Math 121A

Final

Name:

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total	100	

Please include calculation steps and reasoning (except in problem 1).

- 1. Determine whether each integral or series is convergent or divergent. No explanation needed.
 - (a) $\int_0^1 x^{-1/2} dx$ (b) $\int_{\mathbb{R}^2} (1 + x^2 + y^2)^{-1} dx dy$ (c) $\int_0^\infty e^{(-1+i)x} dx$ (d) $\sum_{n=2}^\infty (-1)^n (\log n)^{-1}$ (log is natural log)
 - (e) $\sum_{n} \sin(n)$.
- 2. (a) (3 points) Sketch the following regions in the complex plane $z \in \mathbb{C}$:

$$(1)Re(z) \le 0, \quad (2)Re(z^2) \le 0, \quad (3)Re(z^3) \le 0.$$

(b) (3 points) Use Cauchy Riemann condition to test whether the following function is analytic on x>0, y>0

$$f(x,y) = \frac{x - iy}{x^2 + y^2}.$$

(c) (4 points) Compute the Laurent expansion of

$$\frac{1+z}{z(1-z)}$$

at z = 0, keep the first two non-zero terms.

3. Compute the following integrals, where integral on the circle contour is in counter-clockwise direction.

$$\frac{1}{2\pi i} \oint_{|z|=1} (az+b+\frac{c}{z})dz.$$

$$\frac{1}{2\pi i} \oint_{|z-2|=1} (ae^{1/z} + \frac{b}{z-2.3} + \frac{c}{z})dz.$$

(c) (3 pts)
$$\frac{1}{2\pi i} \oint_{|z|=2} \frac{2023z^4 + 12z^3 + 11z^2 + 8z + 11}{z^4 - 1} dz$$

(d) (2 pts)

(a) (2 pts)

(b) (3 pts)

$$\int_{0}^{2\pi} \frac{(1+e^{i\theta}+e^{2i\theta})^2}{1-0.1e^{i\theta}} d\theta$$

- 4. Compute the following integrals
 - (a) (5 pts)

$$\int_0^{2\pi} \frac{1}{2 + \cos(x)} dx$$

(b) (5 pts)

$$\int_{\mathbb{R}} \frac{e^{ix}}{(x+i)(x-2i)(x+3i)} dx$$

5. Let $f : \mathbb{R} \to \mathbb{C}$ be a periodic function with period 2π . The Fourier series expansion of f(x) is

$$f(x) = \sum_{n \in \mathbb{Z}} F_n e^{inx}, \quad \text{where } F_n = (2\pi)^{-1} \int_0^{2\pi} f(x) e^{-inx} dx$$

(a) (5 points) Let

$$f(x) = \frac{1}{1 - e^{ix}/2}$$

find its Fourier coefficients F_n for all $n \in \mathbb{Z}$.

(b) (5 points) Let

$$g(x) = \frac{1}{1 - 2e^{ix}}$$

find its Fourier coefficients G_n for all $n \in \mathbb{Z}$.

- 6. Use the same f, g as in problem 5.
 - (a) Compute the Hermitian inner product $\langle f,g\rangle$ defined as

$$\langle f,g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x) \overline{g(x)} dx$$

(b) Compute their convolution defined as

$$(f \star g)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(u)g(x-u)du$$

(Hint: you can (but don't have to) use the answer in problem 5, and use Parseval identity $\langle f,g \rangle = \sum_n F_n \bar{G}_n$, and convolution formula $f \star g = \sum_n F_n G_n e^{inx}$.

7. Solve the following equation over $x \ge 0$.

$$y''(x) - y(x) = 1$$

with boundary condition that

$$y(0) = 0, \quad y'(0) = 1.$$

8. Let $a \in (0, 1)$. Solve the following equation

$$(D^2 - 1)f(x) = \delta(x - a), \quad D = d/dx, \quad x \in [0, 1]$$

with boundary condition that f(0) = 0, f(1) = 0.

- 9. Consider the parabola $H = \{(x, y) \in \mathbb{R}^2 \mid y = cx^2 1\}$, where c > 0. Consider the two cases, c = 1/4 and c = 4. In each case, find the point(s) on the parabola, such that the distance to (0, 0) is minimized.
- 10. Find the Euler-Lagrange equation for the following variational problem and write down the general solution. You may use

$$ds = \sqrt{dx^2 + dy^2} = \sqrt{1 + (dy/dx)^2} dx = \sqrt{1 + (dx/dy)^2} dy.$$

(a) $I = \int y ds$.

(b) $I = \int (x + y^2 y')^2 dx$