§ 13. Dual spaces

DEFINITION. A linear functional on a vector space v is a scalar-valued function y defined for every vector x, with the property that (identically in the vectors x_1 and x_2 and the scalars α_1 and α_2)

$$y(\alpha_1x_1 + \alpha_2x_2) = \alpha_1y(x_1) + \alpha_2y(x_2).$$

Let us look at some examples of linear functionals.

(1) For $x = (\xi_1, \dots, \xi_n)$ in \mathbb{C}^n , write $y(x) = \xi_1$. More generally, let $\alpha_1, \dots, \alpha_n$ be any n scalars and write

$$y(x) = \alpha_1 \xi_1 + \cdots + \alpha_n \xi_n.$$

We observe that for any linear functional y on any vector space

$$y(0) = y(0 \cdot 0) = 0 \cdot y(0) = 0;$$

for this reason a linear functional, as we defined it, is sometimes called homogeneous. In particular in \mathbb{C}^n , if y is defined by

$$y(x) = \alpha_1 \xi_1 + \cdots + \alpha_n \xi_n + \beta,$$

then y is not a linear functional unless $\beta = 0$.

(2) For any polynomial x in \mathcal{O} , write y(x) = x(0). More generally, let $\alpha_1, \dots, \alpha_n$ be any n scalars, let t_1, \dots, t_n be any n real numbers, and write

$$y(x) = \alpha_1 x(t_1) + \cdots + \alpha_n x(t_n).$$

Another example, in a sense a limiting case of the one just given, is obtained as follows. Let (a, b) be any finite interval on the real t-axis, and let α be any complex-valued integrable function defined on (a, b); define y by

$$y(x) = \int_a^b \alpha(t)x(t) dt.$$

(3) On an arbitrary vector space v, define y by writing

$$y(x) = 0$$

for every x in v.

The last example is the first hint of a general situation. Let v be any vector space and let v' be the collection of all linear functionals on v. Let us denote by 0 the linear functional defined in (3) (compare the comment at the end of § 4). If v_1 and v_2 are linear functionals on v and if v_1 and v_2 are scalars, let us write v for the function defined by

$$y(x) = \alpha_1 y_1(x) + \alpha_2 y_2(x).$$

It is easy to see that y is a linear functional; we denote it by $\alpha_1 y_1 + \alpha_2 y_2$. With these definitions of the linear concepts (zero, addition, scalar multiplication), the set \mathcal{V}' forms a vector space, the *dual space* of \mathcal{V} .

§ 14. Brackets

Before studying linear functionals and dual spaces in more detail, we wish to introduce a notation that may appear weird at first sight but that will clarify many situations later on. Usually we denote a linear functional by a single letter such as y. Sometimes, however, it is necessary to use the function notation fully and to indicate somehow that if y is a linear functional on v and if x is a vector in v, then y(x) is a particular scalar. According to the notation we propose to adopt here, we shall not write y followed by x in parentheses, but, instead, we shall write x and y enclosed between square brackets and separated by a comma. Because of the unusual nature of this notation, we shall expend on it some further verbiage.

As we have just pointed out [x, y] is a substitute for the ordinary function symbol y(x); both these symbols denote the scalar we obtain if we take the value of the linear function y at the vector x. Let us take an analogous situation (concerned with functions that are, however, not linear). Let y be the real function of a real variable defined for each real number x by $y(x) = x^2$. The notation [x, y] is a symbolic way of writing down the recipe for actual operations performed; it corresponds to the sentence [take a number, and square it].

Using this notation, we may sum up: to every vector space v we make correspond the dual space v consisting of all linear functionals on v; to every pair, x and y, where x is a vector in v and y is a linear functional in v, we make correspond the scalar [x, y] defined to be the value of y at x. In terms of the symbol [x, y] the defining property of a linear functional is

$$[\alpha_1 x_1 + \alpha_2 x_2, y] = \alpha_1 [x_1, y] + \alpha_2 [x_2, y],$$

and the definition of the linear operations for linear functionals is

(2)
$$[x, \alpha_1 y_1 + \alpha_2 y_2] = \alpha_1 [x, y_1] + \alpha_2 [x, y_2].$$

The two relations together are expressed by saying that [x, y] is a bilinear functional of the vectors x in v and y in v'.

