Along the circle C', $z = a + \rho e^{i\theta}$, $dz = \rho i e^{i\theta} d\theta$, and (3.6) becomes

(3.7)
$$\oint_C \phi(z) dz = \oint_{C'} \phi(z) dz = \oint_{C'} \frac{f(z)}{z - a} dz$$
$$= \int_0^{2\pi} \frac{f(z)}{\rho e^{i\theta}} \rho i e^{i\theta} d\theta = \int_0^{2\pi} f(z) i d\theta.$$

Since our calculation is valid for any (sufficiently small) value of ρ , we shall let $\rho \to 0$ (that is, $z \to a$) to simplify the formula. Because f(z) is continuous at z = a (it is analytic inside C), $\lim_{z\to a} f(z) = f(a)$. Then (3.7) becomes

(3.8)
$$\oint_C \phi(z) \, dz = \oint_C \frac{f(z)}{z-a} \, dz = \int_0^{2\pi} f(z) i \, d\theta = \int_0^{2\pi} f(a) i \, d\theta = 2\pi i f(a)$$

or

(3.9)
$$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z-a} dz, \qquad a \text{ inside } C.$$

This is Cauchy's integral formula. Note carefully that the point a is inside C; if a were outside C, then $\phi(z)$ would be analytic everywhere inside C and the integral would be zero by Cauchy's theorem. A useful way to look at (3.9) is this: If the values of f(z) are given on the boundary of a region (curve C), then (3.9) gives the value of f(z) at any point a inside C. With this interpretation you will find Cauchy's integral formula written with a replaced by z, and z replaced by some different dummy integration variable, say w:

(3.10)
$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(w)}{w-z} \, dw, \qquad z \text{ inside } C.$$

For some important uses of this theorem, see Problems 11.3 and 11.36 to 11.38.

PROBLEMS, SECTION 3

Evaluate the following line integrals in the complex plane by direct integration, that is, as in Chapter 6, Section 8, *not* using theorems from this chapter. (If you see that a theorem applies, use it to check your result.)

- 1. $\int_{i}^{i+1} z \, dz$ along a straight line parallel to the x axis.
- 2. $\int_0^{1+i} (z^2 z) dz$
 - (a) along the line y = x;
 - (b) along the indicated broken line.
- **3.** $\oint_C z^2 dz$ along the indicated paths:

1 **+** i

- 4. $\int dz/(1-z^2)$ along the whole positive imaginary axis, that is, the y axis; this is frequently written as $\int_0^{i\infty} dz/(1-z^2)$.
- 5. $\int e^{-z}$ along the positive part of the line $y = \pi$; this is frequently written as $\int_{i\pi}^{\infty+i\pi} e^{-z} dz$.
- 6. $\int_{1}^{i} z \, dz$ along the indicated paths:

- 7. $\int \frac{dz}{8i+z^2}$ along the line y = x from 0 to ∞ .
- 8. $\int_{2\pi}^{2\pi+i\infty} e^{2iz} dz$ 9. $\int_{1+2i}^{\infty+2i} \frac{dz}{(x-2i)^2}$ 10. $\int_{2}^{2+i\infty} z e^{iz} dz$
- 11. Evaluate $\oint_C (\bar{z} 3) dz$ where C is the indicated closed curve along the first quadrant part of the circle |z| = 2, and the indicated parts of the x and y axes. *Hint:* Don't try to use Cauchy's theorem! (Why not? *Further hint:* See Problem 2.3.)

- 12. $\int_0^{1+2i} |z|^2 dz$ along the indicated paths:
- 13. In Chapter 6, Section 11, we showed that a necessary condition for $\int_a^b \mathbf{F} \cdot d\mathbf{r}$ to be independent of the path of integration, that is, for $\oint_C \mathbf{F} \cdot d\mathbf{r}$ around a simple closed curve C to be zero, was curl $\mathbf{F} = 0$, or in two dimensions, $\partial F_y / \partial x = \partial F_x / \partial y$. By considering (3.2), show that the corresponding condition for $\oint_C f(z) dz$ to be zero is that the Cauchy-Riemann conditions hold.
- 14. In finding complex Fourier series in Chapter 7, we showed that

$$\int_0^{2\pi} e^{inx} e^{-imx} \, dx = 0, \qquad n \neq m.$$

Show this by applying Cauchy's theorem to

$$\oint_C z^{n-m-1} \, dz, \qquad n > m,$$

where C is the circle |z| = 1. (Note that although we take n > m to make z^{n-m-1} analytic at z = 0, an identical proof using z^{m-n-1} with n < m completes the proof for all $n \neq m$.)

