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The following exercises are from Stein’s textbook, Chapter 1.

1 Exercise 2

Let 〈·, ·〉 denote the usual product in R2. In other words, if Z = (x1, y1) and
W = (x2, y2), then

〈Z,W 〉 = x1x2 + y1y2

Similarly, we may define a Hermitian inner product (·, ·) on C by

(z, w) = zw̄.

The term Hermitian is used to describe the fact that (·, ·) is not symmetric but
rather satisfies the relation

(z, w) = (w, z).

Show that

〈z, w〉 =
1

2
[(z, w) + (w, z)] = Re(z, w)

where we used the usual identification z = x+ iy ∈ C with (x, y) ∈ R2.
Solution: Let z = x+ iy and w = u+ iv, then

(z, w) = (x+ iy)(u+ iv) = (x+ iy)(u− iv) = xu+ yv + i(yu− xv)

Hence
Re(z, w) = xu+ yv = 〈(x, y), (u, v)〉 = 〈z, w〉

2 Exercise 7

The family of mappings introduced here plays an important role in complex
analysis. These mappings, sometimes called Blaschke factors, will reappear in
various applications in later chapters.

(a) Let z, w be two complex numbers such that z̄w 6= 1. Prove that∣∣∣∣ w − z1− w̄z

∣∣∣∣ < 1 if |z| < 1 and |w| < 1
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and also that ∣∣∣∣ w − z1− w̄z

∣∣∣∣ = 1 if |z| = 1 or |w| = 1

(b) Prove that for a fixed w in the unit disk D, the mapping

F : z 7→ w − z
1− w̄z

satisfies the following conditions:

(i) F maps the unit disk to itself, and is holomorphic.

(ii) F interchanges 0 and w, namely F (0) = w and F (w) = 0.

(iii) |F (z)| = 1 if |z| = 1.

(iv) F : D→ D is bijective.

Solution: (a) Assume |z| < 1 and |w| < 1. Let θ = arg z (or if z = 0, let
θ = 0), then we define z′ = e−iθz and w′ = e−iθw. Hence z′ is real.

z′ − w′ = e−iθ(z − w), w̄′z′ = e−iθeiθw̄z = w̄z.

Thus, we have

w′ − z′

1− w̄′z′
= e−iθ

w − z
1− w̄z

⇒
∣∣∣∣ w′ − z′1− w̄′z′

∣∣∣∣ =

∣∣∣∣ w − z1− w̄z

∣∣∣∣ .
Hence, suffice to consider the case where z is replaced by z′ and w by w′, that
is, only consider the case where z ∈ R and z ≥ 0.

Then, it suffices to prove that

(r − w)(r − w̄) ≤ (1− rw)(1− rw̄)

for 0 ≤ r ≤ 1 and |w| ≤ 1, with equality achieved if r = 1 or |w| = 1. Indeed,
the above inequality is equivalent to

r2 − r(w + w̄) + |w|2 ≤ 1− r(w + w̄) + r2|w|2

⇔0 ≤ (1− r2)− (1− r2)|w|2

⇔0 ≤ (1− r2)(1− |w|2)

Hence we can check that strict inequality is achieve for r < 1, |w| < 1, and
equality is achieve for r = 1 or |w| = 1.

(b) (i) F has the desired range, since for w < 1 fixed, and z ∈ D i.e.
|z| < 1, we have |F (z)| < 1 , i.e F (z) ∈ D from part (a). Next, we check F is
holomorphic. Since |w̄z| = |w||z| < 1, we have 1 − w̄z 6= 0 for z ∈ D. Thus,
using Proposition 2.2 (iii), the fraction w−z

1−w̄z as a function of z is holomorphic
for z ∈ D.

2



(ii) This is immediate to check.

F (0) =
w − 0

1− w̄0
=
w

1
= w,

and

F (w) =
w − w
1− w̄w

= 0.

