Name: \qquad

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total	100	

Please include calculation steps and reasoning (except in problem 1).

1. Determine whether each integral or series is convergent or divergent. No explanation needed.
(a) $\int_{0}^{1} x^{-1 / 2} d x$
(b) $\int_{\mathbb{R}^{2}}\left(1+x^{2}+y^{2}\right)^{-1} d x d y$
(c) $\int_{0}^{\infty} e^{(-1+i) x} d x$
(d) $\sum_{n=2}^{\infty}(-1)^{n}(\log n)^{-1}(\log$ is natural $\log)$
(e) $\sum_{n} \sin (n)$.
2. (a) (3 points) Sketch the following regions in the complex plane $z \in \mathbb{C}$:
(1) $\operatorname{Re}(z) \leq 0$,
(2) $\operatorname{Re}\left(z^{2}\right) \leq 0$,
(3) $\operatorname{Re}\left(z^{3}\right) \leq 0$.
(b) (3 points) Use Cauchy Riemann condition to test whether the following function is analytic on $x>0, y>0$

$$
f(x, y)=\frac{x-i y}{x^{2}+y^{2}} .
$$

(c) (4 points) Compute the Laurent expansion of

$$
\frac{1+z}{z(1-z)}
$$

at $z=0$, keep the first two non-zero terms.
3. Compute the following integrals, where integral on the circle contour is in counter-clockwise direction.
(a) (2 pts)

$$
\frac{1}{2 \pi i} \oint_{|z|=1}\left(a z+b+\frac{c}{z}\right) d z
$$

(b) (3 pts)

$$
\frac{1}{2 \pi i} \oint_{|z-2|=1}\left(a e^{1 / z}+\frac{b}{z-2.3}+\frac{c}{z}\right) d z
$$

(c) $(3 \mathrm{pts})$

$$
\frac{1}{2 \pi i} \oint_{|z|=2} \frac{2023 z^{4}+12 z^{3}+11 z^{2}+8 z+11}{z^{4}-1} d z
$$

(d) $(2 \mathrm{pts})$

$$
\int_{0}^{2 \pi} \frac{\left(1+e^{i \theta}+e^{2 i \theta}\right)^{2}}{1-0.1 e^{i \theta}} d \theta
$$

4. Compute the following integrals
(a) (5 pts)

$$
\int_{0}^{2 \pi} \frac{1}{2+\cos (x)} d x
$$

(b) (5 pts)

$$
\int_{\mathbb{R}} \frac{e^{i x}}{(x+i)(x-2 i)(x+3 i)} d x
$$

5. Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a periodic function with period 2π. The Fourier series expansion of $f(x)$ is

$$
f(x)=\sum_{n \in \mathbb{Z}} F_{n} e^{i n x}, \quad \text { where } F_{n}=(2 \pi)^{-1} \int_{0}^{2 \pi} f(x) e^{-i n x} d x
$$

(a) (5 points) Let

$$
f(x)=\frac{1}{1-e^{i x} / 2}
$$

find its Fourier coefficients F_{n} for all $n \in \mathbb{Z}$.
(b) (5 points) Let

$$
g(x)=\frac{1}{1-2 e^{i x}}
$$

find its Fourier coefficients G_{n} for all $n \in \mathbb{Z}$.
6. Use the same f, g as in problem 5 .
(a) Compute the Hermitian inner product $\langle f, g\rangle$ defined as

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \overline{g(x)} d x
$$

(b) Compute their convolution defined as

$$
(f \star g)(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(u) g(x-u) d u
$$

(Hint: you can (but don't have to) use the answer in problem 5, and use Parseval identity $\langle f, g\rangle=\sum_{n} F_{n} \bar{G}_{n}$, and convolution formula $f \star g=\sum_{n} F_{n} G_{n} e^{i n x}$.
7. Solve the following equation over $x \geq 0$.

$$
y^{\prime \prime}(x)-y(x)=1
$$

with boundary condition that

$$
y(0)=0, \quad y^{\prime}(0)=1 .
$$

8. Let $a \in(0,1)$. Solve the following equation

$$
\left(D^{2}-1\right) f(x)=\delta(x-a), \quad D=d / d x, \quad x \in[0,1]
$$

with boundary condition that $f(0)=0, f(1)=0$.
9. Consider the parabola $H=\left\{(x, y) \in \mathbb{R}^{2} \mid y=c x^{2}-1\right\}$, where $c>0$. Consider the two cases, $c=1 / 4$ and $c=4$. In each case, find the point(s) on the parabola, such that the distance to $(0,0)$ is minimized.
10. Find the Euler-Lagrange equation for the following variational problem and write down the general solution. You may use

$$
d s=\sqrt{d x^{2}+d y^{2}}=\sqrt{1+(d y / d x)^{2}} d x=\sqrt{1+(d x / d y)^{2}} d y
$$

(a) $I=\int y d s$.
(b) $I=\int\left(x+y^{2} y^{\prime}\right)^{2} d x$

