
 
Problems 1,2 4 5,6 from Stein Ch2
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since Jf cost dr and forsinCmdr are both real we

can compare the real and imaginary partsof the above equation
and get the desired result
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as suggested by the hint

In the following I will give 2 solutions using H or L
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UsinglX consider the same contour now wehave
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5 Assume f is complex differentiable our and Tcr is

a triangle whose interior is contained in SL Apply Green's

theorem to show
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pf without loss of generality we may assume w 0

Forhe o let ET denote the triangle T resealed by E
Then we maytriangulate thepolygon region
between T and ET as showoff
By Goursat theorem integral along any of the shaded
triangles is zero Hence
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However since f is bounded on the solidtriangle boundedbyT
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