Math 185: Homework 4 Solution

Instructor: Peng Zhou

September 2020

The following exercises are from Stein's textbook, Chapter 2. 7,8,9,11,12
Problem (7). Suppose $f: \mathbb{D} \rightarrow \mathbb{C}$ is holomorphic. Show that the diameter $d=\sup _{z, w \in \mathbb{D}}|f(z)-f(w)|$ of the image satisfies

$$
2\left|f^{\prime}(0)\right| \leq d
$$

Moreover it can be shown that equality holds precisely when f is linear, $f(z)=$ $a_{0}+a_{1} z$.
Solution. For $0<r<1$, let C_{r} be the circle centered at 0 with radius r. Consider the Cauchy integral expression for $f^{\prime}(0)$, we have

$$
f^{\prime}(0)=\frac{1}{2 \pi i} \int_{C_{r}} \frac{f(w)}{(w-0)^{2}} d w
$$

We may replace the integration variable w by $-w$, and get

$$
f^{\prime}(0)=\frac{1}{2 \pi i} \int_{C_{r}} \frac{f(-w)}{(-w-0)^{2}} d(-w)
$$

Summing up the two equations, we have

$$
2 f^{\prime}(0)=\frac{1}{2 \pi i} \int_{C_{r}} \frac{f(w)-f(-w)}{w^{2}} d w .
$$

Taking absolute value on both sides, we have

$$
\begin{aligned}
2\left|f^{\prime}(0)\right| & \leq \frac{1}{2 \pi} \int_{C_{r}} \frac{|f(w)-f(-w)|}{|w|^{2}}|d w| \\
& \leq \frac{1}{2 \pi} \sup _{w \in C_{r}}|f(w)-f(-w)| \cdot \int_{C_{r}} \frac{1}{|w|^{2}}|d w| \\
& \leq \frac{1}{2 \pi} d \frac{2 \pi r}{r^{2}} \\
& =\frac{d}{r}
\end{aligned}
$$

Since the inequality holds for any $0<r<1$, we get

$$
2\left|f^{\prime}(0)\right| \leq \inf _{0<r<1} \frac{d}{r}=d
$$

Remark. I wasn't able to figure out the 'more over' part. If one define $g(z)=$ $\frac{f(z)-f(-z)}{d}$, then one get $g(0)=0,\left|g^{\prime}(0)\right|=1$, and $(\mathbb{D}) \subset \mathbb{D}$, then by problem 9 , one can show that $g(z)=z$. However, this only forces the odd part of $f(z)$ to be z, the information of the even part is lost when we construct $g(z)$. So, bounty for homework: the first one to completely solve the 'more over' part will get extra 5 points for the overall homework.

Problem (8). If f is holomorphic on a strip $\{x+i y \mid x \in \mathbb{R},-1<y<1\}$, with

$$
|f(z)| \leq A(1+|z|)^{\eta}, \quad \eta \text { a fixed real number }
$$

for all z in that strip. Show that for each $n \geq 0$, there exists a constant A_{n}, such that

$$
\left|f^{(n)}(x)\right| \leq A_{n}(1+|x|)^{\eta}
$$

for all $x \in \mathbb{R}$.
Solution. Fix a r with $0<r<1$. Let $C_{r}(x)$ be the circle centered at x with radius r. Then by Cauchy estimate

$$
\left|f^{(n)}(x)\right| \leq \frac{n!}{r^{n}} \sup _{w \in C_{r}(x)}|f(w)| \leq \frac{n!}{r^{n}} A \sup _{w \in C_{r}(x)}(1+|w|)^{\eta}
$$

We claim that there exists a constant C, only dependent on η, such that

$$
\sup _{w \in C_{r}(x)}(1+|w|)^{\eta}<C(1+|x|)^{\eta}
$$

Given the claim, we have the desired result

$$
\left|f^{(n)}(x)\right| \leq \inf _{0<r<1} \frac{n!}{r^{n}} A C(1+|x|)^{\eta}=n!A C(1+|x|)^{\eta}
$$

with $A_{n}=n!A C$.
Now we prove the claim. In fact we show one can take $C=2^{|\eta|}$. Indeed, if $\eta>0$, then

$$
\sup _{w \in C_{r}(x)}(1+|w|)^{\eta} \leq(1+|x|+r)^{\eta} \leq(2+|x|)^{\eta}=2^{\eta}(1+|x| / 2)^{\eta} \leq 2^{\eta}(1+|x|)^{\eta}
$$

