
anotherway to say A and B are indep.

$$
\mathbb{P}(A \mid B)=\mathbb{P}(A) \Leftrightarrow A, B \text { indep }
$$

- Product Rule:

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B \mid A)
$$

$$
=\mathbb{P}(B) \cdot \mathbb{P}(A \mid B))
$$

- Baysian Formula:

$$
\mathbb{P}(B \mid A)=\frac{\mathbb{P}(B) \cdot \mathbb{P}(A \mid B)}{\mathbb{P}(A)}
$$

Random Variable:
Def: a function on the sample space:

$$
X: \Omega \rightarrow \mathbb{R}
$$

" "push forward probability measure" on \mathbb{R}.

\mathbb{P} on Ω.
"heap of sand"

$$
\mathbb{P}_{X}
$$

Then, we get a probability measure on \mathbb{R}.

Ex: Consider $\Omega=$ unit disk in \mathbb{R}^{2}.

consider $\mathbb{P}(A):=\frac{\operatorname{Area}(A)}{\operatorname{Area}(\Omega)}$
$W B, \mathbb{P}(W B)=\frac{1}{3}, \mathbb{P}(W W)=\frac{1}{6}$.

$$
\frac{1}{6}+\frac{1}{3}+\frac{1}{3}+\frac{1}{6}=1
$$

- Two events: $A_{1}=\{$ first ball is black\}

$$
A_{2}=\{\text { and hall is black }\} \text {. }
$$

$$
\begin{aligned}
\frac{1}{3} & =\mathbb{P}\left(A_{2} \mid A_{1}\right)=\frac{\mathbb{P}\left(A_{1} \cap A_{2}\right)}{\mathbb{P}\left(A_{1}\right)} \\
& =\frac{\mathbb{P}(\{B B\})}{\mathbb{P}(\{B B, B W\})}=\frac{\frac{1}{6}}{\frac{1}{6}+\frac{1}{3}}=\frac{1}{1+2}
\end{aligned}
$$

The \mathbb{P}_{x} probability on \mathbb{R} is defied as : $I=(a, b) \subset \mathbb{R}$

$$
\mathbb{P}_{X}(I):=\mathbb{P}_{\Omega}\left(X^{-1}(I)\right)
$$

one can check that \mathbb{P}_{x} is a probability on the sample space \mathbb{R}.

$$
X:\left(\Omega, \mathbb{P}_{\Omega}\right) \rightarrow\left(\mathbb{R}_{\Omega}, \mathbb{P}_{x}\right)
$$

Ex: $\quad \Omega=\{H H H, H H T, H T H, \cdots\}$ an event is any subset of Ω. $2^{3}=8$ of $A=\{H H H, T T$, TH $\}$ is an event

$$
\begin{aligned}
\mathbb{P}_{x}((a, b)) & =\mathbb{P}_{\Omega}(\{(x, y) \in \Omega \mid \quad x \in(a, b)\}) \\
& =\mathbb{P}\left(X^{-1}((a, b))\right)
\end{aligned}
$$

consider:

$$
\begin{aligned}
X: \Omega & \rightarrow \mathbb{R} \\
X^{-1} & \rightarrow x .
\end{aligned}
$$

then we get a probability ${\underset{\mathbb{1}}{x}}^{\text {on }}[-1,1]$.

