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1 Some Reminder

Definition (o—algebra). o—algebra is a collection of sets that includes the
empty set, is closed under complement, and is closed under countable union.

1.1 Properties of open sets

e Countable union of open sets is open.

¢ Finite intersection of open sets is open.

1.2 Cartesian Products and sets
¢ Ax (BUC)=(AxB)U(AxC)
e Ax(BNC)=(AxB)n(AxC)
o (Ax B)* = (A° x B)U (A x BY) U (A° x BY)

1.3 Cardinality

Refer to the following document:
https://www3.cs.stonybrook.edu/ cse547/definitions3.pdf

1.4 Intersections and Unions of Sets

e Distributive
AN(BUC)=(ANnB)U(ANC
Au(BNC)=(AUB)Nn(AuC

~— —

e Demorgan’s law
(AU B)¢ = A°n B¢
(AN B)¢ = A°U B¢

1.5 Some topological concepts

Theorem 1.1 (Heine-Borel theorem). For S € R™, S compact if and only if S
1s closed and bounded.



Theorem 1.2 (Lebesgue’s Number Lemma). Let (X,d) be a compact metric
space. Then for every open cover U of X, there exists a number 6 > 0, such

that every subset of X having diameter less than § is covered in some member
of the cover U.



2 Outer Measure
Axiom (Desired Properties of Measurable sets). A list of the nine properties

Measurability

(i) (Borel Property) Every open set in R™ is measurable, as is every closed
set.

(ii) (Complementarity) If Q is measurable, then R™ \ Q is also measurable.

(iii) (Boolean algebra property) If (£2;),;c s is any finite collection of measurable
sets (so J is finite), then the union J; ; 2; and intersection Nje ;€2 is also
measurable.

(iv) (o-algebra property) If (£2;);ecs is any countable collection of measurable
sets (so J is countable), then the union |J; ; ©; and intersection Njcs8;
is also measurable.

Other properties
(v) (Empty Set) The empty set () has measure m(()) = 0.

(vi)

(vii)

Positivity) We have 0 < m(£2) < +oo for every measurable set €.

(
(Monotonicity) If A C B, and A and B are both measurable, then m(A) <
m(B).

(viil) (Finite sub-additivity) If (A;),e.s are a finite collection of measurable sets,
then m(UjEJ A;) < ZjEJm(Aj).

(ix) (Finite additivity) If (A;),cs are a finite collection of disjoint measurable
sets, then m(U;c; Aj) = 2_,c5 m(4;)).

(x) (Countable sub-additivity) If (A;);cs are a countable collection of mea-
surable sets, then m(U,c; 4j) < 32 ,c ;7 m(4;).

(xi) (Countable additivity) If (A;);cs are a countable collection of disjoint
measurable sets, then m(U;c; A;) = >_;c; m(4;).

(xii) (Normalization) The unit cube [0,1]" = {(z1,...,2,) € R" : 0 < z; <
1 for all 1 < j < n} has measure m([0,1]") = 1.

(xiii) (Translation invariance) If Q is a subset of R", and € R”, then 2+ Q :=
{o+y:ye Q) m(@+0Q) = m (z)

Definition (Open box). An open box (or box for short) B € R™ is any set of
the form
n
B= H(ai,bi) ={(z1,...,2,) €R" 1 z; € (a;,b;) foralll<}

i=1



where b; > a; are real numbers. We define the volume vol(B) of this box to be
the number

vol(B) : | | (b; — a;)

e

1=1

Definition (Outer measure). If Q is a set, we define the outer measure m*(2)
of 2 to be the quantity

m*(Q) = Zvol(Bj) : (Bj)jes covers §2; J at most countable
jeJ

Lemma 2.1 (Properties of outer measure). Quter measure satisfies the follow-
ing properties
(v) Empty set
(vi) Positivity
(vii) Monotonicity
(viii) Finite sub-additivity
(z) Countable sub-additivity
(ziii) Translation invariance

Proposition 2.1 (Outer measure of closed box). For any closed box

n

B = H[ai,bi] ={(x1,...,2n) € R" 1 2; € [ag,b;] for all 1 <i < n}

i=1

we have

Corollary 2.1. For any open box

B= H(ai,bi) ={(x1,...,2,) ER" 1 m; € (a;,b;) for all1 <i<n}

i=1

we have

In particular, outer measure obeys the normalization (xii).

Exercise 2.1. Let A be a subset of R™ and let B be a subset of R™. Then
my (A x B) < m*(A) x m*(B), in fact m},,,(A x B) = m*(A) x m*(B)
(harder to prove).



Exercise 2.2.