If $\eta<0$, then

$$
\sup _{w \in C_{r}(x)}(1+|w|)^{\eta} \leq\left\{\begin{array}{ll}
1 & |x|<r \\
(1+|x|-r)^{\eta} & |x| \geq r
\end{array} \leq \begin{cases}1 & |x|<1 \\
|x|^{\eta} & |x| \geq 1\end{cases}\right.
$$

Let $h(x)$ be the piecewise defined function on the right in the above inequality. For $|x|<1$,

$$
\sup _{|x|<1} \frac{h(x)}{(1+|x|)^{\eta}}=\sup _{|x|<1} \frac{1}{(1+|x|)^{\eta}}=2^{-\eta}
$$

and for $|x| \geq 1$,

$$
\sup _{|x| \geq 1} \frac{h(x)}{(1+|x|)^{\eta}}=\sup _{|x| \geq 1} \frac{|x|^{\eta}}{(1+|x|)^{\eta}}=2^{-\eta}
$$

Hence for $\eta<0$, we may take $C=2^{-\eta}$, and get

$$
\sup _{w \in C_{r}(x)}(1+|w|)^{\eta}<2^{-\eta}(1+|x|)^{\eta}
$$

. For $\eta=0$, we can take $C=1$.
Problem (9). Let Ω be a bounded open set of \mathbb{C}, and $\varphi: \Omega \rightarrow \Omega$ a holomorphic function. Prove that if there exists a $z_{0} \in \Omega$, such that

$$
\varphi\left(z_{0}\right)=z_{0}, \quad \varphi^{\prime}\left(z_{0}\right)=1
$$

then φ is linear.
Solution. One can define $\Omega=\Omega-z_{0}$ and $\varphi(z)=\varphi\left(z_{0}+z\right)-z_{0}$, then $\varphi: \Omega \rightarrow \Omega$, and satisfies $\varphi(0)=0, \varphi^{\prime}(0)=1 . \varphi(z)$ is a linear function (i.e. of type $a+b z$) if and only if φ is a linear function. Hence without loss of generality, we may replace Ω by Ω, φ by φ and assume $z_{0}=0$.

Consider the power series expansion of φ,

$$
\varphi(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

which converges in a neighborhood of 0 . By the assumption on φ, we have $a_{0}=0, a_{1}=1$. Assume there exists some other a_{n} non-zero, and let m be the smallest integer such that $m \geq 2$ and $a_{m} \neq 0$. Then, we have

$$
\varphi(z)=z+a_{m} z^{m}+O\left(z^{m+1}\right)
$$

Let $\varphi_{k}=\varphi \circ \cdots \circ \varphi$ denote the k-th iteration of φ. Then φ_{k} satisfies the same condition as φ, namely $\varphi_{k}(0)=0, \varphi_{k}^{\prime}(0)=1$ (by chain rule). Furthermore, we claim that the Taylor expansion of $\varphi_{k}(z)$ at $z=0$ is of the form

$$
\varphi_{k}(z)=z+a_{m} k z^{m}+O\left(z^{m+1}\right)
$$

Indeed, one can prove this by induction on k. The case $k=1$ is known. Suppose we have the expansion for index equals k, and we will prove it for index $k+1$, then

$$
\begin{aligned}
& \varphi_{k+1}(z)=\varphi\left(\varphi_{k}(z)\right)=\varphi_{k}(z)+a_{m}\left(\varphi_{k}(z)\right)^{m}+O\left(\varphi_{k}(z)^{m}\right) \\
= & \left(z+a_{m} k z^{m}+O\left(z^{m+1}\right)\right)+a_{m}\left(z+a_{m} k z^{m}+O\left(z^{m+1}\right)\right)^{m}+O\left(z^{m+1}\right) \\
= & z+a_{m} k z^{m}+a_{m} z^{m}+O\left(z^{m+1}\right) \\
= & z+a_{m}(k+1) z^{m}+O\left(z^{m+1}\right)
\end{aligned}
$$

However this is in contradiction with the Cauchy estimate. Let $r>0$ be chosen such that $\overline{D_{r}(0)} \subset \Omega$. Let $R=\sup _{z \in \Omega}|z|$. Then we have

$$
m!\left|a_{m}\right| k=\left|\varphi_{k}^{(m)}(0)\right| \leq \frac{m!}{r^{m}} \sup _{z \in C_{r}(0)}\left|\varphi_{k}(z)\right| \leq \frac{m!}{r^{m}} R
$$

The right hand side is independent of k, and as $k \rightarrow \infty$, the LHS is unbounded, hence there is a contradiction. Thus there is no $a_{m} \neq 0$ with $m \geq 2$.

