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9. This exercise is concerned with vector spaces that need not be finite-dimen-
sional; most of its parts (but not all) depend on the sort of transfinite reasoning
that is needed to prove that every vector space has a basis (cf. § 7, Ex. 11).

(a) Suppose that f and ¢ are scalar-valued functions defined on a set &; if a
and B are scalars write h = of + Bg for the function defined by h(z) = af(x) +
Bg(x) for all z in %¢. The set of all such functions is a vector space with respect to
this definition of the linear operations, and the same is true of the set of all finitely
non-zero functions. (A function f on X is finitely non-zero if the set of those elements
z of % for which f(z) 7 0 is finite.)

(b) Every vector space is isomorphic to the set of all finitely non-zero functions
on some set.

(¢) If U is a vector space with basis &, and if f is a scalar-valued function defined
on the set &, then there exists a unique linear functional y on ‘U such that [z, y]
= f(z) for all z in .

(d) Use (a), (b), and (c) to conclude that every vector space U is isomorphic to
a subspace of U’.

(e) Which vector spaces are isomorphic to their own duals?

(f) If  is a linearly independent subset of a vector space U, then there exists
a basis of ‘U containing Y. (Compare this result with the theorem of § 7.)

(®) If & is a set and if y is an element of &, write f, for the scalar-valued function
defined on & by writing f,(r) = 1 or 0 according as z = y or z ¥ y. Let Y be the
set of all functions f, together with the function g defined by g(z) = 1. for all =
in . Prove that if X is infinite, then Y is a linearly independent subset of the
vector space of all scalar-valued functions on .

(h) The natural correspondence from U to U’ is defined for all vector spaces
(not only for the finite-dimensional ones); if zo is in U, define the corresponding
element z; of V*’ by writing zo(y) = [%o, y] for all ¥ in U’. Prove that if U is reflexive
(i.e., if every z in 0" can be obtained in this manner by a suitable choice of zy),
then U is finite-dimensional. (Hint: represent U’ as the set of all scalar-valued
functions on some set, and then use (g), (f), and (c) to construct an element of V"
that is not induced by an element of V.)

Warning: the assertion that a vector space is reflexive if and only if it is finite-
dimensional would shock most of the experts in the subject. The reason is that
the customary and fruitful generalization of the concept of reflexivity to infinite-
dimensional spaces is not the simple-minded one given in (h).

§ 18. Direct sums

We shall study several important general methods of making new vector
spaces out of old ones; in this section we begin by studying the easiest one.

DerFIniTION. If U and U are vector spaces (over the same field), their
direct sum is the vector space W (denoted by U @ U) whose elements
are all the ordered pairs (r, y) with z in U and y in U, with the linear
operations defined by

ar(z1, 1) + az(Zz, ¥2) = (21 + ag¥s, aryy + azyz).

We observe that the formation of the direct sum is analogous to the way
in which the plane is constructed from its two coordinate axes.
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We proceed to investigate the relation of this notion to some of our
earlier ones.

The set of all vectors (in ‘W) of the form (z, 0) is a subspace of W; the
correspondence (z, 0) =2 z shows that this subspace is isomorphic to .
It is convenient, once more, to indulge in a logical inaccuracy and, identify-
ing z and {(z, 0), to speak of U as a subspace of W. Similarly, of course,
the vectors y of U may be identified with the vectors of the form (0, y)
in W, and we may consider U as a subspace of W. This terminology
is, to be sure, not quite exact, but the logical difficulty is much easier to
get around here than it was in the case of the second dual space. We could
have defined the direct sum of U and U (at least in the case in which U
and U have no non-zero vectors in common) as the set consisting of all
z’s in U, all ¥’s in U, and all those pairs (z, y) for which z % 0 and y # 0.
This definition yields a theory analogous in every detail to the one we
shall develop, but it makes it a nuisance to prove theorems because of the
case distinctions it necessitates. It is clear, however, that from the point
of view of this definition U is actually a subset of 44 @ V. In this sense
then, or in the isomorphism sense of the definition we did adopt, we raise
the question: what is the relation between U and U when we consider these
spaces as subspaces of the big space W?

THEOREM. If U and U are subspaces of a vector space W, then the following
three conditions are equivalent.

() W=uem.

@ UNV=0and U+ DV =W (ie, U and V are complements of
each other).

(3) Every vector z in W may be writlen in the form z = x + y, with
Z in U and y in U, in one and only one way.

PROOF. We shall prove the implications (1) = (2) = (3) = (1).