(a) If Ay € Ay C As... is an increasing sequence of measurable sets (i.e. A; C
Aj1q for every positive integer j), then we have m(U(;il Aj) = lim;_,oo m(4;).
(b) If A1 D Ay D As. .. is an decreasing sequence of measurable sets (i.e. A; D
Aji1 for every positive integer j), then we have m(ﬂ?’;l Aj) = limj_,oc m(A;)

Theorem 2.1 (Measure Continuity Theorem). If {Ey} and {F}} are sequences
of measurable sets then

upward measure continuity EyTE=wE,TFE
downward measure continuity Fj | F and wF] < 00 = wFy | wF



3 Measurable sets

Definition (Measure Space). A measure space is a triple (M, M,u) where M
is a o—algebra of subsets of M, and u is a measure on M. That is, p : M —
[0, 0] has the three properties

(a) p(@) =0

(b) u is monotone: A C B implies uA < B

(c) p is countably additive on M : E = | |E; implies pE = > u(F;)
Definition (Meseomorphism). If (M, M, ), (M’, M’ , /) then the mapping
T-M—->Misa

mesemorphism if T sends each E € M to TE € M’

meseomorphism if T is a bijection, and both T and T—! are mesemorphism.

mesisometry if 7' is a meseomorphism and p/(TE) = pFE for each E € M.
(This is also called measure preserving transformation and isomor-
phism of measure spaces.)

Theorem 3.1. If a bijection increases outer measure by at most a factor of
t and its inverse increases outer measure by at most a factor 1/t then it is a
meseomorphism. If t =1 it is a mesisometry.

Definition (Abstract outer measure). Let M be any set. The collection of
all subsets of M is denoted as 2. An abstract outer measure on M is a
function on w : 2™ — [0, 00] that satisfies the three axioms of outer measure:
w(0) = 0, w is monotone, and w is countably subadditive.

Definition (Lebesgue Measure). Let E be a subset of R™. We say that E is
Lebesgue measurable or measurable for short, iff we have the identity

m*(A) =m*(ANE)+m*(A\ E)
for every subset A of R™

Definition (Lebesgue Measure). A set E C R? is said to be Lebesgue measur-
able if, for every € > 0, there exists an open set U C R¢ containing E such that
m*(U\ E) <e. If E is Lebesque measurable, we refer to m(FE) := m*(E) as the
Lebesgue measure of E. (This quantity may be equal to +o0c0). We also write
m(E) as m?(F) when we wish to emphasize the dimension d.

Lemma 3.1 (Half-spaces are measurable). The half-space
{(:cl,xg,...,xn) e R": T > O}

1s measurable.



Remark. Half space of the form {(z1, z2,...,2,) € R" : 2; > 0} or {(z1,22,...,25) €
R":z; < 0} for some 1 < j < n is measurable.

Lemma 3.2 (Properties of measurable sets).

(a) If E is measurable, then R™ \ E is also measurable.

(b) Translation invariant

(¢) Boolean algebra property

(d) Every open box, and every closed bozx, is measurable.

(e) Any set of outer measure zero (i.e. m*(E) =0) is measurable.

Lemma 3.3 (Finite additivity). If (E;)jes are a finite collection of disjoint
measurable sets and any set A (not necessarily measurable), we have

m* AﬂUEj :Zm*(AﬂEj)
JjeJ jeJ

Furthermore, we have m(U,c; Ej) = > ;¢ y m(Ej)

Corollary 3.1. If A C B are two measurable sets, then B\ A is also measurable,
and
m(B\ A) =m(B) —m(A)

Corollary 3.2 (Measure of closed box). The Lebesgue measure of a closed or
partially closed box is the volume of its interior. The boundary of a box is a zero
set.

Lemma 3.4 (Countable additivity). If (E;) e are a countable collection of dis-
joint measurable sets , we have m({U,c ; E;) is measurable, and m(U;¢; E;) =

ZjeJ m(Ej)

Lemma 3.5 (c—algebra property). If (2;)jes is any countable collection of
measurable sets (so J is countable), then the union \J,c ;€ and intersection
Njes€); is also measurable.

Lemma 3.6. Every open set can be written as a countable or finite union of
open boxes.

Lemma 3.7 (Borel property). Every open set, and every closed set is Lebesgue
measurable.



4 Regularity

Theorem 4.1. Lebesque measure is regular in the sense that each measurable
set E can be sandwiched between an F,—set and a Gs—set, F C E C G, such
that G\ F is a zero set. Conversely, if there is such F C E C G then E is
measurable.

Corollary 4.1. A bounded subset E C R"™ is measurable if and only if it has a
regularity sandwich F C E C G such that F is an F,—set, G is a Gs—set,
and mF = mG.

Lemma 4.1. Every open set in n—space is a countable disjoint union of open
cubs plus a zero set.

Lemma 4.2. Every open set is a countable disjoint union of balls plus a zero
set.

5 Affine Motions

Remark. An affine motion of R™ is an invertible linear transformation 7" followed
by a translation.

