Along the circle $C^{\prime}, z=a+\rho e^{i \theta}, d z=\rho i e^{i \theta} d \theta$, and (3.6) becomes

$$
\begin{align*}
\oint_{C} \phi(z) d z & =\oint_{C^{\prime}} \phi(z) d z=\oint_{C^{\prime}} \frac{f(z)}{z-a} d z \\
& =\int_{0}^{2 \pi} \frac{f(z)}{\rho e^{i \theta}} \rho i e^{i \theta} d \theta=\int_{0}^{2 \pi} f(z) i d \theta \tag{3.7}
\end{align*}
$$

Since our calculation is valid for any (sufficiently small) value of ρ, we shall let $\rho \rightarrow 0$ (that is, $z \rightarrow a$) to simplify the formula. Because $f(z)$ is continuous at $z=a$ (it is analytic inside C), $\lim _{z \rightarrow a} f(z)=f(a)$. Then (3.7) becomes

$$
\begin{equation*}
\oint_{C} \phi(z) d z=\oint_{C} \frac{f(z)}{z-a} d z=\int_{0}^{2 \pi} f(z) i d \theta=\int_{0}^{2 \pi} f(a) i d \theta=2 \pi i f(a) \tag{3.8}
\end{equation*}
$$

or

$$
\begin{equation*}
f(a)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-a} d z, \quad a \text { inside } C . \tag{3.9}
\end{equation*}
$$

This is Cauchy's integral formula. Note carefully that the point a is inside C; if a were outside C, then $\phi(z)$ would be analytic everywhere inside C and the integral would be zero by Cauchy's theorem. A useful way to look at (3.9) is this: If the values of $f(z)$ are given on the boundary of a region (curve C), then (3.9) gives the value of $f(z)$ at any point a inside C. With this interpretation you will find Cauchy's integral formula written with a replaced by z, and z replaced by some different dummy integration variable, say w :

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(w)}{w-z} d w, \quad z \text { inside } C \tag{3.10}
\end{equation*}
$$

For some important uses of this theorem, see Problems 11.3 and 11.36 to 11.38.

PROBLEMS, SECTION 3

Evaluate the following line integrals in the complex plane by direct integration, that is, as in Chapter 6, Section 8, not using theorems from this chapter. (If you see that a theorem applies, use it to check your result.)

1. $\int_{i}^{i+1} z d z$ along a straight line parallel to the x axis.
2. $\int_{0}^{1+i}\left(z^{2}-z\right) d z$
(a) along the line $y=x$;

(b) along the indicated broken line.
3. $\oint_{C} z^{2} d z$ along the indicated paths:

(a)

(b)
4. $\int d z /\left(1-z^{2}\right)$ along the whole positive imaginary axis, that is, the y axis; this is frequently written as $\int_{0}^{i \infty} d z /\left(1-z^{2}\right)$.
5. $\int e^{-z}$ along the positive part of the line $y=\pi$; this is frequently written as $\int_{i \pi}^{\infty+i \pi} e^{-z} d z$.
6. $\int_{1}^{i} z d z$ along the indicated paths:

(a)

(b)
7. $\int \frac{d z}{8 i+z^{2}}$ along the line $y=x$ from 0 to ∞.
8. $\int_{2 \pi}^{2 \pi+i \infty} e^{2 i z} d z$
9. $\int_{1+2 i}^{\infty+2 i} \frac{d z}{(x-2 i)^{2}}$
10. $\int_{2}^{2+i \infty} z e^{i z} d z$
11. Evaluate $\oint_{C}(\bar{z}-3) d z$ where C is the indicated closed curve along the first quadrant part of the circle $|z|=2$, and the indicated parts of the x and y axes. Hint: Don't try to use Cauchy's theorem! (Why not? Further hint: See Problem 2.3.)

