
Math 185: Homework 4 Solution

Instructor: Peng Zhou

September 2020

The following exercises are from Stein’s textbook, Chapter 2. 7,8,9,11,12

Problem (7). Suppose f : D → C is holomorphic. Show that the diameter
d = supz,w∈D |f(z)− f(w)| of the image satisfies

2|f ′(0)| ≤ d

Moreover it can be shown that equality holds precisely when f is linear, f(z) =
a0 + a1z.

Solution. For 0 < r < 1, let Cr be the circle centered at 0 with radius r.
Consider the Cauchy integral expression for f ′(0), we have

f ′(0) =
1

2πi

∫
Cr

f(w)

(w − 0)2
dw.

We may replace the integration variable w by −w, and get

f ′(0) =
1

2πi

∫
Cr

f(−w)

(−w − 0)2
d(−w).

Summing up the two equations, we have

2f ′(0) =
1

2πi

∫
Cr

f(w)− f(−w)

w2
dw.

Taking absolute value on both sides, we have

2|f ′(0)| ≤ 1

2π

∫
Cr

|f(w)− f(−w)|
|w|2

|dw|

≤ 1

2π
sup
w∈Cr

|f(w)− f(−w)| ·
∫
Cr

1

|w|2
|dw|

≤ 1

2π
d

2πr

r2

=
d

r

Since the inequality holds for any 0 < r < 1, we get

2|f ′(0)| ≤ inf
0<r<1

d

r
= d.
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Remark. I wasn’t able to figure out the ’more over’ part. If one define g(z) =
f(z)−f(−z)

d , then one get g(0) = 0, |g′(0)| = 1, and (D) ⊂ D, then by problem
9, one can show that g(z) = z. However, this only forces the odd part of f(z)
to be z, the information of the even part is lost when we construct g(z). So,
bounty for homework: the first one to completely solve the ’more over’ part will
get extra 5 points for the overall homework.

Problem (8). If f is holomorphic on a strip {x+ iy | x ∈ R,−1 < y < 1}, with

|f(z)| ≤ A(1 + |z|)η, η a fixed real number

for all z in that strip. Show that for each n ≥ 0, there exists a constant An,
such that

|f (n)(x)| ≤ An(1 + |x|)η

for all x ∈ R.

Solution. Fix a r with 0 < r < 1. Let Cr(x) be the circle centered at x with
radius r. Then by Cauchy estimate

|f (n)(x)| ≤ n!

rn
sup

w∈Cr(x)

|f(w)| ≤ n!

rn
A sup
w∈Cr(x)

(1 + |w|)η.

We claim that there exists a constant C, only dependent on η, such that

sup
w∈Cr(x)

(1 + |w|)η < C(1 + |x|)η

Given the claim, we have the desired result

|f (n)(x)| ≤ inf
0<r<1

n!

rn
AC(1 + |x|)η = n!AC(1 + |x|)η,

with An = n!AC.
Now we prove the claim. In fact we show one can take C = 2|η|. Indeed, if

η > 0, then

sup
w∈Cr(x)

(1 + |w|)η ≤ (1 + |x|+ r)η ≤ (2 + |x|)η = 2η(1 + |x|/2)η ≤ 2η(1 + |x|)η.

If η < 0, then

sup
w∈Cr(x)

(1 + |w|)η ≤

{
1 |x| < r

(1 + |x| − r)η |x| ≥ r
≤

{
1 |x| < 1

|x|η |x| ≥ 1

Let h(x) be the piecewise defined function on the right in the above inequality.
For |x| < 1,

sup
|x|<1

h(x)

(1 + |x|)η
= sup
|x|<1

1

(1 + |x|)η
= 2−η
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and for |x| ≥ 1,

sup
|x|≥1

h(x)

(1 + |x|)η
= sup
|x|≥1

|x|η

(1 + |x|)η
= 2−η.

Hence for η < 0, we may take C = 2−η, and get

sup
w∈Cr(x)

(1 + |w|)η < 2−η(1 + |x|)η

. For η = 0, we can take C = 1.

