Math 121A

Midterm 1

_

Name: _____

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

- 1. (10 points, 2 points each) Determine whether the following sequences or seires converge or not.
 - (a) $\lim_{x\to\infty} x^n e^{-x}$
 - (b) $\lim_{n \to \infty} (1/n)^{1/n}$
 - (c) $\lim_{x\to\infty} \frac{\ln x}{\sqrt{x}}$
 - (d) $\sum_n 1/(n\log n)$
 - (e) $\sum_n e^n / \sqrt{n!}$,
- 2. (10 points, 2 points each)
 - (1) Use z and \overline{z} to express $\operatorname{Re}(z)$, $\operatorname{Im}(z)$, $|z|^2$.
 - (2) If z = 2023 + 1002i, then $|z/\bar{z}| = ?$.
 - (3) If $z = (1/2)e^{i\pi/3}$, then $1/\bar{z} = ?$
 - (4) Write down the solutions for $z^3 = e^{i\pi/2}$.
 - (5) If z = 1 + 2i, is $\cos(z) = Re(e^{iz})$?
- 3. (10 points, 5 points each) Suppose

$$f(z) = z/(z+1)^2$$

- (1) Do the Taylor expansion of f(z) at z = 0 and keep the first two non-zero terms.
- (2) Do the Laurent expansion of f(z) at z = -1 and keep the first two non-zero terms.
- 4. (10 points) Compute

$$\oint_{|z|=2} \frac{1}{z(z+1)(z+4)(z+5)} dz$$

5. (10 points) Compute

$$\int_{-\infty}^{\infty} \frac{1}{1+ix^2} dx$$