Problems: $1,2,4,5,6$ from Stein. cha.
\#1. Prove that $\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\frac{\sqrt{2 \pi}}{4}$.
Proof: Consider the contour integral $\int_{C_{R}} e^{-z^{2}} d z$, where C_{R} is as follows

- Since $e^{-z^{2}}$ is an entire function, by Cauchy theorem, we have $\quad \int_{C_{R}} \cdot e^{-z^{2}} \cdot d z=0$.

$$
\begin{aligned}
-I_{1} & =\int_{C_{R, 1}} e^{-z^{2}} d z=\int_{0}^{R} e^{-x^{2}} d x \\
I_{2} & =\int_{C_{R, 2}} e^{-z^{2}} d z=\int_{\theta=0}^{\pi / 4} e^{-\left(R e^{i}\right)} \cdot d\left(R e^{i \theta}\right) \\
& =\int_{\theta=0}^{\pi / 4} e^{-R^{2} e^{2 i \theta} R e^{i \theta} \cdot i d \theta} \\
I_{3} & =\int_{C_{R, 3}} e^{-z^{2}} d z=\int_{r=R}^{0} e^{-\left(r e^{\left.i \frac{\pi}{4}\right)^{2}}\right.} d\left(r \cdot e^{i \frac{\pi}{4}}\right) \\
& =-e^{i \frac{\pi}{4}} \int_{0}^{R} e^{-i r^{2}} d r=-e^{i \frac{\pi}{4}} \cdot \int_{0}^{R} \cos \left(r^{2}\right)-i \sin \left(r^{2}\right) d r
\end{aligned}
$$

We claim that: $I_{2} \rightarrow 0$ as $R \rightarrow \infty$. Given the claim, we have

$$
\int_{0}^{\infty} \cos \left(r^{2}\right)-i \cdot \sin \left(r^{2}\right) d r=\lim _{R \rightarrow \infty}\left(\frac{I_{3}}{-e^{i \pi / 4}}\right)=\lim _{R \rightarrow \infty} \frac{-I_{1}-I_{2}}{-e^{i \pi / 4}}
$$

$$
=\lim _{R \rightarrow \infty} \frac{\sqrt{i \pi / 4}}{e^{i \pi / 4}}=e^{-i \frac{\pi}{4}} \cdot \frac{\sqrt{\pi}}{2}=\left(\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right) \cdot \frac{\sqrt{\pi}}{2}=\frac{\sqrt{2 \pi}}{4}-i \frac{\sqrt{2 \pi}}{4} .
$$

Since $\int_{0}^{\infty} \cos r^{2} d r$ and $\int_{0}^{\infty} \sin \left(r^{2}\right) d r$ are both real, we can compare the real and imaginary parts of the above equation and get the desired result.

Now, we turn back to prove the claim.

$$
\begin{aligned}
\left|I_{2}\right| & =\left|\int_{\theta=0}^{\pi / 4} \cdot e^{-R^{2} e^{2 i \theta}} R e^{i \theta} i \cdot d \theta\right| \\
& \leq \int_{0}^{\pi / 4} \cdot e^{-R^{2} \cos 2 \theta} R \cdot d \theta
\end{aligned}
$$

For $\theta \in[0, \pi / 4]$, let $\theta=\frac{\pi}{4}-u$, we have

$$
\begin{aligned}
& \cos (2 \theta)=\cos \left(\frac{\pi}{2}-2 u\right)=\sin (2 u) \geqslant \frac{4}{\pi} u \text { for } u \in\left[0, \frac{\pi}{4}\right] . \\
& \int_{0}^{\frac{\pi}{4}} e^{-R^{2} \cos 2 \theta} d \theta=\int_{0}^{\frac{\pi}{4}} e^{-R^{2} \sin (2 u)} d u \leqslant \int_{0}^{\frac{\pi}{4}} e^{-R^{2} \cdot \frac{4}{\pi} u} d u \\
& \leqslant \int_{0}^{\infty} e^{-R^{2} \frac{4}{\pi} \cdot u} d u=\frac{\pi}{4 R^{2}} .
\end{aligned}
$$

Thus. $\left|I_{2}\right| \leqslant R \cdot \frac{\pi}{4 R^{2}}=\frac{\pi}{4} \cdot \frac{1}{R} \rightarrow 0$ as $R \rightarrow \infty$. \#.
\#2 Show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.