Problem (11). Let f be a holomorphic function in the disk $D_{R_{0}}(0)$.
(a) Prove that whenever $0<R<R_{0}$ and $|z|<R$, then

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \varphi}\right) R e\left(\frac{R e^{i \varphi}+z}{R e^{i \varphi}-z}\right) d \varphi
$$

(b) Show that

$$
R e\left(\frac{R e^{i \varphi}+r}{R e^{i \varphi}-r}\right)=\frac{R^{2}-r^{2}}{R^{2}-2 R r \cos \varphi+r^{2}}
$$

Solution. Let $w=R e^{i \varphi}$. Then we try to write the integral as an integral for $w \in C_{R}(0)$ with integrand holomorphic in w. We have

$$
f\left(R e^{i \varphi}\right)=f(w), \quad d \varphi=\frac{d w}{i w}
$$

And
$\operatorname{Re}\left(\frac{\operatorname{Re}^{i \varphi}+z}{\operatorname{Re}^{i \varphi}-z}\right)=\operatorname{Re}\left(\frac{w+z}{w-z}\right)=\frac{1}{2}\left(\frac{w+z}{w-z}+\frac{\overline{w+z}}{w-z}\right)=\frac{1}{2}\left(\frac{w+z}{w-z}+\frac{\bar{w}+\bar{z}}{\bar{w}-\bar{z}}\right)$
If $z=0$, then $\operatorname{Re}(\ldots)=1$, and the result follows from Cauchy integral formula

$$
f(0)=\frac{1}{2 \pi i} \int_{C_{R}(0)} f(w) \frac{d w}{w}
$$

Now we assume $|z|>0$. Note that on the circle $C_{R}(0)$, we have $w \bar{w}=|w|^{2}=R^{2}$, hence we replace $\bar{w}=R^{2} / w$, and get

$$
\frac{\bar{w}+\bar{z}}{\bar{w}-\bar{z}}=\frac{R^{2} / w+\bar{z}}{R^{2} / w-\bar{z}}=\frac{R^{2} / \bar{z}+w}{R^{2} / \bar{z}-w} .
$$

The integral then become

$$
\frac{1}{2 \pi} \int_{C_{R}(0)} f(w) \frac{1}{2}\left(\frac{w+z}{w-z}+\frac{R^{2} / \bar{z}+w}{R^{2} / \bar{z}-w}\right) \frac{d w}{i w}
$$

The integrand has three singularities, at $w=0, w=z$ and $w=R^{2} / \bar{z}$. Note that $\left|R^{2} / \bar{z}\right|=R^{2} /|z|>R$. Hence only the pole 0 and z is inside the disk $D_{R}(0)$.

We may deform the contour $C_{R}(0)$ to two smaller circles $C_{\epsilon}(z)$ and $C_{\epsilon}(0)$ around the poles, then using Cauchy integral formula, we get

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{C_{\epsilon}(0)} f(w) \frac{1}{2}\left(\frac{w+z}{w-z}+\frac{R^{2} / \bar{z}+w}{R^{2} / \bar{z}-w}\right) \frac{1}{w} d w \\
= & \left.f(w) \frac{1}{2}\left(\frac{w+z}{w-z}+\frac{R^{2} / \bar{z}+w}{R^{2} / \bar{z}-w}\right)\right|_{w=0} \\
= & f(0) \frac{1}{2}(-1+1)=0,
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{C_{\epsilon}(z)} f(w) \frac{1}{2}\left(\frac{w+z}{w-z}+\frac{R^{2} / \bar{z}+w}{R^{2} / \bar{z}-w}\right) \frac{1}{w} d w \\
= & \left.f(w) \frac{1}{2}\left(\frac{w+z}{1}+\frac{R^{2} / \bar{z}+w}{R^{2} / \bar{z}-w}(w-z)\right) \frac{1}{w}\right|_{w=z} \\
= & f(z)
\end{aligned}
$$

