MATH 121B. MIDTERM 1. 2020 SPRING

Total 50 points
(1) Are they vector spaces? Just true or false. (5 points)
(a) The points in \mathbb{R}^{2} satisfying $x+y=1$.
(b) The points in \mathbb{R}^{3} satisfying $x+y+z=0$.
(c) The points in \mathbb{R}^{3} satisfying $x^{2}+y^{2}+z^{2}=0$.
(d) The points in \mathbb{R}^{3} satisfying $x y z=0$.
(e) The set of polynomials $f(t)$ such that degree of $f(t)$ is at most 5 , and satisfies $f(1)=0$.
(2) Let V be the vector space of smooth functions on the interval [0,1$]$. Are the following $\phi: V \rightarrow \mathbb{R}$ linear functions on V ? Just true or false. (5 points)
(a) $\phi(f)=f(1 / 2)$, that is, ϕ sends an element $f(t) \in V$ to its value at $t=1 / 2$.
(b) $\phi(f)=\int_{0}^{1} f(t) d t$
(c) $\phi(f)=\int_{0}^{1} f(t)^{2} d t$
(d) $\phi(f)=f^{\prime}(1 / 3)+f^{\prime \prime}(2 / 3)$
(e) $\phi(f)=f(1 / 3) \cdot f(2 / 3)$
(3) Let V be a vector space of dimension 3 with basis e_{1}, \cdots, e_{3}. Let $\widetilde{e}_{1}=$ $e_{1}, \widetilde{e}_{2}=e_{1}+e_{2}, \widetilde{e}_{3}=e_{1}+e_{2}+e_{3}$ be a new basis of V. (10 points)
(a) What is the dimension of $V \otimes V$? (2 pts)
(b) Write down a basis of $V \wedge V$ using $e_{i} \mathrm{~s}$. (2 pts)
(c) Suppose we have vector $\mathbf{v}=3 e_{2}+5 e_{3}$, can you express \mathbf{v} in the basis \widetilde{e}_{i} ? (3 pts)
(d) Suppose we have a tensor $T=e_{2} \otimes e_{3}$, can you express T in the basis \widetilde{e}_{i} ? (3 pts)
(4) Let $V=\mathbb{R}^{2}$ with coordinates (x, y) and with $g=d x^{2}+d y^{2}$. Introduce a new basis $\mathbf{e}_{1}=(-1,0)$ and $\mathbf{e}_{2}=(-1,1)$ of V. Introduce new linear coordinates (u, v) on \mathbb{R}^{2}, such that $u\left(\mathbf{e}_{1}\right)=1, u\left(\mathbf{e}_{2}\right)=0$ and $v\left(\mathbf{e}_{1}\right)=0, v\left(\mathbf{e}_{2}\right)=1$. (10 points)
(a) Let $\mathbf{v}=(1,1)$ (in the (x, y) coordinate system). Write \mathbf{v} as a linear combination of \mathbf{e}_{1} and \mathbf{e}_{2}. (5 points)
(b) What is the metric tensor g (or $d s^{2}$ in Boas term), expressed using $d u$ and $d v ?$ (5 points)
(5) Let (u, v) be a new set of coordinates near $(0,0)$ on \mathbb{R}^{2}, which is related to the Cartesian coordinate as the following. (20 points)

$$
x=u+\left(u^{2}-v^{2}\right) / 2, \quad y=v+u v
$$

(where we require $u>-1 / 2$.)
(a) what is $d s^{2}$ in $d u, d v$? (10 points)
(b) Let $f=u^{2}-v^{2}$, what is the gradient of f ? (5 points)
(c) Let $V=u \frac{\partial}{\partial v}-v \frac{\partial}{\partial u}$ be a vector field, (in Boas notation, $V=u \mathbf{a}_{v}-v \mathbf{a}_{u}$). What is the divergence of V ? (5)

1. Solution

(1) Are they vector spaces? Just true or false. (5 points)
(a) The points in \mathbb{R}^{2} satisfying $x+y=1$. False
(b) The points in \mathbb{R}^{3} satisfying $x+y+z=0$. True
(c) The points in \mathbb{R}^{3} satisfying $x^{2}+y^{2}+z^{2}=0$. True or False both OK. If we had been working over, then it is False. Since we are working over \mathbb{R}, the actually solution is just the origin, hence it is a trivial linear space.
(d) The points in \mathbb{R}^{3} satisfying $x y z=0$. False.
(e) The set of polynomials $f(t)$ such that degree of $f(t)$ is at most 5 , and satisfies $f(1)=0$. True.
(2) Let V be the vector space of smooth functions on the interval $[0,1]$. Are the following $\phi: V \rightarrow \mathbb{R}$ linear functions on V ? Just true or false. (5 points)
(a) $\phi(f)=f(1 / 2)$, that is, ϕ sends an element $f(t) \in V$ to its value at $t=1 / 2$. True
(b) $\phi(f)=\int_{0}^{1} f(t) d t$ True
(c) $\phi(f)=\int_{0}^{1} f(t)^{2} d t$ False
(d) $\phi(f)=f^{\prime}(1 / 3)+f^{\prime \prime}(2 / 3)$ True
(e) $\phi(f)=f(1 / 3) \cdot f(2 / 3)$ False
(3) Let V be a vector space of dimension 3 with basis e_{1}, \cdots, e_{3}. Let $\widetilde{e}_{1}=$ $e_{1}, \widetilde{e}_{2}=e_{1}+e_{2}, \widetilde{e}_{3}=e_{1}+e_{2}+e_{3}$ be a new basis of V. (10 points)
(a) What is the dimension of $V \otimes V$? (2 pts) 9
(b) Write down a basis of $V \wedge V$ using e_{i} s. (2 pts) $e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{2} \wedge e_{3}$
(c) Suppose we have vector $\mathbf{v}=3 e_{2}+5 e_{3}$, can you express \mathbf{v} in the basis \widetilde{e}_{i} ? (3 pts)
(d) Suppose we have a tensor $T=e_{2} \otimes e_{3}$, can you express T in the basis $\widetilde{e}_{i} ?$ (3 pts)
For the last two problem, we can plug in $e_{2}=\widetilde{e}_{2}-\widetilde{e}_{1}$ and $e_{3}=\widetilde{e}_{3}-\widetilde{e}_{2}$, to get