Proof: $\int_{0}^{\infty} \frac{\sin x}{x} d x=\lim _{\substack{\varepsilon \rightarrow 0 \\ R \rightarrow \infty}} \int_{\varepsilon}^{R} \frac{\sin x}{x} d x=\lim _{\cdots} \int_{\varepsilon}^{R} \frac{e^{i x}-e^{-i x}}{2 i x} d x$

$$
=\lim _{\cdots}\left(\int_{\varepsilon}^{R} \frac{e^{i x}}{2 i x} d x+\int_{\varepsilon}^{R} \frac{-e^{-i x}}{2 i x} d x\right)
$$

Let $x=-u$, then $u=-x$ from $-z$ to $-R$

$$
\begin{aligned}
& =\lim \left(\int_{\varepsilon}^{n} \frac{e^{i x}}{2 i x} d x+\int_{-\varepsilon}^{-R} \frac{-e^{i u}}{-2 i u} d(-u)\right) \\
& =\lim \left(\int_{\varepsilon}^{R} \frac{e^{i x}}{2 i x} d x+\int_{-R}^{-\varepsilon} \frac{e^{i u}}{2 i u} d u\right) \text { switch direction of integration } \\
& =\lim \left(\int_{-R}^{-\varepsilon}+\int_{\varepsilon}^{R}\right) \frac{e^{i x}}{2 i x} d x \quad \cdots \quad(*)
\end{aligned}
$$

Note that, $\quad \int_{\varepsilon}^{R} \frac{1}{x} d x=-\int_{-R}^{-\varepsilon} \frac{1}{x} d x$., hence the above integral is also

$$
\lim _{\cdots}\left(\int_{-R}^{-\varepsilon}+\int_{\varepsilon}^{R}\right) \frac{e^{i x}-1}{2 i x} d x . \quad \ldots \cdot(* *) .
$$

as suggested by the hint.

In the following, I will give 2 solutions using $(*)$ or. $(* *)$,

Using (*): Consider the contour

Then

$$
\int_{c_{\varepsilon}} \cdot \frac{e^{i z}}{2 i z} d z=\int_{c_{\varepsilon}} \frac{e^{i z}-1}{2 i z}+\frac{1}{2 i z} d z
$$

since $\left(e^{i z}-1\right) /(2 i z)$ is a bounded function near $z=0$,

$$
\begin{aligned}
& \int_{C_{\varepsilon}} \frac{e^{i z-1}}{2 i z} d z \rightarrow 0 \text { as } \varepsilon \rightarrow 0 . \\
& \int_{C_{\varepsilon}} \frac{1}{2 i z} d z=\frac{1}{2 i} \int_{\theta=\pi}^{0} \frac{1}{\varepsilon e^{i \theta}} \varepsilon \cdot e^{i \theta} \cdot i d \theta=\frac{1}{2 i}(-\pi i)=-\frac{\pi}{2} .
\end{aligned}
$$

$\int_{C_{R}} \frac{e^{i z}}{2 i z} d z \rightarrow 0$ as $R \rightarrow \infty$ by Jordan Lemma,
Thus

$$
\lim _{\substack{\varepsilon \rightarrow 0 \\ k \rightarrow \infty}}\left(\int_{c_{-}}+\int_{c_{+}}\right) \frac{e^{i z}}{2 i z} d z=-\lim _{\cdots}\left(\int_{c_{\varepsilon}}+\int_{c_{k}}\right) \frac{e^{i z}}{2 i z} d z=\frac{\pi}{2}
$$

Using $(* *)$: Consider the some contour, now we have.

$$
\begin{aligned}
& \int_{C_{\varepsilon}} \frac{e^{i z}-1}{2 i z} d z \rightarrow 0 \text { as } \varepsilon \rightarrow 0 \\
& \begin{aligned}
\int_{C_{R}} \frac{e^{i z}-1}{2 i z} d z & =\int_{C_{R}} \frac{-1}{2 i z} d z+\int_{C_{R}} \frac{e^{i z}}{2 i z} d z \\
& \rightarrow \int_{C_{R}} \frac{-1}{2 i z} d z \\
& =\frac{-1}{2 i} \cdot(\pi i)=-\frac{\pi}{2} . \quad \text { as } R \rightarrow \infty
\end{aligned}
\end{aligned}
$$

Thus

$$
\lim _{\substack{s \rightarrow 0 \\ k \rightarrow \infty}}\left(\int_{c_{-}}+\int_{c_{+}}\right) \frac{e^{i z_{-}-1}}{2 i z} d z=-\lim _{\cdots}\left(\int_{c_{\varepsilon}}+\int_{c_{k}}\right) \frac{e^{i z-1}}{2 i z} d z=\frac{\pi}{2}
$$

\#4 Prove that for all $\xi \in \mathbb{C}$, we have

$$
e^{-\pi \cdot \xi^{2}}=\int_{-\infty}^{+\infty} e^{-\pi x^{2}} \cdot e^{2 \pi i \cdot x \cdot \xi} d x
$$

Pf: Consider the RHS of the equation:

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} e^{-\pi\left(x^{2}-2 i x \xi\right)} d x=\int_{-\infty}^{+\infty} e^{-\pi\left((x-i \xi)^{2}-(i \xi)^{2}\right)} d x \\
= & \int_{-\infty}^{+\infty} e^{-\pi(x-i \xi)^{2}-\pi \xi^{2}} d x
\end{aligned}
$$