Adding up the two terms, we get the desired equality.
(b)

$$
\begin{gathered}
\operatorname{Re}\left(\frac{R e^{i \varphi}+r}{R e^{i \varphi}-r}\right)=\operatorname{Re} \frac{\left(R e^{i \varphi}+r\right)\left(R e^{-i \varphi}-r\right)}{\left(R e^{i \varphi}-r\right)\left(R e^{-i \varphi}-r\right)}=\frac{\operatorname{Re}\left(R^{2}-r^{2}+r R\left(e^{i \varphi}-e^{-i \varphi}\right)\right)}{R^{2}+r^{2}+2 R r \cos \varphi} \\
=\frac{R^{2}-r^{2}}{R^{2}+r^{2}+2 R r \cos \varphi}
\end{gathered}
$$

Problem (12). Let u be a real valued function defined on the unit disk \mathbb{D}. Suppose that u is twice differentiable and harmonic, that is $\Delta u(x, y)=0$ for all $x, y \in \mathbb{D}$.
(a) Prove that there exists a holomorphic function f on the unit disk, such that

$$
\operatorname{Re}(f)=u
$$

(b) Deduce from this result, the Poisson integration formula. If u is harmonic in \mathbb{D} is is continuous on its closure $\overline{\mathbb{D}}$, then if $z=r e^{i \theta}$, one has

$$
u(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P_{r}(\theta-\varphi) u\left(e^{i \varphi}\right) d \varphi
$$

where $P_{r}(\theta)$ is the Poisson kernel

$$
P_{r}(\theta)=\frac{1-r^{2}}{1-2 r \cos \theta+r^{2}}
$$

Solution. (a) Let's make some observation first. To construct f, we try to construct its derivative f^{\prime} then integrate to get f. If we know a holomorphic function $f(z)=u(z)+i v(z)$, then $f^{\prime}(z)=2 \partial_{z} u(z)$, indeed

$$
\partial_{z} f(z)=\partial_{x} f(x, y)=\partial_{x}(u(x, y)+i v(x, y))=\partial_{x} u-i \partial_{y} u=2 \partial_{z} u(z) .
$$

Now we begin the proof. Define $g(z)=2 \partial_{z} u(z)=\partial_{x} u-i \partial_{y} u$. Then $g(z)$ is once differentiable (though $\partial_{x} g, \partial_{y} g$ may not be continuous), since

$$
\partial_{\bar{z}} g(z)=2 \partial_{\bar{z}} \partial_{z} u(z)=(1 / 2) \Delta u=0
$$

hence $g(z)$ is holomorphic for all $z \in \mathbb{D}$. From Theorem 2.1, we know g has a primitive F. We claim that $\operatorname{Re} F-u$ is a constant. Indeed, we have

$$
\partial_{x}(\operatorname{Re} F-u)+i \partial_{y}(\operatorname{Re} F-u)=2 \partial_{z}(\operatorname{Re} F-u)=g(z)-g(z)=0,
$$

hence the partial derivatives of $(\operatorname{Re} F-u)$ vanishes, hence $\operatorname{Re} F-u$ is a constant. Denote this constant by c, and define $f=F-c$, we then get f a holomorphic function with $\operatorname{Re} f=u$.
(b) Apply (a) to get a holomorphic function f with $\operatorname{Re} f=u$. If $z=e^{i \theta}$, then let $R \in \mathbb{R}$ such that $|z|<R<1$. Then by Exercise 11, we have

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\operatorname{Re}^{i \varphi}\right) \operatorname{Re}\left(\frac{R e^{i \varphi}+z}{R e^{i \varphi}-z}\right) d \varphi
$$

Taking the real part on both sides, we get

$$
u(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(R e^{i \varphi}\right) \frac{R^{2}-r^{2}}{R^{2}-2 \operatorname{Rr} \cos (\varphi-\theta)+r^{2}} d \varphi
$$

Let $R \rightarrow 1$, by uniform continuity, we get

$$
u(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(e^{i \varphi}\right) P_{r}(\theta-\varphi) d \varphi
$$

Note that $\cos (x)$ is an even function, hence $P_{r}(\theta-\varphi)=P_{r}(\varphi-\theta)$.

