Plan:
(1) Poisson Distribution
(2) Binomial Distribution.
(3) Inequalities. (Jensen's ineq; Holder ineq; Chebycher ineq).

1. Poisson distribution. (discrete random variable).

- at unit time, we expect certain rave events to happen., for example.
(decca of a particle in a pile of particles). (having a defective products when you do production).
- $\mu=$ expectation number for the rare events.
$P_{k}=\mathbb{P}($ actual number of occurren $=k)=e^{-\mu} \cdot\left(e^{\mu}\right.$; Taylor expansion's k-th term $)$

$$
=e^{-\mu} \cdot \frac{\mu^{k}}{k!}
$$

(see Boas for a derivation of this). $\$ 15.9$.
(\#4 in Problems 15.9). Say on average, you hove 4 phone calls per day, what is the probabity that you have no calls.; what about 5 calls?
Ans: $\mu=4 . \quad p_{0}=e^{-4} \cdot \frac{\mu^{0}}{0!}=e^{-4} \cdot 1=e^{-4}$

$$
P_{5}=e^{-4} \cdot \frac{4^{5}}{5!}
$$

(\#8.) Say there are 100 typos in 40 pages in a magazine. On
(a). how many pages do you expect to find no misprint?

- on average, the misprint rate per page $\mu=\frac{100}{40}=2.5$.

$$
\underline{P_{0}}=e^{-\mu} \quad \text { (probability of a single page. have no misprint). }
$$

- Turn this into a binomial distribution problem:
- $N=40$ trials.
- trial success rate $=P_{0}$.
- X : random varible $=$ \# of success. (success = no misprint).

$$
\mathbb{E}(x)=N \cdot P_{0}=40 \cdot e^{-2.5}
$$

(b) On how many pages do you expect to find 2 misprint??

- the probability of a single page to have 2 misprint:

$$
P_{2}=e^{-\mu} \cdot \frac{\mu^{2}}{2!} \quad(\mu=2.5)
$$

- $N=40$ trials, the evert ($=$ having 2 mappint in a trial).
happens. with prothahility P_{2}.

$$
\mathbb{E}(\# \circ \text { of events happens })=40 \cdot P_{2}=40 \cdot\left(e^{-2.5} \cdot \frac{2.5^{2}}{2!}\right)
$$

Binomial distribution (counting problem)
permutation number: $P(n, k)=$ \# of ways to pick out k balls. out of n labelled balls, $(\odot \odot, \cdots, \infty)$, and lay them in row.

$$
=\text { pick } k \text { out } f n \text { objects, and order then. }
$$

$$
(n-0) \cdots \quad(n-(k-1)
$$

$$
=\underbrace{n \cdot(n-1) \cdot(n-2) \cdots(n-k+1)}_{k \text { terms. }}
$$

Combination number: $C(n, k)=\#$ of ways to pick balls out of n balls, and leave them in as pile $=$ don't care about the order.

$$
C(n, k)=\frac{P(n, k)}{k!}=\frac{n(n-1) \cdots(n-k+1)}{k(k-1) \cdots 1}
$$

Setup for binomial: given N trials, independent of each other.

- each trial has success rate P.
- random variable $X=\#$ of success.

$$
\begin{aligned}
& \quad \operatorname{P}(X=k)=C(N, k) \cdot p^{k} \cdot(1-p)^{N-k} \quad 0 \leq k \leq N . \\
& I=\mathbb{P}(X=0)+\mathbb{P}(X=1)+\cdots+\mathbb{P}(X=N) . \\
& {[P+(1-p)]^{N}=(1-p)^{N}+C(N, 1) \cdot p^{\prime} \cdot(1-p)^{N-1}+\cdots+p^{N} .}
\end{aligned}
$$

Inequalities:
(1) Jensen inequality: let x be a random variable valued \mathbb{R}

- Let φ be a convex function on \mathbb{R} : then.

$$
\varphi(\mathbb{E}(x)) \leqslant \mathbb{E}(\varphi(x))
$$

Ex: X satisfies Bernoulli distribution: i.e.

$$
\begin{array}{llll}
x=a & \text { with prob } & p \\
x=b & \text { with prob } & 1-p .
\end{array}
$$

$$
\mathbb{E}(X)=a \cdot p+b:(1-p)
$$

$$
\begin{aligned}
& \varphi(\mathbb{E}(x))=\varphi(a \cdot p+b \cdot(1-p)) \\
& \mathbb{E}(\varphi(x))=p \cdot \varphi(a)+(1-p) \cdot \varphi(b)
\end{aligned}
$$

φ Being convex $\Rightarrow \varphi(\mathbb{E} X) \leqslant \mathbb{E}(\varphi(X))$.
Application: $\varphi(x)=x^{2} . \Rightarrow(\mathbb{E} x)^{2} \leq \mathbb{E}\left(x^{2}\right)$.
define. $c=\mathbb{E} X$. and $l e t ~ l(x)=a x+b$, such that.

$$
\left\{\begin{array}{lc}
l(c)=\varphi(c) . & \text { this is possible, because } \\
l(x) \leqslant \varphi(x) .
\end{array}\right.
$$

$$
\text { - } \begin{aligned}
\mathbb{E}(\varphi(X)) & \geqslant \mathbb{E}(l(X))=\mathbb{E}(a \cdot X+b)=a \cdot \mathbb{E}(X)+b=a \cdot c+b \\
& =l(\mathbb{E}(X))=\varphi(\mathbb{E}(X)) .
\end{aligned}
$$