Theorem 5.1. An affine motion T : R™ — R"™ is a meseomorphism. It multi-
plies measure by | det T).

Theorem 5.2. Every open set in n—space is a countable disjoint union of open
cubes plus a zero set.

Theorem 5.3. Every open set is a countable disjoint union of balls plus a zero
set.



Inner Measures, Hulls, and Kernels

Definition (Hulls and Kernels). Consider any bounded A € R", the infimum
of the measure of open sets that contain A is achieved by a Gs—set called a hull
denoted H 4. The inner measure of A is the supremum of the measure of closed
sets that it contains, and is achieved by an F,—set called a kernel denoted K 4.
We denote the inner measure of A m,A.

Definition. The measure theoretic boundary of A is 0,,(A) = Ha \ K4.
Remark. m(0m(A)) =0

Theorem 5.4. If A C B C R" and B is a box then A is measurable if and
only if it divides B cleanly.

Remark. The theorem is also true for a bounded measurable set B instead of a
box.

Lemma 5.1. If A is contained in a box B then mB = m,(A) + m*(B\ A)



6 Product and Slices

Definition (Null set). A subset E C S with w(E) = 0 is called the “zero set”
or the “null set”

Lemma 6.1 (Property of null set). Let E C S be a null set

(1) if E' C E, then E' is a null set.

(2) for every AC S, w(AUE) =w(A).

(3) for every AC S, w(ANE®) =w(A).

(4) w(E) =0, then E is measurable.

(5) If Z is a null set, then F is measurable iff F'U Z is measurable.

Theorem 6.1 (Measurable Product Theorem). If A C R™ and B C R* are
measurable then A x B is measurable and

m(A x B) =mA-mB.
By convention 0-00 =00-0

Lemma 6.2. If A and B are bozes then A X B is measurable and m(A x B) =
mA - mB

Lemma 6.3. If A or B is a zero set then so is A X B.

Lemma 6.4. If U and V are open then U x V is measurable and U x V =
mU -mV

Definition (Slice). A slice of E C R" x R* at 2 € R" is the set
B, ={y € R": (x,y) € B}

Theorem 6.2 (Zero Slice Theorem). If E C R™ x RF is measurable then E is
a zero set if and only if almost every slice of E is a zero set.

Theorem 6.3 (Zero Slice Theorem). Let Z = {x € R"|mgx(E;) # 0} is
measure zero in R™ then m(E) = 0.

Lemma 6.5. If W C I" x I*, z € I" is open and X, = Xo(W) = {z :
m(Wy) > o} then
mW > m(X,(W)) -«

10



7 Lebesgue Integrals

Note: all discussions are about converging pointwise. a.e represents almost
everywhere, which is up to a zero set.

Definition (Undergraph). The undergraph of f is
Uf={(z,y) e R x[0,00):0<y < f(a)}

Definition (Tao’s measurable function). Let Q be a measurable subset of R",
and let f : O — R™ be a function. A function f is measurable iff f=1(V) is
measurable for every open set VC R™.

Definition (Pugh’s measurable function). f : R — (0,00) is measurable if
Uf C R? is measurable.

Definition (Lebesgue integrable). Let f be a measurable function. The Lebesgue
integral of the f is the measure of the undergraph.

[ £ =mn)

Definition. The function f : R — [0,00) is Lebesgue integrable if its inte-
gral is finite. The set of integrable functions is denoted by L.

Theorem 7.1 (Monotone Convergence Theorem). Assume that (fy) is a se-
quence of measruable functions f, : R — [0,00) and f, T f a.e as n — oo.

Then
[0t [

Note that: f, T f is equivalent to lim, o frn = f and f, < fri1-

Definition (Completed undergraph). The completed undergraph of f is
Uf ={(z,y) e R x[0,00): 0 <y < f(x)}

Corollary 7.1. If (fn) is a sequence of integrable functions that converges
monotonically downward to a limit function f almost everywhere then

XYk

Definition. If f, : X — [0,00) is a sequence of functions then the lower and
upper envelope sequences are

f, (@) =mf{fe(z) : k > n} fu(x) =sup{fr(z): k > n}

Proposition 7.1. U(f,) = Uksn U(fk) and Zj(in) = ﬂanZ;l\(fk)

11



Theorem 7.2 (Dominated Convergence Theorem). If f, : R — [0,00) is a
sequence of measurable functions such that f —n — f a.e. and if there exists
a function g : R — [0,00) whose integral is finite and which is an upper bound
for all the functions f, then f is integrable and [ f, — ff as n — 0o

Corollary 7.2. The pointwise limit of measurable functions is measurable.

Theorem 7.3 (Fatou’s Lemma). If f,, :— [0,00) is a sequence of measurable
functions then

/liminf fn < liminf/fn
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