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§ 13. Dual spaces

DerintTioN. A linear functional on a vector space U is a scalar-valued
function y defined for every vector z, with the property that (identically
in the vectors z; and z; and the scalars a; and as)

Ylayzy + agzs) = a1y(z1) + ay(za).

Let us look at some examples of linear functionals.
(1) For z = (&, ---, &) in €, write y(z) = . More generally, let
ay, +++, aq be any # scalars and write

y(@) = by +- - -+ antn.
We observe that for any linear functional y on any vector space
y(0) = y(0:0) = 0-y(0) = 0;

for this reason a linear functional, as we defined it, is sometimes called
homogeneous. In particular in @", if y is defined by

y(x) = o +---+ anfﬂ"‘ﬁ,

then y is not a linear functional unless 8 = 0.

(2) For any polynomial z in @, write y(z) = z(0). More generally,
let oy, - -+, an be any n scalars, let ¢y, - - -, {, be any n real numbers, and
write

y(@) = arx(ty) +- - - tanz(ts).
Another example, in a sense a limiting case of the one just given, is obtained
as follows. Let (a, b) be any finite interval on the real t-axis, and let «
be any complex-valued integrable function defined on (a, b); define y by

b
y(z) = f a(t)z(t) dt.

(3) On an arbitrary vector space U, define y by writing

yx) =0
for every z in U.

The last example is the first hint of a general situation. Let U be any
vector space and let U’ be the collection of all linear functionals on .
Let us denote by 0 the linear functional defined in (3) (compare the comment
at the end of §4). If y; and y, are linear functionals on U and if «; and
ag are scalars, let us write y for the function defined by

y(@) = ary1(x) + asya(z).
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It 18 easy to see that y is a linear functional; we denote it by ayyy + agys.
With these definitions of the linear concepts (zero, addition, scalar multi-
plication), the set U’ forms a vector space, the dual space of V.

§ 14. Brackets

Before studying linear functionals and dual spaces in more detail, we
wish to introduce a notation that may appear weird at first sight but that
will clarify many situations later on. Usually we denote a linear functional
by a single letter such as y. Sometimes, however, it is necessary to use
the function notation fully and to indicate somehow that if y is a linear
functional on U and if z is a vector in U, then y(z) is a particular scalar.
According to the notation we propose to adopt here, we shall not write
y followed by z in parentheses, but, instead, we shall write z and y enclosed
between square brackets and separated by a comma. Because of the un-
usual nature of this notation, we shall expend on it some further verbiage.

As we have just pointed out [z, y] is a substitute for the ordinary func-
tion symbol y(z); both these symbols denote the scalar we obtain if we
take the value of the linear function y at the vector z. Let us take an
analogous situation (concerned with functions that are, however,®not
linear). Let y be the real function of a real variable defined for each real
number z by y(z) = z%. The notation [z, y] is a symbolic way of writing
down the recipe for actual operations performed; it corresponds to the
sentence [take a number, and square it].

Using this notation, we may sum up: to every vector space U we make
correspond the dual space U’ consisting of all linear functionals on U;
to every pair, « and y, where z is a vector in ‘U and y is a linear functional
in V', we make correspond the scalar [z, y} defined to be the value of y
at 2. In terms of the symbol [z, y] the defining property of a linear func-
tional is

1) lery + oo, yl = aylzy, Y] + aclzs, y),
and the definition of the linear operations for linear functionals is
@) [z, asyy + azye] = aylz, y1} + alz, yol.

The two relations together are expressed by saying that [z, y] is a bilinear
Junctional of the vectors z in U and y in V.
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EXERCISES

1. Consider the set € of complex numbers as a real vector space (as in § 3, (9)).
Suppose that for each 2z = & + 4§, in @ (where & and & are real numbers and
t = V —1) the function y is defined by

(a) y(z) = &,

(b) y(z) = &,

(c) y(x) = 512’

d) y(2) = & — 18,

(e) ¥(x) = V&2 + £ (The square root sign attached to a positive number
always denotes the positive square root of that number.)

