Math 185: Homework 2 Solution

Instructor: Peng Zhou

September 2020

The following exercises are from Stein's textbook, Chapter 1. 10, 11, 13, 18, 25

Problem (1.10). Show that

$$
4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}=4 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z}=\Delta
$$

where Δ is the Laplacian.

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

Solution. From page 12 of Stein, we get

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) .
$$

Plug in and you get the desired result.
Remark. Here is a seemingly paradox: we know the intuition of partial derivative, say $\partial / \partial x$ means moving in the direction where only coordinate x is changing. However, what does $\partial / \partial z$ mean, there is no direction where only z change and \bar{z} is fixed. Can you explain?

Problem (1.11). Use Exercise 10 to show that if f is holomorphic, then the real part and imaginary part of f is harmonic.

Solution. If f is holomorphic, then $\partial f / \partial \bar{z}=0$ everywhere, hence further derivative

$$
\frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} f=0
$$

as well. The same argument can be applied to function \bar{f}, which sends z to $\overline{f(z)}$. More precisely, we have

$$
\frac{\partial}{\partial z} \bar{f}=\overline{\left(\frac{\partial f}{\partial \bar{z}}\right)}=0
$$

then apply $\partial / \partial b a r z$ to it, we get

$$
\frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} \bar{f}=0
$$

Thus

$$
\Delta \operatorname{Re} f=4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} \frac{f+\bar{f}}{2}=0
$$

The case for imaginary part is similar.
Alternatively, you can write $f=u+i v$ for the real and imaginary part, then use Cauchy Riemann condition to get

$$
\partial_{x}^{2} u+\partial_{y}^{2} u=\partial_{x}\left(\partial_{y} v\right)+\partial_{y}\left(-\partial_{x} v\right)=0 .
$$

Remark. Hmm, every holomorphic function has its real part being a harmonic function. Does every harmonic arise in this way? Namely, given a harmonic function u, can we find another harmonic function v, such that $f=u+i v$ is a holomorphic function?

Problem (1.13). Suppose that f is holomorphic in an open set Ω. Prove that in any one of the following cases:

1. $\operatorname{Re}(f)$ is constant.
2. $\operatorname{Im}(f)$ is constant.
3. $|f|$ is constant.

One can conclude f is constant.
Solution. Let $f=u+i v$.
If u is constant, then by Cauchy Riemann condition, we know $\partial_{x} v=-\partial_{y} u=$ 0 and $\partial_{y} v=\partial_{x} u=0$, hence v is constant. Thus f is constant.

If v is constant, by similar argument, we know u is constant.
If $|f|$ is constant and non-zero, we can say $\operatorname{Re}(\log f)$ is constant, hence $\log f$ is constant. If you complain that we have not learned log, then we can look at problem 9. If you complain that we haven't done problem 9, then we can consider $|f|^{2}=u^{2}+v^{2}$ being constant, then

$$
0=\frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}(f \bar{f})=\frac{\partial f}{\partial z} \frac{\partial \bar{f}}{\partial \bar{z}}=\left|\frac{\partial f}{\partial z}\right|^{2} \Rightarrow \frac{\partial f}{\partial z}=0
$$

This forces f being a constant, thanks to page 23 Corollary 3.4.
Problem (1.18). Let f be a power series centered at the origin. Prove that f has a power series expansion around any point in its disc of convergence.

Solution. Say $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is convergent with radius of convergence R. Let $z_{0} \in \mathbb{C}$ with $\left|z_{0}\right|<R$. Let u be a complex number, such that $|u|<r=$ $R-\left|z_{0}\right|$, then by triangle inequality

$$
\left|z_{0}+u\right| \leq\left|z_{0}\right|+|u|<R .
$$

Hence, for $z=z_{0}+u$, we have

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z_{0}+u\right)^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_{n}\binom{n}{k} z_{0}^{k} u^{n-k} \stackrel{!}{=} \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} a_{n}\binom{n}{k} z_{0}^{k} u^{n-k} . \tag{*}
\end{equation*}
$$

The last step is dangerous since it involves a change of order of summations.
Now recall a sufficient condition for switching the order of summation is the following: if $\sum_{j} \sum_{k}\left|a_{j k}\right|<\infty$, then $\sum_{j} \sum_{k} a_{j k}=\sum_{k} \sum_{j} a_{j k}$. We are going to use the absolute convergence to show that the double summation is absolutely convergent:

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{n}\left|a_{n}\binom{n}{k} z_{0}^{k} u^{n-k}\right|=\sum_{n=0}^{\infty}\left|a_{n}\right|\left(\left|z_{0}\right|+|u|\right)^{n}<\infty
$$

where the last step follows from that, the series $\sum_{n} a_{n} z^{n}$ is absolutely convergent for $|z|<R$, and $\left|z_{0}\right|+|u|<R$. Thus we can switch the order of summation in Eq (*).

