
676 Functions of a Complex Variable Chapter 14

Along the circle C′, z = a + ρeiθ, dz = ρieiθ dθ, and (3.6) becomes

(3.7)

∮

C
φ(z) dz =

∮

C′
φ(z) dz =

∮

C′

f(z)
z − a

dz

=
∫ 2π

0

f(z)
ρeiθ

ρieiθ dθ =
∫ 2π

0
f(z)i dθ.

Since our calculation is valid for any (sufficiently small) value of ρ, we shall let
ρ → 0 (that is, z → a) to simplify the formula. Because f(z) is continuous at z = a
(it is analytic inside C), limz→a f(z) = f(a). Then (3.7) becomes

(3.8)
∮

C
φ(z) dz =

∮

C

f(z)
z − a

dz =
∫ 2π

0
f(z)i dθ =

∫ 2π

0
f(a)i dθ = 2πif(a)

or

(3.9) f(a) =
1

2πi

∮

C

f(z)
z − a

dz, a inside C.

This is Cauchy’s integral formula. Note carefully that the point a is inside
C; if a were outside C, then φ(z) would be analytic everywhere inside C and the
integral would be zero by Cauchy’s theorem. A useful way to look at (3.9) is this:
If the values of f(z) are given on the boundary of a region (curve C), then (3.9)
gives the value of f(z) at any point a inside C. With this interpretation you will
find Cauchy’s integral formula written with a replaced by z, and z replaced by
some different dummy integration variable, say w:

(3.10) f(z) =
1

2πi

∮

C

f(w)
w − z

dw, z inside C.

For some important uses of this theorem, see Problems 11.3 and 11.36 to 11.38.

PROBLEMS, SECTION 3
Evaluate the following line integrals in the complex plane by direct integration, that is, as
in Chapter 6, Section 8, not using theorems from this chapter. (If you see that a theorem
applies, use it to check your result.)

1.
R i+1

i
z dz along a straight line parallel to the x axis.

2.
R 1+i
0

(z2 − z) dz

(a) along the line y = x;

(b) along the indicated broken line.

3.
H

C
z2 dz along the indicated paths:
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4.
R

dz/(1 − z2) along the whole positive imaginary axis, that is, the y axis; this is

frequently written as
R i∞
0

dz/(1 − z2).

5.
R

e−z along the positive part of the line y = π; this is frequently written asR∞+iπ
iπ e−z dz.

6.
R i
1

z dz along the indicated paths:

7.

Z
dz

8i + z2
along the line y = x from 0 to ∞.

8.

Z 2π+i∞

2π

e2iz dz 9.

Z ∞+2i

1+2i

dz
(x − 2i)2

10.

Z 2+i∞

2

zeiz dz

11. Evaluate
H

C
(z̄−3) dz where C is the indicated closed curve along the

first quadrant part of the circle |z| = 2, and the indicated parts of the
x and y axes. Hint: Don’t try to use Cauchy’s theorem! (Why not?
Further hint: See Problem 2.3.)

12.
R 1+2i

0
|z|2 dz along the indicated paths:

13. In Chapter 6, Section 11, we showed that a necessary condition for
R b

a
F · dr to be

independent of the path of integration, that is, for
H

C
F · dr around a simple closed

curve C to be zero, was curlF = 0, or in two dimensions, ∂Fy/∂x = ∂Fx/∂y. By
considering (3.2), show that the corresponding condition for

H
C

f(z) dz to be zero is
that the Cauchy-Riemann conditions hold.

14. In finding complex Fourier series in Chapter 7, we showed that

Z 2π

0

einxe−imx dx = 0, n #= m.

Show this by applying Cauchy’s theorem to
I

C

zn−m−1 dz, n > m,

where C is the circle |z| = 1. (Note that although we take n > m to make zn−m−1

analytic at z = 0, an identical proof using zm−n−1 with n < m completes the proof
for all n #= m.)

15. If f(z) is analytic on and inside the circle |z| = 1, show that
R 2π
0

eiθf(eiθ) dθ = 0.

16. If f(z) is analytic in the disk |z| ≤ 2, evaluate
R 2π
0

e2iθf(eiθ) dθ.

Use Cauchy’s theorem or integral formula to evaluate the integrals in Problems 17 to 20.

17.

I

C

sin z dz
2z − π

where C is the circle
(a) |z| = 1,
(b) |z| = 2.

18.

I

C

sin 2z dz
6z − π

where C is the circle |z| = 3.



678 Functions of a Complex Variable Chapter 14

19.

I
e3z dz

z − ln 2
if C is the square with vertices ±1 ± i.

20.

I

C

cosh z dz
2 ln 2 − z

if C is the circle
(a) |z| = 1,
(b) |z| = 2.

21. Differentiate Cauchy’s formula (3.9) or (3.10) to get

f ′(z) =
1

2πi

I

C

f(w) dw
(w − z)2

or f ′(a) =
1

2πi

I

C

f(z) dz
(z − a)2

.

By differentiating n times, obtain

f (n)(z) =
n!
2πi

I

C

f(w) dw
(w − z)n+1

or f (n)(a) =
n!
2πi

I

C

f(z) dz
(z − a)n+1

.

Use Problem 21 to evaluate the following integrals.

22.

I

C

sin 2z dz
(6z − π)3

where C is the circle |z| = 3.

23.

I

C

e3z dz
(z − ln 2)4

where C is the square in Problem 19.

24.

I

C

cosh z dz
(2 ln 2 − z)5

where C is the circle |z| = 2.

4. LAURENT SERIES

Theorem VII Laurent’s theorem [equation (4.1)] (which we shall state with-
out proof). Let C1 and C2 be two circles with center at z0. Let f(z) be analytic
in the region R between the circles. Then f(z) can be expanded in a series of the
form

(4.1) f(z) = a0 + a1(z − z0) + a2(z − z0)2 + · · · + b1

z − z0
+

b2

(z − z0)2
+ · · ·

convergent in R. Such a series is called a Laurent series. The “b” series in (4.1)
is called the principal part of the Laurent series.

Example 1. Consider the Laurent series

(4.2) f(z) = 1 +
z

2
+

z2

4
+

z3

8
+ · · · +

(z

2

)n
+ · · ·

+
2
z

+ 4
(

1
z2

− 1
z3

+ · · · + (−1)n

zn
+ · · ·

)
.

Let us see where this series converges. First consider the series of positive powers;
by the ratio test (see Chapters 1 and 2), this series converges for |z/2| < 1, that
is, for |z| < 2. Similarly, the series of negative powers converges for |1/z| < 1, that
is, |z| > 1. Then both series converge (and so the Laurent series converges) for |z|
between 1 and 2, that is, in a ring between two circles of radii 1 and 2.

We expect this result in general. The “a” series is a power series, and a power
series converges inside some circle (say C2 in Figure 4.1). The “b” series is a series


