fk} are sequences
of measurable sets then

upward measure continuity Ek ↑ E ⇒ ωEk ↑ E
downward measure continuity Fk ↓ F and ωF1 < ∞ ⇒ ωFk ↓ ωF
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3 Measurable sets

Definition (Measure Space). A measure space is a triple (M,M,µ) where M
is a σ−algebra of subsets of M , and µ is a measure on M. That is, µ : M →
[0,∞] has the three properties

(a) µ(∅) = 0

(b) µ is monotone: A ⊂ B implies µA ≤ B

(c) µ is countably additive on M : E =
⊔
Ei implies µE =

∑
µ(Ei)

Definition (Meseomorphism). If (M,M, µ), (M ′,M′, µ′) then the mapping
T : M → M′ is a

mesemorphism if T sends each E ∈ M to TE ∈ M′

meseomorphism if T is a bijection, and both T and T−1 are mesemorphism.

mesisometry if T is a meseomorphism and µ′(TE) = µE for each E ∈ M.
(This is also called measure preserving transformation and isomor-
phism of measure spaces.)

Theorem 3.1. If a bijection increases outer measure by at most a factor of
t and its inverse increases outer measure by at most a factor 1/t then it is a
meseomorphism. If t = 1 it is a mesisometry.

Definition (Abstract outer measure). Let M be any set. The collection of
all subsets of M is denoted as 2M . An abstract outer measure on M is a
function on ω : 2M → [0,∞] that satisfies the three axioms of outer measure:
ω(∅) = 0, ω is monotone, and ω is countably subadditive.

Definition (Lebesgue Measure). Let E be a subset of Rn. We say that E is
Lebesgue measurable or measurable for short, iff we have the identity

m∗(A) = m∗(A ∩ E) +m∗(A \ E)

for every subset A of Rn

Definition (Lebesgue Measure). A set E ⊂ Rd is said to be Lebesgue measur-
able if, for every ϵ > 0, there exists an open set U ⊂ Rd containing E such that
m∗(U \E) ≤ ϵ. If E is Lebesgue measurable, we refer to m(E) := m∗(E) as the
Lebesgue measure of E. (This quantity may be equal to +∞). We also write
m(E) as md(E) when we wish to emphasize the dimension d.

Lemma 3.1 (Half-spaces are measurable). The half-space

{(x1, x2, . . . , xn) ∈ Rn : xj > 0}

is measurable.
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Remark. Half space of the form {(x1, x2, . . . , xn) ∈ Rn : xj > 0} or {(x1, x2, . . . , xn) ∈
Rn : xj < 0} for some 1 ≤ j ≤ n is measurable.

Lemma 3.2 (Properties of measurable sets).

(a) If E is measurable, then Rn \ E is also measurable.

(b) Translation invariant

(c) Boolean algebra property

(d) Every open box, and every closed box, is measurable.

(e) Any set of outer measure zero (i.e. m∗(E) = 0) is measurable.

Lemma 3.3 (Finite additivity). If (Ej)j∈J are a finite collection of disjoint
measurable sets and any set A (not necessarily measurable), we have

m∗

A ∩
⋃
j∈J

Ej

 =
∑
j∈J

m∗(A ∩ Ej)

Furthermore, we have m(
⋃

j∈J Ej) =
∑

j∈J m(Ej)

Corollary 3.1. If A ⊆ B are two measurable sets, then B\A is also measurable,
and

m(B \A) = m(B)−m(A)

Corollary 3.2 (Measure of closed box). The Lebesgue measure of a closed or
partially closed box is the volume of its interior. The boundary of a box is a zero
set.

Lemma 3.4 (Countable additivity). If (Ej)j∈J are a countable collection of dis-
joint measurable sets , we have m(

⋃
j∈J Ej) is measurable, and m(

⋃
j∈J Ej) =∑

j∈J m(Ej)

Lemma 3.5 (σ−algebra property). If (Ωj)j∈J is any countable collection of
measurable sets (so J is countable), then the union

⋃
j∈J Ωj and intersection

∩j∈JΩj is also measurable.

Lemma 3.6. Every open set can be written as a countable or finite union of
open boxes.

Lemma 3.7 (Borel property). Every open set, and every closed set is Lebesgue
measurable.
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4 Regularity

Theorem 4.1. Lebesgue measure is regular in the sense that each measurable
set E can be sandwiched between an Fσ−set and a Gδ−set, F ⊂ E ⊂ G, such
that G \ F is a zero set. Conversely, if there is such F ⊂ E ⊂ G then E is
measurable.

Corollary 4.1. A bounded subset E ⊂ Rn is measurable if and only if it has a
regularity sandwich F ⊂ E ⊂ G such that F is an Fσ−set, G is a Gδ−set,
and mF = mG.

Lemma 4.1. Every open set in n−space is a countable disjoint union of open
cubs plus a zero set.

Lemma 4.2. Every open set is a countable disjoint union of balls plus a zero
set.

5 Affine Motions

Remark. An affine motion ofRn is an invertible linear transformation T followed
by a translation.

Theorem 5.1. An affine motion T : Rn → Rn is a meseomorphism. It multi-
plies measure by |detT |.