(1) = (2). We assume that W = 4 @ V. If z = (2, y) lies in both

U and U, then = y = 0, so that z = 0; this proves that . N U = 0.
Since the representation z = (z, 0) + (0, y) is valid for every z, it follows
also that U + U = W.
) (2) = (3). If we assume (2), so that, in particular, 4 + VO = ‘W, then
it is clear that every z in ‘W has the desired representation, z = z + y.
To prove uniqueness, we assume that z = z; + y1 and z = x5 + ¥y,, with
z; and z; in U and y; and y, in V. Since z; + y1 = x3 + ¥, it follows
Fhat %3 — 22 = y2 — ¥1. Since the left member of this last equation is
In U and the right member is in U, the disjointness of W and U implies
that z; = z, and y3 = .

(8) = (1). This implication is practically indistinguishable from the
definition of direct sum. If we form the direct sum U @ U, and then
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identify (z, 0) and (0, ) with = and y respectively, we are committed to
identifying the sum (z, y) = (z, 0) + (0, y) with what we are assuming
to be the general element z = z + y of ‘W; from the hypothesis that the
representation of z in the form z - y is unique we conclude that the cor-
respondence between (z, 0) and z (and also between (0, y) and y) is one-to-
one.

If two subspaces AU and U in a vector space W are disjoint and span
% (that is, if they satisfy (2)), it is usual to say that W is the internal
direct sum of U and U; symbolically, as before, W = U ® V. If we want
to emphasize the distinction between this concept and the one defined
before, we describe the earlier one by saying that W is the external direct
sum of U and V. In view of the natural isomorphisms discussed above,
and, especially, in view of the preceding theorem, the distinction is more
pedantic than conceptual. In accordance with our identification conven-
tion, we shall usually ignore it.

§ 19. Dimension of a direct sum

What can be said about the dimension of a direct sum? If U is n-di-
mensional, U is m-dimensional, and ‘W = U @ U, what is the dimension
of ‘W? This question is easy to answer.

TeEOREM 1. The dimension of a direct sum s the sum of the dimensions
of its summands.

PROOF. We assert that if {z,, - -+, z,} isa basisin U, and if {y1, - - -, ¥ml}
is a basis in U, then the set {zy, - -, Zn, ¥1, ** -, Ym} (or, more precisely,
the set {(z1, 0), -+, (Zn 0), (0, yih e , ym)}) is a basis in ‘W. The
easiest proof of this assertion is to use the implication (1) = (3) from
the theorem of the preceding section. Since every z in ‘W may be written
in the form z = z + y, where z is a linear combination of z;, - - -, z, and
y is a linear combination of y1, - - -, Ym, it follows that our set does indeed
span ‘W. To show that the set is also linearly independent, suppose that

a1 4+ anta + Bit1 +- -+ Bmym = 0.

The uniqueness of the representation of 0 in the form z + y implies that
a@y ++ o anZa = Biy1 + -+ Bum = 0,

and hence the linear independence of the z’s and of the y’s implies that

ag =..-—a”=ﬁl =---=§”—o,
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THEOREM 2. If W is any (n + m)-dimensional vector space, and if U
18 any n-dimensional subspace of W, then there exists an m-dimensional
subspace U in W such that W = U @ .

PROOF. Let {z;, ---, z,} be any basis in U; by the theorem of § 7 we
may find a set {y1, -, ym} of vectors in W with the property that {z,,
cey Tay Y1, ¢y Ym) 18 & basis in W. Let U be the subspace spanned by
Y1, ***» Ym; We omit the verification that W = U @ V.

Theorem 2 says that every subspace of a finite-dimensional vector space
has a complement.

§ 20. Dual of a direct sum

In most of what follows we shall view the notion of direct sum as defined
for subspaces of a vector space U; this avoids the fuss with the identification
convention of § 18, and it turns out, incidentally, to be the more useful
concept for our later work. We conclude, for the present, our study of
direct sums, by observing the simple relation connecting dual spaces,
annihilators, and direct sums. To emphasize our present view of direct
summation, we return to the letters of our earlier notation.

TreoreEM. If 9N and 9 are subspaces of a vector space U, and if VU = M
@ 9, then M’ 15 ssomorphic to N° and I to I, and V' = M° @ RO,

PrROOF. To simplify the notation we shall use, throughout this proof,
z, z’, and 2° for elements of 91, 9N’, and MO, respectively, and we reserve,
similarly, the letters y for 9 and z for V. (This notation is not meant to
suggest that there is any particular relation between, say, the vectors
z in 9N and the vectors 2’ in 9N’.)