In which of these cases is y a linear functional?

2. Suppose that for each £ = (&1, £, &) in @® the function y is defined by
(a) y(@) = &1+ &,

(b) (=) = & — &,

(c) y(@) = &1+ 1,

(d) y(x) = & — 28 + 3&a.

In which of these cases is y a linear functional?

3. Suppose that for each z in @ the function y is defined by
+2

@ v = 20,
-1

® 10 = [ @O a
© ¥o) = 22(t) i,
@ v = [ =)
(&) 4o = 2,

d*x
® v@) = G|
In which of these cases is ¥ a linear functional?

4. If (o, a1, a3, ---) is an arbitrary sequence of complex numbers, and if  is
an element of @, z(f) = D 7o &', write y(z) = D foo Exxi. Prove that y is an
element of ¢’ and that every element of ® can be obtained in this manner by a
suitable choice of the o's.

5. If y is a non-zero linear functional on a vector space ‘U, and if « is an arbitrary
scalar, does there necessarily exist a vector z in U such that [z, y] = a?

6. Prove that if y and 2 are linear functionals (on the same vector space) such
that [z, y] = 0 whenever [z, 2] = 0, then there exists a scalar a such that y = az.

(Hint: if [zo, 2] 5 0, write & = [z, ¥I/[zs, 2].)
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§ 15. Dual bases

One more word before embarking on the proofs of the important theo-
rems. The concept of dual space was defined without any reference to
coordinate systems; a glance at the following proofs will show a super-
abundance of coordinate systems. We wish to point out that this phenome-
non is inevitable; we shall be establishing results concerning dimension,
and dimension is the one concept (so far) whose very definition is given in
terms of a basis.

TraEOREM 1. If U is an n-dimensional vector space, if {xy, +-+, T,} 18 @

basis in U, and if {ay, -+, an} ts any set of n scalars, then there is one
and only one linear functional y on U such that [z;, y] = a; for ¢ = 1,
L) y n.

prROOF. Every z in U may be written in the form x = £,7; 4+ £a2,
in one and only one way; if y is any linear functional, then

[z, ¥] = &2y, 9] + - -+ Ealza, 9.

From this relation the uniqueness of y is eclear; if [z;, y] = ay, then the
value of [z, y] is determined, for every z, by [z, y] = Y_; £ie;. The argument
can also be turned around; if we define y by

[xi y] =g +---+ Enay,
then y is indeed a linear functional, and {x;, ¥y} = a;.

TueoreM 2. If U is an n-dimensional vector space and if X = {4,
“**, Ty} 18 a basis in U, then there is a uniquely determined basis X' in
V', X" = {y1, +++, yn}, with the property that [x;, yjl = 8;5. Consequently
the dual space of an n-dimensional space s n-dimensional.

The basis X’ is called the dual basis of .

PROOF. It follows from Theorem 1 that, for each j = 1, -+, n, a unique
Y; in U’ can be found so that [z;, ;] = 8;; we have only to prove that the
set L' = {y;, -+, ¥a} is a basis in V',

In the first place, X’ is a linearly independent set, for if we had a;y; +
** -+ anyn = 0, in other words, if

[v, arys + -+ anynl = aslr, yil +- -+ anlz, ya] = 0
for all z, then we should have, for z = z,,

0 = 3%, ajfzy, yil = 3o; ajdii = .
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In the second place, every y in U’ is a linear combination of yy, « -, ¥a.
To prove this, write [z, y] = a;; then, for z = D _; £:z;, we have

[15, y] = fiy + -+ énan.
[z, y;] = D &ilzi, i = &

so that, substituting in the preceding equation, we get

On the other hand

[z, ¥l = alz, y1] +- - - + [z, yal
= [z, ayy1 + -+ anynl.

Consequently ¥ = a;y1 + -+ anys, and the proof of the theorem is
complete.
We shall need also the following easy consequence of Theorem 2.