Problem (9). Let Ω be a bounded open set of C, and ϕ : Ω→ Ω a holomorphic
function. Prove that if there exists a z0 ∈ Ω, such that

ϕ(z0) = z0, ϕ′(z0) = 1

then ϕ is linear.

Solution. One can define Ω = Ω−z0 and ϕ(z) = ϕ(z0+z)−z0, then ϕ : Ω→ Ω,
and satisfies ϕ(0) = 0, ϕ′(0) = 1. ϕ(z) is a linear function (i.e. of type a + bz)
if and only if ϕ is a linear function. Hence without loss of generality, we may
replace Ω by Ω, ϕ by ϕ and assume z0 = 0.

Consider the power series expansion of ϕ,

ϕ(z) =

∞∑
n=0

anz
n

which converges in a neighborhood of 0. By the assumption on ϕ, we have
a0 = 0, a1 = 1. Assume there exists some other an non-zero, and let m be the
smallest integer such that m ≥ 2 and am 6= 0. Then, we have

ϕ(z) = z + amz
m +O(zm+1).

Let ϕk = ϕ ◦ · · · ◦ ϕ denote the k-th iteration of ϕ. Then ϕk satisfies the same
condition as ϕ, namely ϕk(0) = 0, ϕ′k(0) = 1 (by chain rule). Furthermore, we
claim that the Taylor expansion of ϕk(z) at z = 0 is of the form

ϕk(z) = z + amkz
m +O(zm+1)

Indeed, one can prove this by induction on k. The case k = 1 is known. Suppose
we have the expansion for index equals k, and we will prove it for index k + 1,
then

ϕk+1(z) = ϕ(ϕk(z)) = ϕk(z) + am(ϕk(z))m +O(ϕk(z)m)

=(z + amkz
m +O(zm+1)) + am(z + amkz

m +O(zm+1))m +O(zm+1)

=z + amkz
m + amz

m +O(zm+1)

=z + am(k + 1)zm +O(zm+1)
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However this is in contradiction with the Cauchy estimate. Let r > 0 be
chosen such that Dr(0) ⊂ Ω. Let R = supz∈Ω |z|. Then we have

m!|am|k = |ϕ(m)
k (0)| ≤ m!

rm
sup

z∈Cr(0)

|ϕk(z)| ≤ m!

rm
R

The right hand side is independent of k, and as k →∞, the LHS is unbounded,
hence there is a contradiction. Thus there is no am 6= 0 with m ≥ 2.

Problem (11). Let f be a holomorphic function in the disk DR0
(0).

(a) Prove that whenever 0 < R < R0 and |z| < R, then

f(z) =
1

2π

∫ 2π

0

f(Reiϕ)Re

(
Reiϕ + z

Reiϕ − z

)
dϕ

(b) Show that

Re

(
Reiϕ + r

Reiϕ − r

)
=

R2 − r2

R2 − 2Rr cosϕ+ r2

Solution. Let w = Reiϕ. Then we try to write the integral as an integral for
w ∈ CR(0) with integrand holomorphic in w. We have

f(Reiϕ) = f(w), dϕ =
dw

iw

And

Re

(
Reiϕ + z

Reiϕ − z

)
= Re

(
w + z

w − z

)
=

1

2

(
w + z

w − z
+
w + z

w − z

)
=

1

2

(
w + z

w − z
+
w + z

w − z

)
If z = 0, then Re(...) = 1, and the result follows from Cauchy integral formula

f(0) =
1

2πi

∫
CR(0)

f(w)
dw

w
.

Now we assume |z| > 0. Note that on the circle CR(0), we have ww = |w|2 = R2,
hence we replace w = R2/w, and get

w + z

w − z
=
R2/w + z

R2/w − z
=
R2/z + w

R2/z − w
.