EXERCISES

- 1. Consider the set C of complex numbers as a real vector space (as in § 3, (9)). Suppose that for each $x = \xi_1 + i\xi_2$ in C (where ξ_1 and ξ_2 are real numbers and $i = \sqrt{-1}$) the function y is defined by
 - (a) $y(x) = \xi_1$,
 - (b) $y(x) = \xi_2$,
 - (c) $y(x) = \xi_1^2$, (d) $y(x) = \xi_1 - i\xi_2$,
- (e) $y(x) = \sqrt{\xi_1^2 + \xi_2^2}$. (The square root sign attached to a positive number always denotes the positive square root of that number.)

In which of these cases is y a linear functional?

- 2. Suppose that for each $x = (\xi_1, \xi_2, \xi_3)$ in \mathbb{C}^3 the function y is defined by
- (a) $y(x) = \xi_1 + \xi_2$,
- (b) $y(x) = \xi_1 \xi_3^2$,
- (c) $y(x) = \xi_1 + 1$,
- (d) $y(x) = \xi_1 2\xi_2 + 3\xi_3$. In which of these cases is y a linear functional?
- 3. Suppose that for each x in \mathcal{O} the function y is defined by
- (a) $y(x) = \int_{-1}^{+2} x(t) dt$,
- (b) $y(x) = \int_0^2 (x(t))^2 dt$,
- (c) $y(x) = \int_0^1 t^2 x(t) dt$,
- (d) $y(x) = \int_0^1 x(t^2) dt$,
- (e) $y(x) = \frac{dx}{dt}$.
- $(f) y(x) = \frac{d^2x}{dt^2} \bigg| \cdot$

In which of these cases is y a linear functional?

- 4. If $(\alpha_0, \alpha_1, \alpha_2, \cdots)$ is an arbitrary sequence of complex numbers, and if x is an element of \mathcal{O} , $x(t) = \sum_{i=0}^{n} \xi_i t^i$, write $y(x) = \sum_{i=0}^{n} \xi_i \alpha_i$. Prove that y is an element of O' and that every element of O' can be obtained in this manner by a suitable choice of the α 's.
- 5. If y is a non-zero linear functional on a vector space \mathbf{v} , and if α is an arbitrary scalar, does there necessarily exist a vector x in \mathbb{U} such that $[x, y] = \alpha$?
- 6. Prove that if y and z are linear functionals (on the same vector space) such that [x, y] = 0 whenever [x, z] = 0, then there exists a scalar α such that $y = \alpha z$. (Hint: if $[x_0, z] \neq 0$, write $\alpha = [x_0, y]/[x_0, z]$.)

§ 15. Dual bases

One more word before embarking on the proofs of the important theorems. The concept of dual space was defined without any reference to coordinate systems; a glance at the following proofs will show a superabundance of coordinate systems. We wish to point out that this phenomenon is inevitable; we shall be establishing results concerning dimension, and dimension is the one concept (so far) whose very definition is given in terms of a basis.

THEOREM 1. If V is an n-dimensional vector space, if $\{x_1, \dots, x_n\}$ is a basis in V, and if $\{\alpha_1, \dots, \alpha_n\}$ is any set of n scalars, then there is one and only one linear functional y on V such that $[x_i, y] = \alpha_i$ for $i = 1, \dots, n$.