If 2’ belongs to both 91° and 9, i.e., if 2/(x) = 2’(y) = O for all z and
Y, then 2'(z) = z’(z 4+ y) = O for all z; this implies that 9m° and 9N° are
disjoint. If, moreover, 2’ is any vector in V', and if z = = + y, we write
2°(2) = 2/(y) and 3°(z) = 2/(z). It is easy to see that the functions z°
and y° thus defined are linear functionals on U (i.e., elements of V') belong-
ing to M® and MO respectively; since 2’ = z° 4 1°, it follows that U’ is
indeed the direct sum of 91° and 9°.

To establish the asserted isomorphisms, we make correspond to every
2% a ' in 9 defined by y'(y) = z°(y). We leave to the reader the routine
verification that the correspondence z° — ¥’ is linear and one-to-one,
and therefore an isomorphism between 9n° and 9U’; the corresponding
result for 3° and 9N’ follows from symmetry by interchanging z and Y.
(Observe that for finite-dimensional vector spaces the mere existence of
an isomorphism between, say, 9° and 9’ is trivial from a dimension argu-
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ment; indeed, the dimensions of both a1® and 9 are equal to the dimension
of 9t.)

We remark, concerning our entire presentation of the theory of direct
sums, that there is nothing magic about the number two; we could have
defined the direct sum of any finite number of vector spaces, and we could
have proved the obvious analogues of all the theorems of the last three
sections, with only the notation becoming more complicated. We serve
warning that we shall use this remark later and treat the theorems it implies
as if we had proved them.

EXERCISES

1. Suppose that z, y, u, and v are vectors in €*; let 91 and I be the subspaces of
©* spanned by {z, y} and {w, v} respectively. In which of the following cases is it
true that €* = MP N?

(a' zr= (1’ 1; 0: 0)! y= (ly 0: 11 0)
U= (0; 1’ 0) ) v = (0; 0) 1) 1)-
(b)x=(—1’ 1,1, y4=0,1,-1,1
u = (11 05 0, 0), v = (O: 0’ 07 1)-
(0 z=(1,0,0, 1 y=(,1,1,0)
U = (1: 0’ 1; 0)’ v = (07 1, 0; 1)'
2. If9N is the subspace consisting of all those vectors (§1, -+, &a, £ngy, -+ -,
£,,) in @2 for which £ = .- = £, = 0, and if 9U is the subspace of all those

vectors for which £j = a4, 5 =1, --+, n, then € = MO N.

3. Construct three subspaces 91, 9, and 9, of a vector space U so that MNP
=IND Nz = V but Ny # Ne. (Note that this means that there is no cancellation
law for direct sums.) What is the geometric picture corresponding to this situation?

4. (a) If U, U, and W are vector spaces, what is the relation between U@ (¥
@W) and (WD V)@ W (i.e., in what sense is the formation of direct sums an
associative operation)?

(b) In what sense is the formation of direct sums commutative?

5. (a) Three subspaces £, 917, and 9T of a vector space U are called independent
if each one is disjoint from the sum of the other two. Prove that a necessary and
sufficient condition for U = £@ (I N) (and also for U = (LD M) @ ) is that
£, 9, and I be independent and that U = £ + 9N + . (The subspace £ + M
+ 91 is the set of all vectors of the form z + y + 2, with z in £, y in 9%, and
2 in JL.)

(b) Give an example of three subspaces of a vector space U, such that the sum
of all three is U, such that every two of the three are disjoint, but such that the
three are not independent.

(c) Suppose that z, ¥, and 2 are elements of a vector space and that £, M, and
91 are the subspaces spanned by z, v, and z, respectively. Prove that the vectors
z, ¥, and z are linearly independent if and only if the subspaces £, 91, and 91 are
independent.

(d) Prove that three finite-dimensional subspaces are independent if and only
if the sum of their dimensions is equal to the dimension of their sum.

(e) Generalize the results (a)~(d) from three subspaces to any finite number.
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§ 21. Quotient spaces

We know already that if 91 is a subspace of a vector space U, then there
are, usually, many other subspaces 9 in ‘U such that 9% @ 9 = V. There
is no natural way of choosing one from among the wealth of complements
of 9. There is, however, a natural construction that associates with 51
and ‘U a new vector space that, for all practical purposes, plays the role of
a complement, of 9. The theoretical advantage that the construction has
over the formation of an arbitrary complement is precisely its ‘“natural”
character, i.e., the fact that it does not depend on choosing a basis, or, for
that matter, on choosing anything at all.