Thus, for $|u|<r$, we have (introducing $m=n-k$)

$$
f\left(z_{0}+u\right)=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} a_{k+m}\binom{k+m}{k} z_{0}^{k} u^{m}=\sum_{m=0}^{\infty} \sum_{k=0}^{\infty} a_{k+m}\binom{k+m}{k} z_{0}^{k} u^{m}
$$

where in the above we switched order of summation again, since the double summation is absolute convergent. Introducing $c_{m}=\sum_{k=0}^{\infty} a_{k+m}\binom{k+m}{k} z_{0}^{k}$, we have

$$
f\left(z_{0}+u\right)=\sum_{m=0}^{\infty} c_{m} u^{m} \quad \forall|u|<r .
$$

Remark. The radius r is not necessarily the radius of convergence for $\sum_{m} c_{m} u^{m}$, because we are estimating c_{m} by

$$
\left|c_{m}\right| \leq \sum_{k=0}^{\infty}\left|a_{k+m}\right|\binom{k+m}{k}\left|z_{0}\right|^{k}
$$

ignoring the possible cancellations of the summation k.
Problem (1.25). The next three calculations provide some insight into Cauchy's theorem, which we treat in the next chapter.
(a) Evaluate the integrals

$$
\int_{\gamma} z^{n} d z
$$

where $n \in$ and γ is any circle centers at the origin with the positive clockwise orientation
(b) Same question as before, but with γ any circle not containing the origin.
(c) Show that if $|a|<r<|b|$, then

$$
\int_{\gamma} \frac{1}{(z-a)(z-b)} d z=\frac{2 \pi i}{a-b}
$$

where γ denotes the circle centered at the origin, of radius r, with the positive orientation.

Solution. For (a), we can parameterize $z=r e^{i \theta}$ for θ running from 0 to 2π. Then

$$
\int_{\gamma} z^{n} d z=\int_{0}^{2 \pi} r^{n} e^{i n \theta} r e^{i \theta} i d \theta=r^{1+n} i \int_{0}^{2 \pi} e^{i(1+n) \theta} d \theta= \begin{cases}2 \pi i & n=-1 \\ 0 & \text { else }\end{cases}
$$

Alternatively, for $n \neq-1$, we can find primitive of z^{n} as $z^{n+1} /(n+1)$ over $\mathbb{C} \backslash\{0\}$, then one can apply Corollary 3.2.

For (b), we parameterize the circle as $z=z_{0}+r e^{i \theta}$ with $\left|z_{0}\right|>r$. Then again over the cirlce, for $n \neq-1$ we can find primitive of z^{n}, hence the integral is zero. Suffice to consider the case $n=-1$, thus we have

$$
\int_{\gamma} z^{-1} d z=\int_{0}^{2 \pi} \frac{r e^{i \theta}}{z_{0}+r e^{i \theta}} i d \theta
$$

Since $\left|z_{0}\right|>$, we can expand the integrand

$$
\frac{r e^{i \theta}}{z_{0}+r e^{i \theta}}=\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{r e^{i \theta}}{z_{0}}\right)^{n+1}
$$

Now we are going to switch the order of summation and integration, again, we check the absolute convergence, namely

$$
\int_{0}^{2 \pi} \sum_{n=0}^{\infty}\left(\frac{r}{\left|z_{0}\right|}\right)^{n+1} d \theta=2 \pi \frac{r}{\left|z_{0}\right|} \frac{1}{1-\frac{r}{\left|z_{0}\right|}}<\infty
$$

Hence

$$
\int_{0}^{2 \pi} \frac{r e^{i \theta}}{z_{0}+r e^{i \theta}} i d \theta=\sum_{n=0}(-1)^{n} \int_{0}^{2 \pi}\left(\frac{r e^{i \theta}}{z_{0}}\right)^{n+1} d \theta=0
$$

Finally, for (c). We can write

$$
\frac{1}{(z-a)(z-b)}=\frac{1}{a-b}\left(\frac{1}{(z-a)}-\frac{1}{(z-b)}\right)
$$

and do integration for both terms. The first term is like (a) where the point a is within the circle $|z|=r$, the second term is like (b) and contribution is zero.

The integral for the first term can be computered using power series again

$$
\begin{aligned}
\int_{|z|=r} \frac{1}{z-a} d z & =\int_{|z|=r} \frac{1}{z(1-a / z)} d z=\int_{|z|=r} \frac{1}{z(1-a / z)}=\int_{|z|=r} z^{-1}\left(1+a / z+(a / z)^{2}+\cdots\right) d z \\
& =\sum_{n=0}^{\infty} \int_{|z|=r} z^{-1}(a / z)^{-n} d z=\int_{|z|=r} z^{-1} d z=2 \pi i
\end{aligned}
$$

where when we switch the summation and integral, we again checked that the double sum (more precisely, the integral-sum, is absolutely convergent, meaning if we take the absolute value of the summand-integrand, the integral is still finite).