- **15.** If f(z) is analytic on and inside the circle |z| = 1, show that $\int_0^{2\pi} e^{i\theta} f(e^{i\theta}) d\theta = 0$.
- **16.** If f(z) is analytic in the disk $|z| \le 2$, evaluate $\int_0^{2\pi} e^{2i\theta} f(e^{i\theta}) d\theta$.

Use Cauchy's theorem or integral formula to evaluate the integrals in Problems 17 to 20.

- 17. $\oint_C \frac{\sin z \, dz}{2z \pi} \text{ where } C \text{ is the circle } \begin{pmatrix} a \\ b \end{pmatrix} \begin{vmatrix} z \end{vmatrix} = 1, \\ (b) \begin{vmatrix} z \end{vmatrix} = 2.$
- **18.** $\oint_C \frac{\sin 2z \, dz}{6z \pi}$ where *C* is the circle |z| = 3.

- **19.** $\oint \frac{e^{3z} dz}{z \ln 2}$ if *C* is the square with vertices $\pm 1 \pm i$.
- **20.** $\oint_C \frac{\cosh z \, dz}{2 \ln 2 z}$ if C is the circle (a) |z| = 1, (b) |z| = 2.
- **21.** Differentiate Cauchy's formula (3.9) or (3.10) to get

$$f'(z) = \frac{1}{2\pi i} \oint_C \frac{f(w) \, dw}{(w-z)^2}$$
 or $f'(a) = \frac{1}{2\pi i} \oint_C \frac{f(z) \, dz}{(z-a)^2}.$

By differentiating n times, obtain

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(w) \, dw}{(w-z)^{n+1}} \qquad \text{or} \quad f^{(n)}(a) = \frac{n!}{2\pi i} \oint_C \frac{f(z) \, dz}{(z-a)^{n+1}}.$$

Use Problem 21 to evaluate the following integrals.

22. $\oint_C \frac{\sin 2z \, dz}{(6z - \pi)^3} \text{ where } C \text{ is the circle } |z| = 3.$ 23. $\oint_C \frac{e^{3z} \, dz}{(z - \ln 2)^4} \text{ where } C \text{ is the square in Problem 19.}$ 24. $\oint_C \frac{\cosh z \, dz}{(2\ln 2 - z)^5} \text{ where } C \text{ is the circle } |z| = 2.$

► 4. LAURENT SERIES

Theorem VII Laurent's theorem [equation (4.1)] (which we shall state without proof). Let C_1 and C_2 be two circles with center at z_0 . Let f(z) be analytic in the region R between the circles. Then f(z) can be expanded in a series of the form

(4.1)
$$f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots + \frac{b_1}{z - z_0} + \frac{b_2}{(z - z_0)^2} + \dots$$

convergent in R. Such a series is called a *Laurent series*. The "b" series in (4.1) is called the *principal part* of the Laurent series.

Example 1. Consider the Laurent series

(4.2)
$$f(z) = 1 + \frac{z}{2} + \frac{z^2}{4} + \frac{z^3}{8} + \dots + \left(\frac{z}{2}\right)^n + \dots + \frac{2}{z} + 4\left(\frac{1}{z^2} - \frac{1}{z^3} + \dots + \frac{(-1)^n}{z^n} + \dots\right).$$

Let us see where this series converges. First consider the series of positive powers; by the ratio test (see Chapters 1 and 2), this series converges for |z/2| < 1, that is, for |z| < 2. Similarly, the series of negative powers converges for |1/z| < 1, that is, |z| > 1. Then both series converge (and so the Laurent series converges) for |z|between 1 and 2, that is, in a ring between two circles of radii 1 and 2.

We expect this result in general. The "a" series is a power series, and a power series converges *inside* some circle (say C_2 in Figure 4.1). The "b" series is a series