Math 185: Homework 1 Solution

InstruPeng Zhou

August 2020

The following exercises are from Stein's textbook, Chapter 1.

1 Exercise 2

Let $\langle\cdot, \cdot\rangle$ denote the usual product in \mathbb{R}^{2}. In other words, if $Z=\left(x_{1}, y_{1}\right)$ and $W=\left(x_{2}, y_{2}\right)$, then

$$
\langle Z, W\rangle=x_{1} x_{2}+y_{1} y_{2}
$$

Similarly, we may define a Hermitian inner product (\cdot, \cdot) on \mathbb{C} by

$$
(z, w)=z \bar{w}
$$

The term Hermitian is used to describe the fact that (\cdot, \cdot) is not symmetric but rather satisfies the relation

$$
(z, w)=\overline{(w, z)}
$$

Show that

$$
\langle z, w\rangle=\frac{1}{2}[(z, w)+(w, z)]=\operatorname{Re}(z, w)
$$

where we used the usual identification $z=x+i y \in \mathbb{C}$ with $(x, y) \in \mathbb{R}^{2}$.
Solution: Let $z=x+i y$ and $w=u+i v$, then

$$
(z, w)=(x+i y) \overline{(u+i v)}=(x+i y)(u-i v)=x u+y v+i(y u-x v)
$$

Hence

$$
\operatorname{Re}(z, w)=x u+y v=\langle(x, y),(u, v)\rangle=\langle z, w\rangle
$$

2 Exercise 7

The family of mappings introduced here plays an important role in complex analysis. These mappings, sometimes called Blaschke factors, will reappear in various applications in later chapters.
(a) Let z, w be two complex numbers such that $\bar{z} w \neq 1$. Prove that

$$
\left|\frac{w-z}{1-\bar{w} z}\right|<1 \quad \text { if }|z|<1 \text { and }|w|<1
$$

and also that

$$
\left|\frac{w-z}{1-\bar{w} z}\right|=1 \quad \text { if }|z|=1 \text { or }|w|=1
$$

(b) Prove that for a fixed w in the unit disk \mathbb{D}, the mapping

$$
F: z \mapsto \frac{w-z}{1-\bar{w} z}
$$

satisfies the following conditions:
(i) F maps the unit disk to itself, and is holomorphic.
(ii) F interchanges 0 and w, namely $F(0)=w$ and $F(w)=0$.
(iii) $|F(z)|=1$ if $|z|=1$.
(iv) $F: \mathbb{D} \rightarrow \mathbb{D}$ is bijective.

Solution: (a) Assume $|z|<1$ and $|w|<1$. Let $\theta=\arg z$ (or if $z=0$, let $\theta=0$), then we define $z^{\prime}=e^{-i \theta} z$ and $w^{\prime}=e^{-i \theta} w$. Hence z^{\prime} is real.

$$
z^{\prime}-w^{\prime}=e^{-i \theta}(z-w), \quad \bar{w}^{\prime} z^{\prime}=\overline{e^{-i \theta}} e^{i \theta} \bar{w} z=\bar{w} z
$$

Thus, we have

$$
\frac{w^{\prime}-z^{\prime}}{1-\bar{w}^{\prime} z^{\prime}}=e^{-i \theta} \frac{w-z}{1-\bar{w} z} \Rightarrow\left|\frac{w^{\prime}-z^{\prime}}{1-\bar{w}^{\prime} z^{\prime}}\right|=\left|\frac{w-z}{1-\bar{w} z}\right| .
$$

Hence, suffice to consider the case where z is replaced by z^{\prime} and w by w^{\prime}, that is, only consider the case where $z \in \mathbb{R}$ and $z \geq 0$.