12. $\int_{0}^{1+2 i}|z|^{2} d z$ along the indicated paths:

(a)

(b)
13. In Chapter 6 , Section 11 , we showed that a necessary condition for $\int_{a}^{b} \mathbf{F} \cdot d \mathbf{r}$ to be independent of the path of integration, that is, for $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ around a simple closed curve C to be zero, was curl $\mathbf{F}=0$, or in two dimensions, $\partial F_{y} / \partial x=\partial F_{x} / \partial y$. By considering (3.2), show that the corresponding condition for $\oint_{C} f(z) d z$ to be zero is that the Cauchy-Riemann conditions hold.
14. In finding complex Fourier series in Chapter 7, we showed that

$$
\int_{0}^{2 \pi} e^{i n x} e^{-i m x} d x=0, \quad n \neq m
$$

Show this by applying Cauchy's theorem to

$$
\oint_{C} z^{n-m-1} d z, \quad n>m
$$

where C is the circle $|z|=1$. (Note that although we take $n>m$ to make z^{n-m-1} analytic at $z=0$, an identical proof using z^{m-n-1} with $n<m$ completes the proof for all $n \neq m$.)
15. If $f(z)$ is analytic on and inside the circle $|z|=1$, show that $\int_{0}^{2 \pi} e^{i \theta} f\left(e^{i \theta}\right) d \theta=0$.
16. If $f(z)$ is analytic in the disk $|z| \leq 2$, evaluate $\int_{0}^{2 \pi} e^{2 i \theta} f\left(e^{i \theta}\right) d \theta$.

Use Cauchy's theorem or integral formula to evaluate the integrals in Problems 17 to 20.
17. $\oint_{C} \frac{\sin z d z}{2 z-\pi}$ where C is the circle $\begin{aligned} & \text { (a) }|z|=1, \\ & \text { (b) }|z|=2 .\end{aligned}$
18. $\oint_{C} \frac{\sin 2 z d z}{6 z-\pi}$ where C is the circle $|z|=3$.
19. $\oint \frac{e^{3 z} d z}{z-\ln 2}$ if C is the square with vertices $\pm 1 \pm i$.
20. $\oint_{C} \frac{\cosh z d z}{2 \ln 2-z}$ if C is the circle $\begin{aligned} & \text { (a) }|z|=1, \\ & \text { (b) }|z|=2 .\end{aligned}$
21. Differentiate Cauchy's formula (3.9) or (3.10) to get

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{(w-z)^{2}} \quad \text { or } \quad f^{\prime}(a)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{(z-a)^{2}} .
$$

By differentiating n times, obtain

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(w) d w}{(w-z)^{n+1}} \quad \text { or } \quad f^{(n)}(a)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z) d z}{(z-a)^{n+1}}
$$

Use Problem 21 to evaluate the following integrals.
22. $\oint_{C} \frac{\sin 2 z d z}{(6 z-\pi)^{3}}$ where C is the circle $|z|=3$.
23. $\oint_{C} \frac{e^{3 z} d z}{(z-\ln 2)^{4}}$ where C is the square in Problem 19.
24. $\oint_{C} \frac{\cosh z d z}{(2 \ln 2-z)^{5}}$ where C is the circle $|z|=2$.

4. LAURENT SERIES

Theorem VII Laurent's theorem [equation (4.1)] (which we shall state without proof). Let C_{1} and C_{2} be two circles with center at z_{0}. Let $f(z)$ be analytic in the region R between the circles. Then $f(z)$ can be expanded in a series of the form

$$
\begin{equation*}
f(z)=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots+\frac{b_{1}}{z-z_{0}}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\cdots \tag{4.1}
\end{equation*}
$$

convergent in R. Such a series is called a Laurent series. The " b " series in (4.1) is called the principal part of the Laurent series.

Example 1. Consider the Laurent series

$$
\begin{align*}
f(z)=1+\frac{z}{2}+\frac{z^{2}}{4}+\frac{z^{3}}{8}+\cdots+ & \left(\frac{z}{2}\right)^{n}+\cdots \tag{4.2}\\
& +\frac{2}{z}+4\left(\frac{1}{z^{2}}-\frac{1}{z^{3}}+\cdots+\frac{(-1)^{n}}{z^{n}}+\cdots\right) .
\end{align*}
$$

Let us see where this series converges. First consider the series of positive powers; by the ratio test (see Chapters 1 and 2), this series converges for $|z / 2|<1$, that is, for $|z|<2$. Similarly, the series of negative powers converges for $|1 / z|<1$, that is, $|z|>1$. Then both series converge (and so the Laurent series converges) for $|z|$ between 1 and 2, that is, in a ring between two circles of radii 1 and 2 .

We expect this result in general. The " a " series is a power series, and a power series converges inside some circle (say C_{2} in Figure 4.1). The " b " series is a series