PROOF. Every x in v may be written in the form $x = \xi_1 x_1 + \cdots + \xi_n x_n$ in one and only one way; if y is any linear functional, then

$$[x, y] = \xi_1[x_1, y] + \cdots + \xi_n[x_n, y].$$

From this relation the uniqueness of y is clear; if $[x_i, y] = \alpha_i$, then the value of [x, y] is determined, for every x, by $[x, y] = \sum_i \xi_i \alpha_i$. The argument can also be turned around; if we define y by

$$[x, y] = \xi_1 \alpha_1 + \cdots + \xi_n \alpha_n,$$

then y is indeed a linear functional, and $[x_i, y] = \alpha_i$.

THEOREM 2. If V is an n-dimensional vector space and if $\mathfrak{X} = \{x_1, \dots, x_n\}$ is a basis in V, then there is a uniquely determined basis \mathfrak{X}' in V', $\mathfrak{X}' = \{y_1, \dots, y_n\}$, with the property that $[x_i, y_j] = \delta_{ij}$. Consequently the dual space of an n-dimensional space is n-dimensional.

The basis \mathfrak{X}' is called the dual basis of \mathfrak{X} .

PROOF. It follows from Theorem 1 that, for each $j = 1, \dots, n$, a unique y_j in \mathbb{U}' can be found so that $[x_i, y_j] = \delta_{ij}$; we have only to prove that the set $\mathfrak{X}' = \{y_1, \dots, y_n\}$ is a basis in \mathbb{U}' .

In the first place, \mathfrak{X}' is a linearly independent set, for if we had $\alpha_1 y_1 + \cdots + \alpha_n y_n = 0$, in other words, if

$$[x, \alpha_1 y_1 + \cdots + \alpha_n y_n] = \alpha_1 [x, y_1] + \cdots + \alpha_n [x, y_n] = 0$$

for all x, then we should have, for $x = x_i$,

$$0 = \sum_{i} \alpha_{i}[x_{i}, y_{i}] = \sum_{i} \alpha_{i}\delta_{ij} = \alpha_{i}.$$

In the second place, every y in \mathcal{O}' is a linear combination of y_1, \dots, y_n . To prove this, write $[x_i, y] = \alpha_i$; then, for $x = \sum_i \xi_i x_i$, we have

$$[x, y] = \xi_1 \alpha_1 + \cdots + \xi_n \alpha_n.$$

On the other hand

$$[x, y_j] = \sum_i \xi_i [x_i, y_j] = \xi_j,$$

so that, substituting in the preceding equation, we get

$$[x, y] = \alpha_1[x, y_1] + \cdots + \alpha_n[x, y_n]$$
$$= [x, \alpha_1y_1 + \cdots + \alpha_ny_n].$$

Consequently $y = \alpha_1 y_1 + \cdots + \alpha_n y_n$, and the proof of the theorem is complete.

We shall need also the following easy consequence of Theorem 2.

THEOREM 3. If u and v are any two different vectors of the n-dimensional vector space \mathbb{U} , then there exists a linear functional y on \mathbb{U} such that $[u, y] \neq [v, y]$; or, equivalently, to any non-zero vector x in \mathbb{U} there corresponds a y in \mathbb{U}' such that $[x, y] \neq 0$.

PROOF. That the two statements in the theorem are indeed equivalent is seen by considering x = u - v. We shall, accordingly, prove the latter statement only.

Let $\mathfrak{X} = \{x_1, \dots, x_n\}$ be any basis in \mathbb{U} , and let $\mathfrak{X}' = \{y_1, \dots, y_n\}$ be the dual basis in \mathbb{U}' . If $x = \sum_i \xi_i x_i$, then (as above) $[x, y_j] = \xi_j$. Hence if [x, y] = 0 for all y, and, in particular, if $[x, y_j] = 0$ for $j = 1, \dots, n$, then x = 0.

