\documentclass{article} %% %% \usepackage[utf8]{inputenc} \usepackage{amsmath, amsfonts, amssymb} \usepackage{enumerate} %% Some useful boldface letters \def\C{\mathbb{C}} \def\D{\mathbb{D}} \def\R{\mathbb{R}} \def\N{\mathbb{N}} %% some shorthand symbols \def\la{\langle} \def\ra{\rangle} \def\half{\frac{1}{2}} \def\LRA{\Leftrightarrow} %% Re and Im should be shown as plain letters instead of frak \renewcommand{\Re}{\text{Re}} \renewcommand{\Im}{\text{Im}} \title{Math 185: Homework 1 Solution} \author{Instructor: Peng Zhou} \date{August 2020} \begin{document} \maketitle The following exercises are from Stein's textbook, Chapter 1. \section{Exercise 2} Let $\la \cdot, \cdot \ra$ denote the usual product in $\R^2$. In other words, if $Z=(x_1,y_1)$ and $W=(x_2, y_2)$, then $$ \la Z, W \ra = x_1 x_2 + y_1 y_2 $$ Similarly, we may define a Hermitian inner product $( \cdot, \cdot)$ on $\C$ by $$ (z, w) = z \bar w. $$ The term Hermitian is used to describe the fact that $( \cdot, \cdot )$ is not symmetric but rather satisfies the relation $$ (z,w) = \overline{(w,z)}. $$ Show that $$ \la z,w \ra = \half [(z,w) + (w,z)] = \Re ( z, w ) $$ where we used the usual identification $z = x+iy \in \C$ with $(x,y) \in \R^2$. \section{Exercise 7} The family of mappings introduced here plays an important role in complex analysis. These mappings, sometimes called Blaschke factors, will reappear in various applications in later chapters. \begin{enumerate}[(a)] \item Let $z,w$ be two complex numbers such that $\bar z w \neq 1$. Prove that $$ \left| \frac{w -z}{1- \bar w z} \right| < 1 \quad \text{if $|z|<1$ and $|w| < 1$} $$ and also that $$ \left| \frac{w -z}{1- \bar w z} \right| = 1 \quad \text{if $|z|=1$ or $|w| = 1$} $$ \item Prove that for a fixed $w$ in the unit disk $\D$, the mapping $$ F: z \mapsto \frac{w-z}{1- \bar w z} $$ satisfies the following conditions: \begin{enumerate}[(i)] \item $F$ maps the unit disk to itself, and is holomorphic. \item $F$ interchanges $0$ and $w$, namely $F(0) = w$ and $F(w)=0$. \item $|F(z)|=1$ if $|z|=1$. \item $F: \D \to \D$ is bijective. \end{enumerate} \end{enumerate} \section{Exercise 16 (a) (c) (e)} Determine the radius of convergence of the series $\sum_{n=1}^\infty a_n z^n$ when \begin{enumerate} \item[(a)] $a_n = (\log n)^2$ \item[(c)] $a_n = \frac{n^2}{4^n + 3n}$ \item [(e)] Find the radius of convergence for the hypergeometric series $$F(\alpha, \beta, \gamma; z) = 1 + \sum_{n=1}^\infty \frac{\alpha (\alpha+1) \cdots (\alpha + n-1) \beta (\beta+1) \cdots (\beta+n-1)}{n! \gamma (\gamma+1) \cdots (\gamma+n-1)} z^n $$ Here $\alpha, \beta \in \C$ and $\gamma \neq 0, -1, -2, \cdots $. \end{enumerate} \section{Exercise 17} Show that if $\{a_n\}_{n=0}^\infty$ is a sequence of non-zero complex numbers such that $$ \lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = L $$ then $$ \lim_{n \to \infty} |a_n|^{1/n} = L. $$ \section{Exercise 22} Let $\N = \{1, 2, \cdots, \}$ denote the set of positive integers. A subset $S \subset \N$ is said to be in arithematic progression if $$ S = \{a, a+d, a+2d, \cdots \} $$ for some $a, d \in \N$. Here $d$ is called the step of $S$. Show that $\N$ cannot be partitioned into finite number of arithematic progressions with distinct step sizes. \end{document}