In order to understand the construction it ig a good idea to keep a picture
in mind. Suppose, for instance, that 0 = ®? (the real coordinate plane)
and that 91 consists of all those vectors (£, &) for which £ = 0 (the hori-
zontal axis). Each complement of 91 ig & line (other than the horizontal
axis) through the origin. Observe that each such complement has the
property that it intersects every horizontal line in exactly one point. The
idea of the construction we shall describe is to make a vector space out of
the set of all horizontal lines.

We begin by using 9% to single out certain subsets of V. (We are back
in the general case now.) If z is an arbitrary vector in 0, we write £ 4 9
for the set of all sums z 4 y with y in 9%; each set of the form z + 91 is
called a coset of 9. (In the case of the plane-line example above, the co-
sets are the horizontal lines.) Note that one and the same coset can arise
from two different vectors, ie., that even if z = y, it is possible that
%+ o9 =y + M. It makes good sense, just the same, to speak of a
coset, say 3¢, of 9%, without specifying which element (or elements) 3C
comes from; to say that 3¢ is a coset (of 91) means simply that there is at
least one z such that 3¢ = z 4 M.

If 3¢ and X% are cosets (of 9N), we write 3¢ + X for the set of all sums
u + v with « in 3¢ and v in X; we assert that 3¢ + X is also a coset of 9%.
Indeed, if 3¢ = z + 9N and X = y + IR, then every element of 5 + X
belongs to the coset (z + y) + M (note that M + M = IN), and, con-
versely, every element of (z + y) + 9 is in 3¢ + K. (If, for instance, z
isin 9N, then (z + y) + 2 = ( + 2) + (y + 0).) In other words, 3¢ + &K
= (z 4 y) + M, so that 3¢ + X is a coset, as asserted. We leave to the
reader the verification that coset addition is commutative and associative.
The coset 9N (i.e., 0 + M) is such that 3¢ + 9N = I for every coset IC,
and, moreover, 9 is the only coset with this property. (If (z 4+ )
4+ (y + M) = z + 9, then z -+ I containsz + y,sothatz 4+ y =z 4 u
for some u in 91; this implies that y is in 91, and hence that y + 9 = 91.)
If 3¢ is a coset, then the set consisting of all the vectors —u, with u in 3¢,
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is itself a coset, which we shall denote by —3¢. The coset —3C is such
that 3¢ 4+ (—3) = 9, and, moreover, —3C is the only coset with this
property. To sum up: the addition of cosets satisfies the axioms (A) of
§2.

If 3¢ is a coset and if « is a scalar, we write a3C for the set consisting of
all the vectors au with  in 3C in case « 7 0; the coset 0-3C is defined to be
91t. A simple verification shows that this concept of multiplication satisfies
the axioms (B) and (C) of § 2.

The set of all cosets has thus been proved to be a vector space with respect
to the linear operations defined above. This vector space is called the
quotient space of 0 modulo 9 ; it is denoted by V/IM.

§ 22. Dimension of a quotient space

TaeoreM 1. If 91 and N are complementary subspaces of a vector space
?V, then the correspondence that assigns to each vector y in N the coset y + N
1s an isomorphism between N and V/IM.

prooF. If y; and y; are elements of 9T such that y; + 9N = y2 + 9N,
then, in particular, y; belongs to y2 + 9%, so that y; = yz + = for some
z in 9N. Since this means that y; — ys = z, and since 91 and 9N are dis-
joint, it follows that z = 0, and hence that y; = y2. (Recall that y; — ya
belongs to 9% along with y; and ys.) This argument proves that the cor-
respondence we are studying is one-to-one, as far as it goes. To prove that
it goes far enough, consider an arbitrary coset of 91, say z + 9. Since
VU = 9 + M, we may write z in the form y + z, with z in 9% and y in ;
it follows (since z + 9N = M) that z + M = y + M. This proves that
every coset of 91 can be obtained by using an element of 9 (and not just
any old element of V); consequently ¥y — y + 91 is indeed a one-to-one
correspondence between 9t and U/9M. The linear property of the cor-
respondence is immediate from the definition of the linear operations in
V/9; indeed, we have

(@Y1 + agy2) + M = ay(y1 + M) + az(yz + M).