$$
\mathbf{v}=3\left(\widetilde{e}_{2}-\widetilde{e}_{1}\right)+5\left(\widetilde{e}_{3}-\widetilde{e}_{2}\right)
$$

and

$$
T=e_{2} \otimes e_{3}=\left(\widetilde{e}_{2}-\widetilde{e}_{1}\right) \otimes\left(\widetilde{e}_{3}-\widetilde{e}_{2}\right)
$$

Then, one may open the parenthesis and expand if one want.
(4) Let $V=\mathbb{R}^{2}$ with coordinates (x, y) and with $g=d x^{2}+d y^{2}$. Introduce a new basis $\mathbf{e}_{1}=(-1,0)$ and $\mathbf{e}_{2}=(-1,1)$ of V. Introduce new linear coordinates (u, v) on \mathbb{R}^{2}, such that $u\left(\mathbf{e}_{1}\right)=1, u\left(\mathbf{e}_{2}\right)=0$ and $v\left(\mathbf{e}_{1}\right)=0, v\left(\mathbf{e}_{2}\right)=1$. (10 points)
(a) Let $\mathbf{v}=(1,1)$ (in the (x, y) coordinate system). Write \mathbf{v} as a linear combination of \mathbf{e}_{1} and \mathbf{e}_{2}. (5 points)
$\mathbf{v}=e_{2}-2 e_{1}$
(b) What is the metric tensor g (or $d s^{2}$ in Boas term), expressed using $d u$ and $d v$? (5 points) $u_{1}=u, u_{2}=v$ are dual basis of e_{1}, e_{2}, hence the coefficients in front of $d u_{i} \otimes d u_{j}$ is $g\left(e_{i}, e_{j}\right)$, we get

$$
\begin{gathered}
g=g\left(e_{1}, e_{1}\right) d u \otimes+g\left(e_{1}, e_{2}\right) d u \otimes d v+g\left(e_{2}, e_{1}\right) d v \otimes d u+g\left(e_{2}, e_{2}\right) d v \otimes d v \\
=d u \otimes d u+d u \otimes d v+d v \otimes d u+2 d v \otimes d v
\end{gathered}
$$

(5) Let (u, v) be a new set of coordinates near $(0,0)$ on \mathbb{R}^{2}, which is related to the Cartesian coordinate as the following. (20 points)

$$
x=u+\left(u^{2}-v^{2}\right) / 2, \quad y=v+u v
$$

(where we require $u>-1 / 2$.)
(a) what is $d s^{2}$ in $d u, d v$? (10 points)
(b) Let $f=u^{2}-v^{2}$, what is the gradient of f ? (5 points)
(c) Let $V=u \frac{\partial}{\partial v}-v \frac{\partial}{\partial u}$ be a vector field, (in Boas notation, $V=u \mathbf{a}_{v}-v \mathbf{a}_{u}$). What is the divergence of V ? (5)
We plug in $d x=(1+u) d u-v d v$ and $d y=(1+u) d v+v d u$ into $d s^{2}=$ $d x^{2}+d y^{2}$, we get

$$
d s^{2}=\left[(1+u)^{2}+v^{2}\right]\left(d u^{2}+d v^{2}\right]
$$

It is a orthogonal coordinate.
(2) $\nabla f=g^{u u} \partial_{u} f \partial_{u}+g^{v v} \partial_{v} f \partial_{v}=\frac{2 u \partial_{u}-2 v \partial_{v}}{(1+u)^{2}+v^{2}}$
(3) $\nabla \cdot V=\frac{1}{\sqrt{g}} \partial_{i}\left(\sqrt{g} V^{i}\right)=\frac{1}{(1+u)^{2}+v^{2}}\left(\partial_{u}\left(\left(-(1+u)^{2}+v^{2}\right) v\right)+\partial_{v}((1+\right.$ $\left.\left.u)^{2}+v^{2}\right) u\right)=$

