Name:

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

1. (10 points, 2 points each) Determine whether the following sequences or seires converge or not.
(a) $\lim _{x \rightarrow \infty} x^{n} e^{-x}$
(b) $\lim _{n \rightarrow \infty}(1 / n)^{1 / n}$
(c) $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}$
(d) $\sum_{n} 1 /(n \log n)$
(e) $\sum_{n} e^{n} / \sqrt{n!}$,
2. (10 points, 2 points each)
(1) Use z and \bar{z} to express $\operatorname{Re}(z), \operatorname{Im}(z),|z|^{2}$.
(2) If $z=2023+1002 i$, then $|z / \bar{z}|=$?.
(3) If $z=(1 / 2) e^{i \pi / 3}$, then $1 / \bar{z}=$?
(4) Write down the solutions for $z^{3}=e^{i \pi / 2}$.
(5) If $z=1+2 i$, is $\cos (z)=\operatorname{Re}\left(e^{i z}\right)$?
3. (10 points, 5 points each) Suppose

$$
f(z)=z /(z+1)^{2}
$$

(1) Do the Taylor expansion of $f(z)$ at $z=0$ and keep the first two non-zero terms.
(2) Do the Laurent expansion of $f(z)$ at $z=-1$ and keep the first two non-zero terms.
4. (10 points) Compute

$$
\oint_{|z|=2} \frac{1}{z(z+1)(z+4)(z+5)} d z
$$

5. (10 points) Compute

$$
\int_{-\infty}^{\infty} \frac{1}{1+i x^{2}} d x
$$