TuEOREM 2. If 9N is an m-dimensional subspace of an n-dimensional
vector space U, then U/ has dimension n — m.

prOOF. Use § 19, Theorem 2 to find a subspace 91 so that 9T & 9 = V.
The space 9 has dimension n — m (by § 19, Theorem 1), and it is isomor-
phic to U/ (by Theorem 1 above).

There are more topics in the theory of quotient spaces that we could
discuss (such as their relation to dual spaces and annihilators). Since,
however, most such topics are hardly more than exercises, involving the
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use of techniques already at our disposal, we turn instead to some new and
non-obvious ways of manufacturing useful vector spaces.

EXERCISES

1. Consider the quotient spaces obtained by reducing the space @ of polynomials
modulo various subspaces. If M = ®,, is ®/IMN finite-dimensional?. What if N
is the subspace consisting of all even polynomials? What if 97 is the subspace
consisting of all polynomials divisible by z, (where z4(t) = t*)?

2. If 8 and J are arbitrary subsets of a vector space (not necessarily cosets of a
subspace), there is nothing to stop us from defining 8§ + 3 just as addition was
defined for cosets, and, similarly, we may define a8 (where « is a scalar). If the
class of all subsets of a vector space is endowed with these “linear operations,”
which of the axioms of a vector space are satisfied?

3. (a) Suppose that 9N is a subspace of a vector space U. Two vectors z and y
of V are congruent modulo 9N, in symbols z = y (M), if z — y is in IN. Prove that
congruence modulo 1T is an equivalence relation, i.e., that it is reflexive (z = z),
symmetric (if z = y, then y = ), and transitive (if z = y and y = 2, then z = 2).

(b) If on and v are scalars, and if 2y, 73, y3, and y» are vectors such that 1 =
(9N) and 2 = 2 (M), then ayz; + aazs = aqy1 + azys (IMN).

(¢) Congruence modulo 91T splits U into equivalence classes, i.e., into sets such
that two vectors belong to the same set if and only if they are congruent. Prove
that a subset of ‘U is an equivalence class modulo N if and only if it is a coset of L.

4. (a) Suppose that 9 is a subspace of a vector space V. Corresponding to
every linear functional y on U/IM (i.e., to every element y of (V/9N)"), there is a
linear functional z on U (i.e., an element of V’); the linear functional z is defined
by 2(z) = y(z + 9). Prove that the correspondence y — 2 is an isomorphism
between (V/9N) and INO. s

(b) Suppose that 9N is a subspace of a vector space V. Corresponding to every
coset y + M? of M? in V’ (i.e., to every element IC of V//IM?), there is a linear
functional z on 9N (i.e., an element z of M’); the linear functional z is defined by
2(x) = y(z). Prove that z is unambiguously determined by the coset 3C (that is,
it does not depend on the particular choice of y), and that the correspondence
JC — zis an isomorphism between V’/IN° and M.

5. Given a finite-dimensional vector space U, form the direct sum W = VDV,

and prove that the correspondence (z, y) — (v, z) is an isomorphism between
W and W’

§ 23. Bilinear forms

If U and U are vector spaces (over the same field), then their direct sum
W = 9 @ U is another vector space; we propose to study certain functions
on W, (For present purposes the original definition of U @ U, via ordered
pairs, is the convenient one.) The value of such a function, say w, at an
element (z, y) of W will be denoted by w(z, ¥). The study of linear func-
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tions on W is no longer of much interest to us; the principal facts con-
cerning them were discussed in § 20. The functions we want to consider
now are the bilinear ones; they are, by definition, the scalar-valued func-
tions on W with the property that for each fixed value of either argument
they depend linearly on the other argument. More precisely, a scalar-
valued function w on W is a bilinear form (or bilinear functional) if

wlenzy + s, ¥) = aw(zy, y¥) + axw(zs, ¥)
and
w(z, oY1 + aayz) = aw(z, ¥1) + aew(z, y2),

identically in the vectors and scalars involved.

In one special situation we have already encountered bilinear functionals.
If, namely, ‘U is the dual space of U, U = U, and if we write w(z, y) = [z, y]
(see § 14), then w is a bilinear functional on U & U’. For an example in
a more general situation, let U and ‘U be arbitrary vector spaces (over the
same field, as always), let » and v be elements of U’ and U’ respectively,
and write w(z, y) = u(@)v(y) for all z in U and y in V. An even more
general example is obtained by selecting a finite number of elements in
a’, say uy, ---, U selecting the same finite number of elements in V’,
say v1, + - +, Uk, and writing w(z, y) = w1 (x)1(y) + - - -+ ur(@)ve(y). Which
of the words, ‘“functional” or “form,” is used depends somewhat on the
context and, somewhat more, on the user’s whim. In this book we shall
generally use “functional” with “linear” and “form” with “bilinear” (and
its higher-dimensional generalizations).