§ 16. Reflexivity

It is natural to think that if the dual space \mathcal{U}' of a vector space \mathcal{U} , and the relations between a space and its dual, are of any interest at all for \mathcal{U} , then they are of just as much interest for \mathcal{U}' . In other words, we propose now to form the dual space $(\mathcal{U}')'$ of \mathcal{U}' ; for simplicity of notation we shall denote it by \mathcal{U}'' . The verbal description of an element of \mathcal{U}'' is clumsy: such an element is a linear functional of linear functionals. It is, however, at this point that the greatest advantage of the notation [x, y] appears; by means of it, it is easy to discuss \mathcal{U} and its relation to \mathcal{U}'' .

If we consider the symbol [x, y] for some fixed $y = y_0$, we obtain nothing new: $[x, y_0]$ is merely another way of writing the value $y_0(x)$ of the function y_0 at the vector x. If, however, we consider the symbol [x, y] for some fixed $x = x_0$, then we observe that the function of the vectors in U', whose value at y is $[x_0, y]$, is a scalar-valued function that happens to be linear

(see § 14, (2)); in other words, $[x_0, y]$ defines a linear functional on v', and, consequently, an element of v''.

By this method we have exhibited some linear functionals on U'; have we exhibited them all? For the finite-dimensional case the following theorem furnishes the affirmative answer.

THEOREM. If $\mathbb U$ is a finite-dimensional vector space, then corresponding to every linear functional z_0 on $\mathbb U'$ there is a vector x_0 in $\mathbb U$ such that $z_0(y) = [x_0, y] = y(x_0)$ for every y in $\mathbb U'$; the correspondence $z_0 \rightleftarrows x_0$ between $\mathbb U''$ and $\mathbb U$ is an isomorphism.

The correspondence described in this statement is called the *natural* correspondence between \mathbf{U}'' and \mathbf{U} .

PROOF. Let us view the correspondence from the standpoint of going from \mathcal{U} to \mathcal{U}'' ; in other words, to every x_0 in \mathcal{U} we make correspond a vector z_0 in \mathcal{U}'' defined by $z_0(y) = y(x_0)$ for every y in \mathcal{U}' . Since [x, y] depends linearly on x, the transformation $x_0 \to z_0$ is linear.

We shall show that this transformation is one-to-one, as far as it goes. We assert, in other words, that if x_1 and x_2 are in \mathbb{U} , and if z_1 and z_2 are the corresponding vectors in \mathbb{U}'' (so that $z_1(y) = [x_1, y]$ and $z_2(y) = [x_2, y]$ for all y in \mathbb{U}'), and if $z_1 = z_2$, then $x_1 = x_2$. To say that $z_1 = z_2$ means that $[x_1, y] = [x_2, y]$ for every y in \mathbb{U}' ; the desired conclusion follows from § 15, Theorem 3.

The last two paragraphs together show that the set of those linear functionals z on \mathcal{V}' (that is, elements of \mathcal{V}'') that do have the desired form (that is, z(y) is identically equal to [x, y] for a suitable x in \mathcal{V}) is a subspace of \mathcal{V}'' which is isomorphic to \mathcal{V} and which is, therefore, n-dimensional. But the n-dimensionality of \mathcal{V} implies that of \mathcal{V}' , which in turn implies that \mathcal{V}'' is n-dimensional. It follows that \mathcal{V}'' must coincide with the n-dimensional subspace just described, and the proof of the theorem is complete.

It is important to observe that the theorem shows not only that \mathcal{U} and \mathcal{U}'' are isomorphic—this much is trivial from the fact that they have the same dimension—but that the natural correspondence is an isomorphism. This property of vector spaces is called *reflexivity*; every finite-dimensional vector space is reflexive.

It is frequently convenient to be mildly sloppy about U'': for finite-dimensional vector spaces we shall identify U'' with U (by the natural isomorphism), and we shall say that the element z_0 of U'' is the same as the element x_0 of U whenever $z_0(y) = [x_0, y]$ for all y in U'. In this language it is very easy to express the relation between a basis \mathfrak{X} , in U, and the dual basis of its dual basis, in U''; the symmetry of the relation $[x_i, y_j] = \delta_{ij}$ shows that $\mathfrak{X}'' = \mathfrak{X}$.