Hence, suffice to prove that

$$
\int_{-\infty}^{+\infty} e^{-\pi(x-i \xi)^{2}} d x=1
$$

Now $\lim _{R \rightarrow \infty} \int_{-R}^{R} e^{-\pi(x-i \xi)^{2}} d x=\lim _{R \rightarrow \infty} \int_{-R-i \xi}^{R-i \xi} e^{-\pi u^{2}} d u$.
where $u=x-i \xi$.

$$
\begin{aligned}
& \text { here } u=x-i \xi . \\
& =\lim _{R \rightarrow \infty}\left(\int_{-R-i \xi}^{-R}+\int_{-R}^{R}+\int_{R}^{R-i \xi}\right) e^{-\pi u^{2}} d u
\end{aligned}
$$

Suffice to prove that $\int_{-R-i \xi}^{-R} e^{-\pi u^{2}} d u \rightarrow 0$ and $\int_{R}^{R-i \xi} e^{-\pi u^{2}} d u \rightarrow 0$.

$$
\begin{aligned}
\left|\int_{R}^{R-i \xi} e^{-\pi u^{2}} d u\right| & =\left|\int_{t=0}^{1} e^{-\pi(R-i \xi t)^{2}} d(R-i \xi t)\right| \\
& \leqslant \int_{0}^{1} e^{-\pi \cdot \operatorname{Re}(R-i \xi t)^{2}}|\xi| \cdot d t \\
& \leqslant\left(\max _{t \in[0,13} e^{-\pi \cdot \operatorname{Re}\left((R-i \xi t)^{2}\right)}\right) \cdot|\xi| \\
\because \operatorname{Re}\left((R-i \xi t)^{2}\right) & =\operatorname{Re}\left(R^{2}-2 i \xi t \cdot R+(i \xi t)^{2}\right) \\
& \geqslant R^{2}-R \cdot 2|\xi| \cdot t-|\xi|^{2} t^{2} \\
& \geqslant R^{2}-2|\xi| R-|\xi|^{2}
\end{aligned}
$$

Hence, as $R \rightarrow \infty, \operatorname{Re}\left((R-i s t)^{2}\right) \rightarrow \infty$ uniformly in $t \in[0,1]$. $\therefore \quad\left|\int_{R}^{R-i \xi} e^{-\pi u^{2}} d u\right| \rightarrow 0$ as $R \rightarrow \infty$.
\#5 Assume f is complex differentiable on Ω, and $T \subset \Omega$ is a triangle whose interior is contained in Ω. Apply Greer's theorem to show

$$
\int_{T} f(z) d z=0
$$

Pf: Let $f(z)=u(x, y)+i V(x, y)$, where $z=x+i y$, Then

$$
\begin{aligned}
\partial \bar{z} f=0 \quad \Leftrightarrow & \left\{\begin{array}{l}
\partial x u=+\partial y v \\
\partial y u=-\partial x v
\end{array}\right. \\
\because \partial z f & =\frac{1}{2}(\partial x f-i \partial y f) \\
& =\frac{1}{2}\left(\partial x(u+i v)-i \partial_{y}(u+i v)\right) \\
& =\frac{1}{2}\left(\partial x u+\partial_{y} v\right)+i \frac{1}{2}\left(\partial x v-\partial_{y} u\right) \\
& =\partial x u-i \partial_{y} u=
\end{aligned}
$$

and $\partial z f$ is a continuous function
$\therefore \quad \partial x u, \partial y u$ are continuous functions and by CR equation, $\partial \times V, \partial y V$ are continuous.

$$
\begin{aligned}
& \int_{T} f d z=\int_{T}(u+i v)(d x+i d y) \\
&=\int_{T}(u d x-v d y)+i \int_{T}(v d x+u d y) \\
&=\int_{i u t \leftarrow \tau)}\left(-\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y+i \int_{\operatorname{iut}(T)}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right) d d d y \\
&=0
\end{aligned}
$$

\#6. Let f be a holomorphic function in $\Omega \backslash\{w\}$. and is bounded near w. Let T be a triangle in Ω containing w, then

$$
\int_{T} f(z) d z=0
$$

Pf: without loss of generality, we may assume $w=0$.
For $1>\varepsilon>0$, let εT denote the triangle T rescaled by ε.
Then, we may triangulate the polygon- region between T and εT as shown.
By Goursat theorem. integral ' along any of the shaded triangles is zero. Hence.

$$
\int_{T} f(z) d z=\int_{\varepsilon T} f(z) \cdot d z . \quad \forall 1>\varepsilon>0
$$

However, since f is bounded on the solid triangle bounded by T,

$$
\left|\int_{T} f(z) d z\right|=\left|\int_{\varepsilon T} f(z) d z\right| \leqslant C \cdot \varepsilon \cdot \operatorname{length}(T) \quad \forall \varepsilon>0
$$

Thus. $\quad \int_{T} f(z) d z=0$.