If w; and w, are bilinear forms on W, and if a; and ag are scalars, we
write w for the function on W defined by

w(:c, y) = alwl(x) y) + a2w2(x; y)‘

It is easy to see that w is a bilinear form; we denote it by ajw; -+ agw,.
With this definition of the linear operations, the set of all bilinear forms
on W is a vector space. The chief purpose of the remainder of this section
is to determine (in the finite-dimensional case) how the dimension of this
space depends on the dimensions of 4t and ‘0.

TaeoreM 1. If AU is an n-dimensional vector space with basis {zy, - - -, Za},
if UV is an m-dimensional vector space with basis {yi, -+, Ym}, and of
{as;} 13 any set of nm scalars (6 =1, -+-, n; j = 1, - -+, m), then there i3
one and only one bilinear form w on U @V such that w(z;, y;) = oij for
all ¢ and j.

PROOF. If 2 = D; £xi, y = D ;1395 and w is a bilinear form on U & U
such that w(z;, ;) = aij, then

W(IC, y) = Zl' ZJ' Efﬂfw(xl'; yj) = Zi Zi Emjatis
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From this equation the uniqueness of w is clear; the existence of a suitable
w is proved by reading the same equation from right to left, that is, de-
fining w by it. (Compare this result with § 15, Theorem 1.)

TaEoREM 2. If U 13 an n-dimensional vector space with basis {z,, + - -, Za},
and if U is an m-dimensional vector space with basis {yy, - -+, Ym}, then
there is a uniquely determined basis {wpe} @ = 1, -, m;q¢=1, -+, m)
n the vector space of all bilinear forms on U @V with the property that
Wypqe(Tiy Tj) = Bipdjq. Consequently the dimension of the space of bilinear
forms on W @ U s the product of the dimensions of U and V.

PrROOF. Using Theorem 1, we determine wp, (for each fixed p and ¢)
by the given condition wpe(zi, ¥;) = 8ipdj,. The bilinear forms so de-
termined are linearly independent, since

Ep Eq opgWpq = 0
0= Zp Za apgdipdiq = atij.

If, moreover, w is an arbitrary element of ‘W, and if w(z;, y;) = aij, then
W=D p OogtpgWpg. Indeed, if z = 3 ;&x; and y = 2 ; 7,y then

Wpe(T, y) = Ei Ei Emidipdiq = oM,
and, consequently,
w(z, y) = Zi Zi Emjai; = Ep ,Eq "‘pquq'(x; Y)-

It follows that the w,, form a basis in the space of bilinear forms; this
completes the proof of the theorem. (Compare this result with § 15,
Theorem 2.)

implies that

EXERCISES

1. (a) If wis a bilinear form on ®"@ ®R", then there exist scalars a;;, 1,7 = 1, -,
n, such that if z = (&, -+, £») and y = (m, - -+, 1), then w(z, y) = >°; 3o aiibam;.
The scalars a; are uniquely determined by w.

(b) If z is a linear functional on the space of all bilinear forms on ®*@ ®*, then
there exist scalars B;; such that (in the notation of (a)) 2(w) = 35 3°; a8 for
every w. The scalars 8;; are uniquely determined by 2.

2. A bilin'ear form w on WP U is degenerate if, as a function of one of its two
arguments, it vanishes identically for some non-zero value of its other argument;
otherwise it is non-degenerate.

e%; give an example of a degenerate bilinear form (not identically zero) on

(b) Give an example of a non-degenerate bilinear form on @* @ €2,
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3. If w is a bilinear form on U@ U, if yo is in UV, and if a funetion y is defined on
U by y(x) = w(z, yo), then y is a linear functional on U. Is it true that if w is non-
degenerate, then every linear functional on U ean be obtained this way (by a suitable
choice of yg)?

4. Suppose that for each z and y in @, the function w is defined by

1
(8) w(z, y) = fo 2(t)y(0) i,

(b) w(z, y) = z(1) + y(1),
(e) w(z, y) = z(1)-y(D),

@ vtz ) =20 (%) /

In which of these cases is w a bilinear form on ®, @ ®,? In which cases is it non-
degenerate?

5. Does there exist a vector space U and a bilinear form w on U@ U such that
w is not identically zero but w(z, ) = 0 for every z in 0?