Theorem 5.2. Every open set in n−space is a countable disjoint union of open
cubes plus a zero set.

Theorem 5.3. Every open set is a countable disjoint union of balls plus a zero
set.
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Inner Measures, Hulls, and Kernels

Definition (Hulls and Kernels). Consider any bounded A ∈ Rn, the infimum
of the measure of open sets that contain A is achieved by a Gδ−set called a hull
denoted HA. The inner measure of A is the supremum of the measure of closed
sets that it contains, and is achieved by an Fσ−set called a kernel denoted KA.
We denote the inner measure of A m∗A.

Definition. The measure theoretic boundary of A is ∂m(A) = HA \KA.

Remark. m(∂m(A)) = 0

Theorem 5.4. If A ⊂ B ⊂ Rn and B is a box then A is measurable if and
only if it divides B cleanly.

Remark. The theorem is also true for a bounded measurable set B instead of a
box.

Lemma 5.1. If A is contained in a box B then mB = m∗(A) +m∗(B \A)
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6 Product and Slices

Definition (Null set). A subset E ⊂ S with ω(E) = 0 is called the “zero set”
or the “null set”

Lemma 6.1 (Property of null set). Let E ⊂ S be a null set

(1) if E′ ⊂ E, then E′ is a null set.

(2) for every A ⊂ S, ω(A ∪ E) = ω(A).

(3) for every A ⊂ S, ω(A ∩ Ec) = ω(A).

(4) ω(E) = 0, then E is measurable.

(5) If Z is a null set, then F is measurable iff F ∪ Z is measurable.

Theorem 6.1 (Measurable Product Theorem). If A ⊂ Rn and B ⊂ Rk are
measurable then A×B is measurable and

m(A×B) = mA ·mB.

By convention 0 · ∞ = ∞ · 0

Lemma 6.2. If A and B are boxes then A×B is measurable and m(A×B) =
mA ·mB

Lemma 6.3. If A or B is a zero set then so is A×B.

Lemma 6.4. If U and V are open then U × V is measurable and U × V =
mU ·mV

Definition (Slice). A slice of E ⊂ Rn ×Rk at x ∈ Rn is the set

Ex = {y ∈ Rk : (x, y) ∈ E}

Theorem 6.2 (Zero Slice Theorem). If E ⊂ Rn ×Rk is measurable then E is
a zero set if and only if almost every slice of E is a zero set.

Theorem 6.3 (Zero Slice Theorem). Let Z = {x ∈ Rn|mRk(Ex) ̸= 0} is
measure zero in Rn then m(E) = 0.

Lemma 6.5. If W ⊂ In × Ik, x ∈ In is open and Xα = Xα(W ) = {x :
m(Wx) > α} then

mW ≥ m(Xα(W )) · α
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7 Lebesgue Integrals

Note: all discussions are about converging pointwise. a.e represents almost
everywhere, which is up to a zero set.

Definition (Undergraph). The undergraph of f is

Uf = {(x, y) ∈ R× [0,∞) : 0 ≤ y < f(x)}

Definition (Tao’s measurable function). Let Ω be a measurable subset of Rn,
and let f : Ω → Rm be a function. A function f is measurable iff f−1(V ) is
measurable for every open set V ⊂ Rm.

Definition (Pugh’s measurable function). f : R → (0,∞) is measurable if
Uf ⊂ R2 is measurable.

Definition (Lebesgue integrable). Let f be a measurable function. The Lebesgue
integral of the f is the measure of the undergraph.∫

f = m(Uf)

Definition. The function f : R → [0,∞) is Lebesgue integrable if its inte-
gral is finite. The set of integrable functions is denoted by L.

Theorem 7.1 (Monotone Convergence Theorem). Assume that (fn) is a se-
quence of measruable functions fn : R → [0,∞) and fn ↑ f a.e as n → ∞.
Then ∫

fn ↑
∫

f

Note that: fn ↑ f is equivalent to limn→∞ fn = f and fn ≤ fn+1.

Definition (Completed undergraph). The completed undergraph of f is

Uf = {(x, y) ∈ R× [0,∞) : 0 ≤ y ≤ f(x)}

Corollary 7.1. If (fn) is a sequence of integrable functions that converges
monotonically downward to a limit function f almost everywhere then∫

fn ↓
∫

f.

Definition. If fn : X → [0,∞) is a sequence of functions then the lower and
upper envelope sequences are

f
n
(x) = inf{fk(x) : k ≥ n} fn(x) = sup{fk(x) : k ≥ n}

Proposition 7.1. U(fn) =
⋃

k≥n U(fk) and Û(f
n
) =

⋂
k≥n Û(fk)
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Theorem 7.2 (Dominated Convergence Theorem). If fn : R → [0,∞) is a
sequence of measurable functions such that f − n → f a.e. and if there exists
a function g : R → [0,∞) whose integral is finite and which is an upper bound
for all the functions fn then f is integrable and

∫
fn →

∫
f as n → ∞

Corollary 7.2. The pointwise limit of measurable functions is measurable.

Theorem 7.3 (Fatou’s Lemma). If fn :→ [0,∞) is a sequence of measurable
functions then ∫

lim inf fn ≤ lim inf

∫
fn
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