(iii) This follows from part (a).
(iv) We claim that the inverse of F is F , i.e. F ◦ F (z) = z. Indeed

F (F (z)) =
w − w−z

1−w̄z
1− w̄ w−z

1−w̄z

=
w(1− w̄z)− (w − z)
1− w̄z − w̄(w − z)

=
z − |w|2z
1− |w|2

= z.

3 Exercise 16 (a) (c) (e)

Determine the radius of convergence of the series
∑∞
n=1 anz

n when

(a) an = (log n)2

(c) an = n2

4n+3n

(e) Find the radius of convergence for the hypergeometric series

F (α, β, γ; z) = 1 +

∞∑
n=1

α(α+ 1) · · · (α+ n− 1)β(β + 1) · · · (β + n− 1)

n!γ(γ + 1) · · · (γ + n− 1)
zn

Here α, β ∈ C and γ 6= 0,−1,−2, · · · .
Solution: (a) We have limit

(1/n) log |an| = (2/n) log | log n| → 0 as n→∞

Hence 1/R = e0 = 1, and R = 1.
(c) We have limit (better than lim sup)

1/R = lim
n→∞

∣∣∣∣ n2

4n + 3n

∣∣∣∣1/n =
limn→∞ |n|2/n

4 lim(1 + 3n4−n)1/n
=

1

4

where we used the rules that, if a = limn an, b = limn bn, then limn anbn =
ab, limn a

bn
n = ab etc. Hence R = 4.

(e) Using ratio test (as justified in exercise 17), we have

an
an−1

=
(α+ n− 1)(β + n− 1)

n(γ + n− 1)
=

(1 + α−1
n )(1 + β−1

n )

(1 + γ−1
n )

→ 1 as n→∞

Hence R = 1.
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4 Exercise 17

Show that if {an}∞n=0 is a sequence of non-zero complex numbers such that

lim
n→∞

|an+1|
|an|

= L

then
lim
n→∞

|an|1/n = L.

Proof: By assumption, for any ε > 0, there exists N > 0, such that
∀n ≥ N ,

L− ε < |an+1|
|an|

< L+ ε.

Thus, for n > N ,

(L− ε)n−N <
|an|
|aN |

=
|aN+1|
|aN |

· · · |an|
|an−1|

< (L+ ε)n−N

Multiplying by |aN | and taking 1/n-th power, we have

(L− ε)1−N/n|aN |1/n < |an|1/n < (L− ε)1−N/n|aN |1/n.

As n→∞, we have |aN |1/n → 1 and (L− ε)1−N/n → L− ε, hence we get

L− ε < lim |an|1/n < L+ ε.

Since this is true for any ε > 0, we have lim |an|1/n = L.

5 Exercise 22

Let N = {1, 2, · · · , } denote the set of positive integers. A subset S ⊂ N is said
to be in arithematic progression if

S = {a, a+ d, a+ 2d, · · · }

for some a, d ∈ N. Here d is called the step of S. Show that N cannot be
partitioned into finite number of arithematic progressions with distinct step
sizes.

Solution: Suppose one can, and let S1, · · · , Sk be the collection of arithe-
matic progression, such that N = S1 t S2 t · · · t Sk, with distinct step sizes
d1, · · · , dk, and offsets ai. Without loss of generality, assume d1 > d2 > · · · >
dk > 1. Then, for |z| < 1, we have

∑
n∈N z

n and
∑
n∈Si

zn all absolutely
convergent, we thus have∑

n∈N
zn =

∑
n∈S1

zn + · · ·+
∑
n∈Sk

zn
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Evaluating the sum, we have

z

1− z
=

za1

1− zd1
+ · · ·+ zak

1− zdk
, ∀|z| < 1. (*)

We claim that this is impossible. Indeed, let z0 = e2πi/d1 , then z0 6= 1, zd10 = 1,
and zdi0 6= 1 for i = 2, · · · , k. Let zn = z0(1 − 1/n) be a sequence of points
approaching z0 within the disk D. Then we see LHS of (*) remains finite,
whereas the first term of RHS goes to infinity and other terms of RHS remains
finite, which is a contradiction to the equality of (*). Hence it is impossible to
have such a partiation of N.
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