Then, it suffices to prove that

$$
(r-w)(r-\bar{w}) \leq(1-r w)(1-r \bar{w})
$$

for $0 \leq r \leq 1$ and $|w| \leq 1$, with equality achieved if $r=1$ or $|w|=1$. Indeed, the above inequality is equivalent to

$$
\begin{aligned}
& r^{2}-r(w+\bar{w})+|w|^{2} \leq 1-r(w+\bar{w})+r^{2}|w|^{2} \\
\Leftrightarrow & 0 \leq\left(1-r^{2}\right)-\left(1-r^{2}\right)|w|^{2} \\
\Leftrightarrow & 0 \leq\left(1-r^{2}\right)\left(1-|w|^{2}\right)
\end{aligned}
$$

Hence we can check that strict inequality is achieve for $r<1,|w|<1$, and equality is achieve for $r=1$ or $|w|=1$.
(b) (i) F has the desired range, since for $w<1$ fixed, and $z \in \mathbb{D}$ i.e. $|z|<1$, we have $|F(z)|<1$, i.e $F(z) \in \mathbb{D}$ from part (a). Next, we check F is holomorphic. Since $|\bar{w} z|=|w||z|<1$, we have $1-\bar{w} z \neq 0$ for $z \in \mathbb{D}$. Thus, using Proposition 2.2 (iii), the fraction $\frac{w-z}{1-\bar{w} z}$ as a function of z is holomorphic for $z \in \mathbb{D}$.
(ii) This is immediate to check.

$$
F(0)=\frac{w-0}{1-\bar{w} 0}=\frac{w}{1}=w
$$

and

$$
F(w)=\frac{w-w}{1-\bar{w} w}=0
$$

(iii) This follows from part (a).
(iv) We claim that the inverse of F is F, i.e. $F \circ F(z)=z$. Indeed

$$
\begin{aligned}
F(F(z)) & =\frac{w-\frac{w-z}{1-\overline{\bar{w}} z}}{1-\bar{w} \frac{w-z}{1-\bar{w} z}} \\
& =\frac{w(1-\bar{w} z)-(w-z)}{1-\bar{w} z-\bar{w}(w-z)} \\
& =\frac{z-|w|^{2} z}{1-|w|^{2}} \\
& =z
\end{aligned}
$$

3 Exercise 16 (a) (c) (e)

Determine the radius of convergence of the series $\sum_{n=1}^{\infty} a_{n} z^{n}$ when
(a) $a_{n}=(\log n)^{2}$
(c) $a_{n}=\frac{n^{2}}{4^{n}+3 n}$
(e) Find the radius of convergence for the hypergeometric series

$$
F(\alpha, \beta, \gamma ; z)=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha+1) \cdots(\alpha+n-1) \beta(\beta+1) \cdots(\beta+n-1)}{n!\gamma(\gamma+1) \cdots(\gamma+n-1)} z^{n}
$$

Here $\alpha, \beta \in \mathbb{C}$ and $\gamma \neq 0,-1,-2, \cdots$.
Solution: (a) We have limit

$$
(1 / n) \log \left|a_{n}\right|=(2 / n) \log |\log n| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Hence $1 / R=e^{0}=1$, and $R=1$.
(c) We have limit (better than lim sup)

$$
1 / R=\lim _{n \rightarrow \infty}\left|\frac{n^{2}}{4^{n}+3 n}\right|^{1 / n}=\frac{\lim _{n \rightarrow \infty}|n|^{2 / n}}{4 \lim \left(1+3 n 4^{-n}\right)^{1 / n}}=\frac{1}{4}
$$

where we used the rules that, if $a=\lim _{n} a_{n}, b=\lim _{n} b_{n}$, then $\lim _{n} a_{n} b_{n}=$ $a b, \lim _{n} a_{n}^{b_{n}}=a^{b}$ etc. Hence $R=4$.
(e) Using ratio test (as justified in exercise 17), we have

$$
\frac{a_{n}}{a_{n-1}}=\frac{(\alpha+n-1)(\beta+n-1)}{n(\gamma+n-1)}=\frac{\left(1+\frac{\alpha-1}{n}\right)\left(1+\frac{\beta-1}{n}\right)}{\left(1+\frac{\gamma-1}{n}\right)} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

Hence $R=1$.

