
Introduction to Probability Measure Spaces

1 Probability Space

Definition. A probability space (Ω,F ,P) is given by

1. a set Ω

2. a σ-algebra F of subsets of Ω

3. a function P : F → [0, 1] where P(Ω) = 1 and P is a measure on F

We call Ω the sample space, and an element ω ∈ Ω is an outcome. Elements of F are referred to as
events and P(E) is the probability of an event E. In particular, we say (Ω,F ,P) is a discrete probability
space if Ω is finite or countably infinite.

Here is a simple example of a discrete probability space: let Ω = {H,T} be the result of a flip of a
p-coin. Then, F = {∅, {H}, {T}, {H,T}}, with probabilities 0, p, 1− p, 1.

We now discuss some elementary concepts in probability from a measure theoretic viewpoint.

2 Independence

The notion of independence in probability spaces is the same as what we are used to.

Definition. Consider a probability space (Ω,F ,P). Two events A,B are independent if

P(A ∩B) = P(A) + P(B)

A collection of events {Ai} is independent if for any subcollection {Aj},

P (∩jAj) =
∑
j

P(Aj)

3 Random Variables

We start by defining a Borel set.

Definition. The Borel σ-algebra of R is the smallest σ-algebra containing all open sets of 2R. A Borel
set is any element of the Borel σ-algebra.

Definition. A random variable on a probability space (Ω,F ,P) is a function X : Ω → R such that for
every Borel set B, X−1(B) = {ω ∈ Ω : X(ω) ∈ B}. A random variable X is discrete if the range of X is
finite or countably infinite, and continuous otherwise.

Note that we can define a function on the Borel sets B by µX : B → R that sends B to P(X−1(B)),
and this forms a probability measure space (R,B, µX).

This gives rise to the following definition:

Definition. The distribution function for a random variable X is given by

FX(x) = µX((−∞, x])

We can think of this as computing the probability that X takes on value less than or equal to x. In
particular, for continuous random variables, we have the following definition:
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Definition. If for a continuous random variable X, there exists a function f : R → [0,∞) such that

µX((a, b)) =

∫ b

a

f(x)dx

for all a < b ∈ R, we call f the density of X.

Note that the density must integrate to 1 over R. Furthermore, it is not necessarily true that a
continuous random variable has a density.

4 Expectation

Definition. For a non-negative random variable X, we define its expectation by

E(X) =

∫
XdP

For a random variable X that takes on positive and negative values, if E(|X|) < ∞, we define its
expectation by

E(X) =

∫
XdP

Otherwise, we say that the expectation is not defined. Note that the integrals in this definition are
all Lebesgue integrals.

For the discrete case, if the range of X consists of values a1, a2, ..., we have the standard formula

E(X) =
∑
j

ajP(X = aj)

Lemma. For a random variable X with distribution µX ,

E(X) =

∫
R
xdµX

The idea for the proof of this lemma is to assume X is non-negative, split up R≥0 into countably
many intervals [k−1

n , k
n ), and define a discrete random variable Xn that is equal to k

n whenever X is on
this interval. Then, we have that Xn − 1

n ≤ X ≤ Xn, so taking expectations and applying the discrete
formula, we obtain the result as n approaches infinity. To do the general case we can split X into positive
and negative parts.

Definition. A Borel measurable function is a function f such that f−1(U) is a Borel set for any open
set U .

Lemma. For a random variable X with distribution µX and a Borel measurable function g,

E(X) =

∫
R
g(x)dµX

The idea for the proof of this lemma is to approximate a non-negative g by an increasing sequence of
simple functions, for which the result follows easily. Then, applying the monotone convergence theorem
yields the result. We can prove the general case by splitting into positive and negative parts of g.
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