Poisson Equation:

$$
\left\{\begin{array}{l}
\Delta u=f \\
\text { B.C. } \\
\quad u(r) \rightarrow 0 \\
\text { as } r \rightarrow \infty
\end{array}\right.
$$

Laplace Eqn:

$$
\Delta u=0
$$

This Poisson eqn arises in "potential" problems. like gravity / electric field with source term.
Aside Schroeding Eqn:

$$
i \partial_{t} \underline{u}(x, t)=-\frac{1}{2} \Delta u+\underbrace{V(x) \cdot u}_{\text {potential term }}]
$$

How to solve this inhomogeneous equation?

Using Green function to deal with the source term f.

Recall: the Green function $G\left(\vec{x}, \vec{x}_{0}\right)$ solves

$$
\begin{aligned}
&\left\{\begin{aligned}
& \Delta u=\delta\left(\vec{x}-\vec{x}_{0}\right) \\
& u(\vec{x}) \rightarrow 0 \text { as }|\vec{x}| \rightarrow \infty
\end{aligned}\right. \\
& \Rightarrow G\left(\vec{x}_{,} \vec{x}_{0}\right)=-\frac{1}{4 \pi} \cdot \frac{1}{\left|\vec{x}-\vec{x}_{0}\right|}
\end{aligned}
$$

Then, to solve $\Delta u(\vec{x})=f(\vec{x})$. we just need to decompose $f(\vec{x})$ as "sam" (integral) of various. $\delta\left(\vec{x}-\vec{x}^{\prime}\right)$ as \vec{x}^{\prime} changes. (\vec{x}^{\prime} as parameters).

$$
f(\vec{x})=\int_{\mathbb{R}^{3} \underbrace{}_{\uparrow \text { as coefficient }} \underbrace{f\left(\vec{x}^{\prime}\right)} \cdot \delta\left(\vec{x}-\vec{x}^{\prime}\right) d \vec{x}^{\prime}}^{\text {as }}
$$

Then, the sol'n is the linear combination of $G\left(\vec{x}, \vec{x}^{\prime}\right)$ with the same set of coefficients.

$$
u(\vec{x})=\int_{\mathbb{R}^{3}} f\left(\vec{x}^{\prime}\right) \cdot G\left(\vec{x}, \vec{x}^{\prime}\right) \cdot d \vec{x}^{\prime}
$$

indeed
u solves the equation
(2) $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$. because $G\left(x, x^{\prime}\right) \rightarrow 0$ as $|x| \rightarrow \infty$. and. $f(x)$ has "compact support." vanishes when $|x|$ is large enough.

Recall the generating function of Legendre polynond

$$
\begin{aligned}
\Phi(x, h) & =\sum_{n=0}^{\infty} h^{n} \cdot P_{n}(x) \\
& =\frac{1}{\sqrt{1+h^{2}-2 h \cdot x}} \\
\frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|} & =\frac{1}{|\vec{x}|} \cdot \frac{1}{\sqrt{1+\left(\frac{r}{R}\right)^{2}-2 \frac{r}{R} \cdot \cos \theta}} \quad \begin{array}{r}
r=|\vec{x} \cdot| \\
R=|\vec{x}| .
\end{array} \\
& =\frac{1}{R} \cdot \sum_{n=0}^{\infty}\left(\frac{r}{R}\right)^{n} \cdot P_{n}(\cos \theta) .
\end{aligned} \quad \begin{aligned}
& V(\vec{x})=\int P(r, \theta, \phi) \cdot\left(\frac{1}{R} \sum_{n=0}^{\infty}\left(\frac{r}{R}\right)^{n} \cdot P_{n}(\cos \theta)\right) \\
& \underbrace{r^{2} \cdot \sin \theta \cdot d r d \theta d \phi} \\
& \text { volume form }
\end{aligned}
$$

the spherical coordinate is setup. so that \vec{x} has $\theta=0$, (ϕ doesn't matter)

$$
\left\{\begin{array}{l}
\vec{x}^{\theta=0,(\phi d o r} \\
\vec{x}^{\prime}=(r, \theta, \phi) .
\end{array}\right.
$$

Ex 1.3 in ch 13

- Derive wave equation from the Maxwell equation. (in vacuum)

$$
\left\{\begin{array}{l}
\vec{\nabla} \cdot \vec{E}=0 \\
\vec{\nabla} \times \vec{E}=-\partial_{t} \cdot \vec{B} \\
\vec{\nabla} \cdot \vec{B}=0 \\
\vec{\nabla} \times \vec{B}=\partial_{t} \cdot \vec{E}
\end{array}\right.
$$

wave equation: $\left(\partial_{t}^{2}-\vec{\nabla}^{2}\right) E_{i}^{\phi_{i}}=0$.

$$
\left(\partial_{t}^{2}-\vec{\nabla}^{2}\right) B_{i}=0 .
$$

$\partial_{k}(4)$

$$
\begin{aligned}
\partial_{t}^{2} \vec{E} & =\partial_{t}(\vec{\nabla} \times \vec{B}) \\
& =\vec{\nabla} \times\left(\partial_{t} \cdot \vec{B}\right) \\
& =\vec{\nabla} \times(-\vec{\nabla} \times \vec{E}) . \quad \text { dy (2) } \\
& =-(\vec{\nabla} \cdot(\vec{\nabla} \cdot \vec{E})-(\vec{\nabla} \cdot \vec{\nabla}) \vec{E}) \\
& =+\vec{\Delta} \cdot
\end{aligned}
$$

$\varepsilon_{i j k}$ symbol. $\quad \varepsilon_{123}=1, \quad \varepsilon_{112}=0 \cdots$

$$
=\left\{\begin{array}{cl}
1 & \text { ijk }=\text { cyclic perm of } 1,2,3 \\
-1 & \text { ijk }=\text { cyclic }-- \text { of } 2,3 . \\
0 & \text { else repent indices }
\end{array}\right.
$$

$(\vec{A} \times \vec{B})_{i}=\varepsilon_{i j k} A_{j} B_{k}$ sum ier $j \cdot k$.

$$
\begin{aligned}
& {[\vec{A} \times(\vec{B} \times \vec{C})]_{i} }=\varepsilon_{i j k} A_{j}(\vec{B} \times \vec{C})_{k} \\
&=\varepsilon_{i j k} A_{j} \varepsilon_{k l m} B_{l} \cdot C_{m} . \\
&=\varepsilon_{i j k} \varepsilon_{k l m} A_{j} B_{l} C_{m} . \\
&=\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) A_{j} B_{l} C_{m}=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C} \cdot(\vec{A} \cdot \vec{B}) \\
& \varepsilon_{(\underline{i j k}}=\varepsilon_{k j j}, \Sigma_{k} \varepsilon_{k j j} \varepsilon_{k l m}=\delta_{i l} \cdot \delta_{j m}-\delta_{i m} \delta_{j l}
\end{aligned}
$$