$4 \quad$ Exercise 17

Show that if $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence of non-zero complex numbers such that

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L
$$

then

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=L .
$$

Proof: By assumption, for any $\epsilon>0$, there exists $N>0$, such that $\forall n \geq N$,

$$
L-\epsilon<\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<L+\epsilon
$$

Thus, for $n>N$,

$$
(L-\epsilon)^{n-N}<\frac{\left|a_{n}\right|}{\left|a_{N}\right|}=\frac{\left|a_{N+1}\right|}{\left|a_{N}\right|} \cdots \frac{\left|a_{n}\right|}{\left|a_{n-1}\right|}<(L+\epsilon)^{n-N}
$$

Multiplying by $\left|a_{N}\right|$ and taking $1 / n$-th power, we have

$$
(L-\epsilon)^{1-N / n}\left|a_{N}\right|^{1 / n}<\left|a_{n}\right|^{1 / n}<(L-\epsilon)^{1-N / n}\left|a_{N}\right|^{1 / n} .
$$

As $n \rightarrow \infty$, we have $\left|a_{N}\right|^{1 / n} \rightarrow 1$ and $(L-\epsilon)^{1-N / n} \rightarrow L-\epsilon$, hence we get

$$
L-\epsilon<\lim \left|a_{n}\right|^{1 / n}<L+\epsilon .
$$

Since this is true for any $\epsilon>0$, we have $\lim \left|a_{n}\right|^{1 / n}=L$.

5 Exercise 22

Let $\mathbb{N}=\{1,2, \cdots$,$\} denote the set of positive integers. A subset S \subset \mathbb{N}$ is said to be in arithematic progression if

$$
S=\{a, a+d, a+2 d, \cdots\}
$$

for some $a, d \in \mathbb{N}$. Here d is called the step of S. Show that \mathbb{N} cannot be partitioned into finite number of arithematic progressions with distinct step sizes.

Solution: Suppose one can, and let S_{1}, \cdots, S_{k} be the collection of arithematic progression, such that $\mathbb{N}=S_{1} \sqcup S_{2} \sqcup \cdots \sqcup S_{k}$, with distinct step sizes d_{1}, \cdots, d_{k}, and offsets a_{i}. Without loss of generality, assume $d_{1}>d_{2}>\cdots>$ $d_{k}>1$. Then, for $|z|<1$, we have $\sum_{n \in \mathbb{N}} z^{n}$ and $\sum_{n \in S_{i}} z^{n}$ all absolutely convergent, we thus have

$$
\sum_{n \in \mathbb{N}} z^{n}=\sum_{n \in S_{1}} z^{n}+\cdots+\sum_{n \in S_{k}} z^{n}
$$

Evaluating the sum, we have

$$
\begin{equation*}
\frac{z}{1-z}=\frac{z^{a_{1}}}{1-z^{d_{1}}}+\cdots+\frac{z^{a_{k}}}{1-z^{d_{k}}}, \quad \forall|z|<1 . \tag{*}
\end{equation*}
$$

We claim that this is impossible. Indeed, let $z_{0}=e^{2 \pi i / d_{1}}$, then $z_{0} \neq 1, z_{0}^{d_{1}}=1$, and $z_{0}^{d_{i}} \neq 1$ for $i=2, \cdots, k$. Let $z_{n}=z_{0}(1-1 / n)$ be a sequence of points approaching z_{0} within the disk \mathbb{D}. Then we see LHS of $\left(^{*}\right)$ remains finite, whereas the first term of RHS goes to infinity and other terms of RHS remains finite, which is a contradiction to the equality of $\left(^{*}\right)$. Hence it is impossible to have such a partiation of \mathbb{N}.