6. (a) A bilinear form w on V@ U is symmetric if w(z, y) = w(y, ) forall z and y.
A gquadratic form on U is a function ¢ on U obtained from a bilinear form w by writing
g(x) = w(z, ). Prove that if the characteristic of the underlying scalar field is
different from 2, then every symmetric bilinear form is uniquely determined by
the corresponding quadratic form. What happens if the characteristic is 27

(b) Can a non-symmetric bilinear form define the same quadratic form as a
symmetric one?

§ 24. Tensor products

In this section we shall describe a new method of putting two vector
spaces together to make a third, namely, the formation of their tensor
product. Although we shall have relatively little occasion to make use of
tensor products in this book, their theory is closely allied to some of the
subjects we shall treat, and it is useful in other related parts of mathe-
matics, such as the theory of group representations and the tensor calculus.
The notion is essentially more complicated than that of direct sum; we
shall therefore begin by giving some examples of what a tensor product
should be, and the study of these examples will guide us in laying down the
definition.

Let U be the set of all polynomials in one variable s, with, say, complex
coefficients; let U be the set of all polynomials in another variable ¢; and,
finally, let ‘W be the set of all polynomials in the two variables s and &
With respect to the obvious definitions of the linear operations, U, U, and
W are all complex vector spaces; in this case we should like to call W, or
something like it, the tensor product of U and V. One reason for this
terminology is that if we take any z in U and any y in U, we may form
their product, that is, the element z of W defined by z(s, ¥) = z(s)y(?).
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(This is the ordinary product of two polynomials. Here, as before, we are
doggedly ignoring the irrelevant fact that we may even multiply together
two elements of U, that is, that the product of two polynomials in the same
variable is another polynomial in that variable. Vector spaces in which a
decent concept of multiplication is defined are called algebras, and their
study, as such, lies outside the scope of this book.)

In the preceding example we considered vector spaces whose elements
are functions. We may, if we wish, consider the simple vector space C" as
a collection of functions also; the domain of definition of the functions is,
in this case, a set consisting of exactly n points, say the first n (strictly)
positive integers. In other words, a vector (£, - - -, £4) may be considered
as a function £ whose value £(?) is defined for 7 = 1, - - -, n; the definition
of the vector operations in @" is such that they correspond, in the new no-
tation, to the ordinary operations performed on the functions £ If, simul-
taneously, we consider €™ as the collection of functions n whose value 5(3j)

is defined for j = 1, ---, m, then we should like the tensor product of €
and €™ to be the set of all functions ¢ whose value {(z, j) is defined for
it=1,---,nand j=1, ---, m. The tensor product, in other words, is

the collection of all functions defined on a set consisting of exactly nm ob-
jects, and therefore naturally isomorphic to €"™". This example brings out
a property of tensor products—namely, the multiplicativity of dimension
—that we should like to retain in the general case.

Let us now try to abstract the most important properties of these exam-
ples. The definition of direct sum was one possible rigorization of the crude
intuitive idea of writing down, formally, the sum of two vectors belonging
to different vector spaces. Similarly, our examples suggest that the tensor
product U ® U of two vector spaces U and U should be such that to every
z in U and y in U there corresponds a “product”’ z =z @ yin U ® 0, in
such a way that the correspondence between z and z, for each fixed y, as
well as the correspondence between y and z, for each fixed z, is linear.
(This means, of course, that (a;z1 + a272) ® ¥ should be equal to
(21 @ y) + a2(z2 ® y), and that a similar equation should hold for
z @ (ayy; + agy2).) To put it more simply, * ® y should define a bilinear
(vector-valued) function of z and y.

The notion of formal multiplication suggests also that if u and v are
linear functionals on U and U respectively, then it is their product w, de-
fined by w(z, y) = u(x)v(y), that should be in some sense the general ele-
ment of the dual space (U ® V)’. Observe that this product is a bilinear
(scalar-valued) function of z and y.
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§ 25. Product bases

After one more word of preliminary explanation we shall be ready to
discuss the formal definition of tensor products. It turns out to be tech-
nically preferable to get at U ® ‘U indirectly, by defining it as the dual of
another space; we shall make tacit use of reflexivity to obtain U ® U it-
self. Since we have proved reflexivity for finite-dimensional spaces only,
we shall restrict the definition to such spaces.