The integral then become

1

2π

∫
CR(0)

f(w)
1

2

(
w + z

w − z
+
R2/z + w

R2/z − w

)
dw

iw

The integrand has three singularities, at w = 0, w = z and w = R2/z. Note
that |R2/z| = R2/|z| > R. Hence only the pole 0 and z is inside the disk DR(0).
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We may deform the contour CR(0) to two smaller circles Cε(z) and Cε(0) around
the poles, then using Cauchy integral formula, we get

1

2πi

∫
Cε(0)

f(w)
1

2

(
w + z

w − z
+
R2/z + w

R2/z − w

)
1

w
dw

= f(w)
1

2

(
w + z

w − z
+
R2/z + w

R2/z − w

)∣∣∣∣
w=0

=f(0)
1

2
(−1 + 1) = 0,

and

1

2πi

∫
Cε(z)

f(w)
1

2

(
w + z

w − z
+
R2/z + w

R2/z − w

)
1

w
dw

= f(w)
1

2

(
w + z

1
+
R2/z + w

R2/z − w
(w − z)

)
1

w

∣∣∣∣
w=z

=f(z)

Adding up the two terms, we get the desired equality.
(b)

Re

(
Reiϕ + r

Reiϕ − r

)
= Re

(Reiϕ + r)(Re−iϕ − r)
(Reiϕ − r)(Re−iϕ − r)

=
Re(R2 − r2 + rR(eiϕ − e−iϕ))

R2 + r2 + 2Rr cosϕ

=
R2 − r2

R2 + r2 + 2Rr cosϕ

Problem (12). Let u be a real valued function defined on the unit disk D.
Suppose that u is twice differentiable and harmonic, that is ∆u(x, y) = 0 for all
x, y ∈ D.

(a) Prove that there exists a holomorphic function f on the unit disk, such
that

Re(f) = u

(b) Deduce from this result, the Poisson integration formula. If u is harmonic
in D is is continuous on its closure D, then if z = reiθ, one has

u(z) =
1

2π

∫ 2π

0

Pr(θ − ϕ)u(eiϕ)dϕ

where Pr(θ) is the Poisson kernel

Pr(θ) =
1− r2

1− 2r cos θ + r2

Solution. (a) Let’s make some observation first. To construct f , we try to
construct its derivative f ′ then integrate to get f . If we know a holomorphic
function f(z) = u(z) + iv(z), then f ′(z) = 2∂zu(z), indeed

∂zf(z) = ∂xf(x, y) = ∂x(u(x, y) + iv(x, y)) = ∂xu− i∂yu = 2∂zu(z).
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Now we begin the proof. Define g(z) = 2∂zu(z) = ∂xu− i∂yu. Then g(z) is
once differentiable (though ∂xg, ∂yg may not be continuous), since

∂z̄g(z) = 2∂z̄∂zu(z) = (1/2)∆u = 0

hence g(z) is holomorphic for all z ∈ D. From Theorem 2.1, we know g has a
primitive F . We claim that ReF − u is a constant. Indeed, we have

∂x(ReF − u) + i∂y(ReF − u) = 2∂z(ReF − u) = g(z)− g(z) = 0,

hence the partial derivatives of (ReF −u) vanishes, hence ReF −u is a constant.
Denote this constant by c, and define f = F − c, we then get f a holomorphic
function with Ref = u.

(b) Apply (a) to get a holomorphic function f with Ref = u. If z = eiθ,
then let R ∈ R such that |z| < R < 1. Then by Exercise 11, we have

f(z) =
1

2π

∫ 2π

0

f(Reiϕ)Re

(
Reiϕ + z

Reiϕ − z

)
dϕ

Taking the real part on both sides, we get

u(z) =
1

2π

∫ 2π

0

u(Reiϕ)
R2 − r2

R2 − 2Rr cos(ϕ− θ) + r2
dϕ.

Let R→ 1, by uniform continuity, we get

u(z) =
1

2π

∫ 2π

0

u(eiϕ)Pr(θ − ϕ)dϕ.

Note that cos(x) is an even function, hence Pr(θ − ϕ) = Pr(ϕ− θ).
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