TrEOREM 3. If u and v are any two different vectors of the n~dimenstonal
vector space U, then there exists a linear functional y on U such that [u, y]
# [v, yl; or, equivalently, to any non-zero vector x tn ‘U there corresponds
a y in U’ such that [z, y] # 0.

PrROOF. That the two statements in the theorem are indeed equivalent
is seen by considering x = u — v. We shall, accordingly, prove the latter
statement only.

Let € = {z1, ---, ¥»} be any basis in U, and let X' = {y, - -, ya} be
the dual basisin V'. If z = Z,- tx;, then (as above) [z, y;] = ¢;. Hence
if [z, y] = O for all y, and, in particular, if [z, yj] =0 forj=1, ---, n,
then z = 0.

§ 16. Reflexivity

It is natural to think that if the dual space U’ of a vector space U, and
the relations between a space and its dual, are of any interest at all for
*, then they are of just as much interest for V’. In other words, we propose
now to form the dual space (V’)’ of V’; for simplicity of notation we shall
denote it by V. The verbal description of an element of U is clumsy:
such an element is a linear functional of linear functionals. It is, however,
at this point that the greatest advantage of the notation [z, y] appears;
by means of it, it is easy to discuss U and its relation to V”.

If we consider the symbol [z, y] for some fixed y = yo, we obtain nothing
new: [z, yo] is merely another way of writing the value yo(x) of the function
Yo at the vector z. If, however, we consider the symbol [z, y] for some
fixed z = o, then we observe that the function of the vectors in V’, whose
value at y is [zo, y], is a scalar-valued function that happens to be linear
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(see § 14, (2)); in other words, [zo, y] defines a linear functional on ',
and, consequently, an element of V.

By this method we have exhibited some linear functionals on V’; have
we exhibited them all? For the finite-dimensional case the following theo-
rem furnishes the affirmative answer.

THEOREM. If U 8 a finile-dimensional vector space, then corresponding
to every linear functional zy on V' there 1s a vector o in U such that zy(y)
= [xo, y] = y(xo) for every y in V'; the correspondence zy = To between
V" and U is an isomorphism.

The correspondence described in this statement is called the natural
correspondence between V" and V.

PROOF. Let us view the correspondence from the standpoint of going
from U to V”; in other words, to every zo in U we make correspond a
vector zg in V" defined by 25(y) = y(xo) for every y in V’. Since [z, ]
depends linearly on z, the transformation xy — 2z is linear.,

We shall show that this transformation is one-to-one, as far as it goes.
We assert, in other words, that if z; and z, are in U, and if z; and 2, are
the corresponding vectors in U’ (so that 2;(y) = [z1, y] and z(y) = [z2, ¥)
for all ¥ in V'), and if 2z, = 23, then 21 = z3. To say that z; = 2z, means
that [21, ¥] = [z2, y] for every y in U’; the desired conclusion follows from
§ 15, Theorem 3.

The last two paragraphs together show that the set of those linear
functionals z on U’ (that is, elements of V') that do have the desired form
(that is, z(y) is identically equal to [z, y] for a suitable z in ‘D) is a subspace
of U” which is isomorphic to U and which is, therefore, n-dimensional.
But the n-dimensionality of U implies that of V’, which in turn implies
that 0" is n-dimensional. It follows that U must coincide with the
n-dimensional subspace just described, and the proof of the theorem is
complete.

It is important to observe that the theorem shows not only that U and
V" are isomorphic—this much is trivial from the fact that they have the
same dimension—but that the natural correspondence is an isomorphism.
This property of vector spaces is called reflexivity; every finite-dimensional
vector space is reflexive.

It is frequently convenient to be mildly sloppy about U'': for finite-
dimensional vector spaces we shall identify U” with U (by the natural
isomorphism), and we shall say that the element 2o of V" is the same as
jche element z, of U whenever zo(y) = [z, y] for all yin U’. In this language
1t is very easy to express the relation between a basis &, in U, and the dual
basis of its dual basis, in V”’; the symmetry of the relation [zs, vl = &
shows that &/ = .



