MATH 121B. MIDTERM 1. 2020 SPRING

Total 50 points

- (1) Are they vector spaces? Just true or false. (5 points)
 - (a) The points in \mathbb{R}^2 satisfying x + y = 1.
 - (b) The points in \mathbb{R}^3 satisfying x + y + z = 0.
 - (c) The points in \mathbb{R}^3 satisfying $x^2 + y^2 + z^2 = 0$.
 - (d) The points in \mathbb{R}^3 satisfying xyz = 0.
 - (e) The set of polynomials f(t) such that degree of f(t) is at most 5, and satisfies f(1) = 0.
- (2) Let V be the vector space of smooth functions on the interval [0, 1]. Are the following $\phi : V \to \mathbb{R}$ linear functions on *V*? Just true or false. (5 points)
 - (a) $\phi(f) = f(1/2)$, that is, ϕ sends an element $f(t) \in V$ to its value at t = 1/2.

 - (b) $\phi(f) = \int_0^1 f(t)dt$ (c) $\phi(f) = \int_0^1 f(t)^2 dt$ (d) $\phi(f) = f'(1/3) + f''(2/3)$
 - (e) $\phi(f) = f(1/3) \cdot f(2/3)$
- (3) Let V be a vector space of dimension 3 with basis e_1, \dots, e_3 . Let $\tilde{e}_1 =$ $e_1, \tilde{e}_2 = e_1 + e_2, \tilde{e}_3 = e_1 + e_2 + e_3$ be a new basis of V. (10 points)
 - (a) What is the dimension of $V \otimes V$? (2 pts)
 - (b) Write down a basis of $V \wedge V$ using e_i s. (2 pts)
 - (c) Suppose we have vector $\mathbf{v} = 3e_2 + 5e_3$, can you express \mathbf{v} in the basis \widetilde{e}_i ? (3 pts)
 - (d) Suppose we have a tensor $T = e_2 \otimes e_3$, can you express *T* in the basis \widetilde{e}_i ? (3 pts)
- (4) Let $V = \mathbb{R}^2$ with coordinates (x, y) and with $g = dx^2 + dy^2$. Introduce a new basis $\mathbf{e}_1 = (-1, 0)$ and $\mathbf{e}_2 = (-1, 1)$ of *V*. Introduce new linear coordinates (u, v) on \mathbb{R}^2 , such that $u(\mathbf{e}_1) = 1, u(\mathbf{e}_2) = 0$ and $v(\mathbf{e}_1) = 0, v(\mathbf{e}_2) = 1$. (10) points)
 - (a) Let $\mathbf{v} = (1,1)$ (in the (x,y) coordinate system). Write \mathbf{v} as a linear combination of e_1 and e_2 . (5 points)
 - (b) What is the metric tensor g (or ds^2 in Boas term), expressed using duand dv? (5 points)
- (5) Let (u, v) be a new set of coordinates near (0, 0) on \mathbb{R}^2 , which is related to the Cartesian coordinate as the following. (20 points)

$$x = u + (u^2 - v^2)/2, \quad y = v + uv$$

(where we require u > -1/2.)

- (a) what is ds^2 in du, dv? (10 points)
- (b) Let $f = u^2 v^2$, what is the gradient of f? (5 points)
- (c) Let $V = u \frac{\partial}{\partial v} v \frac{\partial}{\partial u}$ be a vector field, (in Boas notation, $V = u \mathbf{a}_v v \mathbf{a}_u$). What is the divergence of V? (5)

MATH 121B. MIDTERM 1. 2020 SPRING

1. SOLUTION

- (1) Are they vector spaces? Just true or false. (5 points)
 - (a) The points in \mathbb{R}^2 satisfying x + y = 1. False
 - (b) The points in \mathbb{R}^3 satisfying x + y + z = 0. True
 - (c) The points in \mathbb{R}^3 satisfying $x^2 + y^2 + z^2 = 0$. True or False both OK. If we had been working over , then it is False. Since we are working over \mathbb{R} , the actually solution is just the origin, hence it is a trivial linear space.
 - (d) The points in \mathbb{R}^3 satisfying xyz = 0. False.
 - (e) The set of polynomials f(t) such that degree of f(t) is at most 5, and satisfies f(1) = 0. True.
- (2) Let V be the vector space of smooth functions on the interval [0, 1]. Are the following $\phi : V \to \mathbb{R}$ linear functions on *V*? Just true or false. (5 points)
 - (a) $\phi(f) = f(1/2)$, that is, ϕ sends an element $f(t) \in V$ to its value at t = 1/2. True