DeriniTION. The tensor product U ® U of two finite-dimensional vector
spaces U and U (over the same field) is the dual of the vector space of
all bilinear forms on U @ V. For each pair of vectors z and y, with z in
q and y in ‘U, the tensor product z = z ® y of z and y is the element of
U @ U defined by z(w) = w(z, y) for every bilinear form w.

This definition is one of the quickest rigorous approaches to the theory,
but it does lead to some unpleasant technical complications later. What-
ever its disadvantages, however, we observe that it obviously has the two
desired properties: it is clear, namely, that dimension is multiplicative (see
§ 23, Theorem 2, and § 15, Theorem 2), and it is clear that * ® y depends
linearly on each of its factors.

Another possible (and deservedly popular) definition of tensor product
is by formal products. According to that definition U ® U is obtained by
considering all symbols of the form Y ; a;(z; ® ¥;), and, within the set of
such symbols, making the identifications demanded by the linearity of the
vector operations and the bilinearity of tensor multiplication. (For the
purist: in this definition z ® y stands merely for the ordered pair of z and
y; the multiplication sign is just a reminder of what to expect.) Neither
definition is simple; we adopted the one we gave because it seemed more in
keeping with the spirit of the rest of the book. The main disadvantage of
our definition is that it does not readily extend to the most useful generali-
zations of finite-dimensional vector spaces, that is, to modules and to in-
finite-dimensional spaces.

For the present we prove only one theorem about tensor products. The
theorem is a further justification of the product terminology, and, inciden-
tally, it is a sharpening of the assertion that dimension is multiplicative.

THEOREM. If X = {z;, +*+, 2a} and Y = {y1, -, Ym} are bases in U

and U respectively, then the set Z of vectors z;j = 2; @ y; t =1, -+, 1;

j=1---,m)isabasisin U @ V.

PROOF. Let w,, be the bilinear form on U @V such that Wpqa(Ts,¥5)
= 8ipdj, G, p =1, -+, n;j, ¢ =1, - -+, m); the existence of such bilinear
forms, and the fact that they constitute a basis for all bilinear forms, follow
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from §23, Theorem 2. Let {w’,,} be the dual basis in U ® U, so that
[Wij, Wpgl = 8ipdiq. If W = D.p 2 g Apellpg is an arbitrary bilinear form
on U P, then

w'ii(w) = [w, w'y] = Zp Zq g Wpg, W'ij]
= ay; = w(x;, ¥5) = z;;(w).

The conclusion follows from the fact that the vectors w’;; do constitute a
basis of U ® V.

EXERCISES

1. Ifz = (1, 1) and ¥ = (1, 1, 1) are vectors in R? and ®? respectively, find the
coordinates of z @ y in R? @ ®?® with respect to the product basis {=: ® y;},
where z; = (64, 8:2) and y; = (8y;, 825, 83).

2. Let ®a,m be the space of all polynomials z with complex coefficients, in two
variables s and ¢, such that either z = 0 or else the degree of z(s, ¢) is £ m — 1
for each fixed s and < n — 1 for each fixed . Prove that there exists an iso-
morphism between ®, ® @, and @, such that the element z of @, . that cor-
responds to £ ® y (z in Py, y in ®y) is given by 2(s, t) = x(s)y(?).

3. To what extent is the formation of tensor products commutative and associa-
tive? What about the distributive lawU @ (VA W) = (U @ V)P (U ® W)?

4. If U is a finite-dimensional vector space, and if z and y are in U, is it true
thatz Q@ y = y @ «?

5. (a) Suppose that U is a finite-dimensional real vector space, and let U be
the set G of all complex numbers regarded as a (two-dimensional) real vector
space. Form the tensor product U+t =AU @ V. Prove that there is a way of
defining products of complex numbers with elements of U+ so that alz ® y)
= az @ y whenever a and z are in € and y is in V.

(b) Prove that with respect to vector addition, and with respect to complex
scalar multiplication as defined in (a), the space U is a complex vector space.

(c) Find the dimension of the complex vector space V¥ in terms of the di-
mension of the real vector space V.

(d) Prove that the vector space ‘U is isomorphic to a subspace in U+ (when the
latter is regarded as a real vector space).

The moral of this exercise is that not only can every complex vector space be
regarded as a real vector space, but, in a certain sense, the converse is true. The
vector space V1 is called the complexification of V.

6. If U and ‘U are finite-dimensional vector spaces, what is the dual space of
U @ v?
§ 26. Permutations

The main subject of this book is usually known as linear algebra. In the
lgst three sections, however, the emphasis was on something called multi-
linear algebra. It is hard to say exactly where the dividing line is between