 - (b) $\phi(f) = \int_0^1 f(t)dt$ True (c) $\phi(f) = \int_0^1 f(t)^2 dt$ False
 - (d) $\phi(f) = \tilde{f}'(1/3) + f''(2/3)$ True
 - (e) $\phi(f) = f(1/3) \cdot f(2/3)$ False
- (3) Let V be a vector space of dimension 3 with basis e_1, \dots, e_3 . Let $\tilde{e}_1 =$ $e_1, \tilde{e}_2 = e_1 + e_2, \tilde{e}_3 = e_1 + e_2 + e_3$ be a new basis of V. (10 points)
 - (a) What is the dimension of $V \otimes V$? (2 pts) 9
 - (b) Write down a basis of $V \wedge V$ using e_i s. (2 pts) $e_1 \wedge e_2, e_1 \wedge e_3, e_2 \wedge e_3$
 - (c) Suppose we have vector $\mathbf{v} = 3e_2 + 5e_3$, can you express \mathbf{v} in the basis \widetilde{e}_i ? (3 pts)
 - (d) Suppose we have a tensor $T = e_2 \otimes e_3$, can you express T in the basis \widetilde{e}_i ? (3 pts)

For the last two problem, we can plug in $e_2 = \tilde{e}_2 - \tilde{e}_1$ and $e_3 = \tilde{e}_3 - \tilde{e}_2$, to get

$$\mathbf{v} = 3(\widetilde{e}_2 - \widetilde{e}_1) + 5(\widetilde{e}_3 - \widetilde{e}_2)$$

and

$$T = e_2 \otimes e_3 = (\tilde{e}_2 - \tilde{e}_1) \otimes (\tilde{e}_3 - \tilde{e}_2).$$

Then, one may open the parenthesis and expand if one want.

- (4) Let $V = \mathbb{R}^2$ with coordinates (x, y) and with $g = dx^2 + dy^2$. Introduce a new basis $\mathbf{e}_1 = (-1, 0)$ and $\mathbf{e}_2 = (-1, 1)$ of *V*. Introduce new linear coordinates (u, v) on \mathbb{R}^2 , such that $u(\mathbf{e}_1) = 1, u(\mathbf{e}_2) = 0$ and $v(\mathbf{e}_1) = 0, v(\mathbf{e}_2) = 1$. (10) points)
 - (a) Let $\mathbf{v} = (1,1)$ (in the (x,y) coordinate system). Write \mathbf{v} as a linear combination of e_1 and e_2 . (5 points) $\mathbf{v} = e_2 - 2e_1$
 - (b) What is the metric tensor g (or ds^2 in Boas term), expressed using duand dv? (5 points) $u_1 = u, u_2 = v$ are dual basis of e_1, e_2 , hence the coefficients in front of $du_i \otimes du_j$ is $g(e_i, e_j)$, we get

$$g = g(e_1, e_1)du \otimes + g(e_1, e_2)du \otimes dv + g(e_2, e_1)dv \otimes du + g(e_2, e_2)dv \otimes dv$$

 $= du \otimes du + du \otimes dv + dv \otimes du + 2dv \otimes dv.$

(5) Let (u, v) be a new set of coordinates near (0, 0) on \mathbb{R}^2 , which is related to the Cartesian coordinate as the following. (20 points)

$$x = u + (u^2 - v^2)/2, \quad y = v + uv$$

- (where we require u > -1/2.)

(where we require u > -1/2.) (a) what is ds^2 in du, dv? (10 points) (b) Let $f = u^2 - v^2$, what is the gradient of f? (5 points) (c) Let $V = u\frac{\partial}{\partial v} - v\frac{\partial}{\partial u}$ be a vector field, (in Boas notation, $V = u\mathbf{a}_v - v\mathbf{a}_u$). What is the divergence of V? (5) We plug in dx = (1 + u)du - vdv and dy = (1 + u)dv + vdu into $ds^2 = dx^2 + dy^2$, we get

$$ds^{2} = [(1+u)^{2} + v^{2}](du^{2} + dv^{2}]$$

It is a orthogonal coordinate. (2) $\nabla f = g^{uu} \partial_u f \partial_u + g^{vv} \partial_v f \partial_v = \frac{2u\partial_u - 2v\partial_v}{(1+u)^2 + v^2}$

(3)
$$\nabla \cdot V = \frac{1}{\sqrt{g}} \partial_i (\sqrt{g} V^i) = \frac{1}{(1+u)^2 + v^2} (\partial_u ((-(1+u)^2 + v^2)v) + \partial_v ((1+u)^2 + v^2)u) =$$