Math 185: Homework 4 Solution

Instructor: Peng Zhou

September 2020

The following exercises are from Stein’s textbook, Chapter 2. 7,8,9,11,12

Problem (7). Suppose f : D — C is holomorphic. Show that the diameter
d=sup, ,eplf(2) — f(w)| of the image satisfies

21f(0) <d
Moreover it can be shown that equality holds precisely when f is linear, f(z) =
ag+a1z.

Solution. For 0 < r < 1, let C}. be the circle centered at 0 with radius r.
Consider the Cauchy integral expression for f’(0), we have

, 1 w
f(O)—W/CT(wf(_g)zdw.

We may replace the integration variable w by —w, and get

ro) =5 [ L

Summing up the two equations, we have
1 fw) — f(-w)
2f'(0) = — —t = ~dw.
IO =25 /C w? v

Taking absolute value on both sides, we have

2/ ) < - [ SOy
< g s 1) = )l [ gl
1
— 21 72
_d
=

Since the inequality holds for any 0 < r < 1, we get

d
2| < inf —=d.
FOl< it 2



Remark. I wasn’t able to figure out the 'more over’ part. If one define g(z) =
W’ then one get ¢g(0) = 0, |¢’(0)] = 1, and (D) C D, then by problem
9, one can show that ¢g(z) = z. However, this only forces the odd part of f(z)
to be z, the information of the even part is lost when we construct g(z). So,
bounty for homework: the first one to completely solve the 'more over’ part will
get extra 5 points for the overall homework.

Problem (8). If f is holomorphic on a strip {x+iy | z € R, -1 < y < 1}, with
lf () <A +12])", n a fized real number

for all z in that strip. Show that for each n > 0, there exists a constant Ay,
such that
[f(@)] < Ap(1+ J2])"

for all x € R.

Solution. Fix a r with 0 < r < 1. Let C.(x) be the circle centered at x with
radius 7. Then by Cauchy estimate

n! n!
(@) < — sup [f(w)| <A sup (14 |w])".
™ weC, () r weC, (x)

We claim that there exists a constant C, only dependent on 7, such that

sup (1 + |w|)” < C(1+ [x])"
wel,(x)

Given the claim, we have the desired result
|
(™M (z)| < inf —AC(1 " = nlAC(1 "
S| < it T AC( 4 |al)? = nlAC(L+ [2])",

with A, =nlAC.
Now we prove the claim. In fact we show one can take C' = 27|, Indeed, if
n > 0, then

sup (1+ |w])" < (1 + |2|+7)" < (2+ [z))" =2"(1 + |2(/2)" < 27(1 + [=[)".
weCr(x)

If n <0, then
1 < 1 <1
sup (1+ |w\)77 < |$‘ r < ‘l‘l
weC (z) (Lt zf =r)7 e[ =7 = 27 [z[ 21

Let h(x) be the piecewise defined function on the right in the above inequality.
For |z| < 1,

h(x) 1
SUp - = SUp —————— = 2
lzl<1 (L2 <0 (L4 [2])7



and for |z| > 1,

h n
sup 7(1‘) = Ssup |l‘|

= —_— = _77_
=1 (L [2)7 g1 (14 [a])?

Hence for n < 0, we may take C =277, and get

sup (14 [w])" < 277(1 + [z[)"
weCy(x)

. For n =0, we can take C' = 1.

Problem (9). Let Q be a bounded open set of C, and ¢ : Q — Q a holomorphic
function. Prove that if there exists a zg € €2, such that

©(20) = 20, ¢'(20) =1
then ¢ is linear.

Solution. One can define Q = Q—2zg and ¢(z) = p(20+2)— 20, then ¢ : @ — Q,
and satisfies ¢(0) = 0,¢’(0) = 1. p(2) is a linear function (i.e. of type a + bz2)
if and only if ¢ is a linear function. Hence without loss of generality, we may
replace 2 by Q, ¢ by ¢ and assume zy = 0.

Consider the power series expansion of ¢,

o)=Y ane"
n=0

which converges in a neighborhood of 0. By the assumption on ¢, we have
agp = 0,a; = 1. Assume there exists some other a, non-zero, and let m be the
smallest integer such that m > 2 and a,, # 0. Then, we have

0(2) = 2+ amz™ + O0(z™ ).

Let ¢, = po--- 0 denote the k-th iteration of ¢. Then ¢ satisfies the same
condition as ¢, namely ¢5(0) = 0, ¢} (0) = 1 (by chain rule). Furthermore, we
claim that the Taylor expansion of p(z) at z = 0 is of the form

or(2) = 2+ apkz™ 4+ O(z™ )

Indeed, one can prove this by induction on k. The case k = 1 is known. Suppose
we have the expansion for index equals k, and we will prove it for index k + 1,
then

Pri1(2) = e(er(2)) = @r(2) + am(pr(2))™ + Opr(2)™)
=(2 + amkz™ + 02" ) 4 apm (2 + ap k2™ + O(z™TH))™ + O(z™ 1)
=2+ amk2™ 4 ap 2™ + O0(z™Th)
=24 am(k+1)2™ + 0(z™)



However this is in contradiction with the Cauchy estimate. Let r > 0 be
chosen such that D, (0) C Q. Let R = sup,cq |2|. Then we have

m m! m!
mllamlk = o™ (0)] < = sup |pp(2)| < R
" zeC,.(0) r

The right hand side is independent of k, and as k — oo, the LHS is unbounded,
hence there is a contradiction. Thus there is no a,, # 0 with m > 2.

Problem (11). Let f be a holomorphic function in the disk Dg,(0).
(a) Prove that whenever 0 < R < Ry and |z| < R, then

1 [ - Re'? + 2
- = ip aeT T
10 =g [ smere (G )
(b) Show that
Re Re'® +r _ R2 — 2
Rei® —r )  R2—2Rrcosy + r2

Solution. Let w = Re’?. Then we try to write the integral as an integral for
w € Cr(0) with integrand holomorphic in w. We have

f(RE®) = fw), dp=""

w

And
ip 1 1 wH+z
Re ReA + z ~ Re w+ z _ 1 w+z+w—|—z _ 1 w—&—z_i_g—kf
Re — z w—z 2\w—z w-—z 2\w—2z wW—7Z

If z = 0, then Re(...) = 1, and the result follows from Cauchy integral formula

£(0) = - Flw) ™

o 211 Cr(0) w

Now we assume |z| > 0. Note that on the circle C(0), we have ww = |w|? = R?,
hence we replace w = R?/w, and get
+z R’Jw+z R?*/Z+w

z
-z Rjw-z R2)Z—w

gl| &l

The integral then become

1 1 (w+z RYzZ+4+w) dw
f(w)2<w—z R2/z—w>iw

2 Cr(0)

The integrand has three singularities, at w = 0, w = z and w = R?/z. Note
that |R?/z| = R%/|z| > R. Hence only the pole 0 and z is inside the disk Dy (0).



We may deform the contour Cr(0) to two smaller circles C,(z) and C.(0) around
the poles, then using Cauchy integral formula, we get

1 1<w+z R2/Z+w> 1d

w—z RJz—w)w v

—_— w
21 C.(0) 2

:f(w)% (w+z R2/z+w)

w—2z R2/Z—w

w=0
1
=FO)3 (-1 +1) =0,
and
1 1 /w+z R)zZ+w) 1
2mi Jo (2 2\w—2z R¥Z-w) w

- )y (S L - )

=f(2)
Adding up the two terms, we get the desired equality.
(b)
Re (Reli*" + r) _ e(Rel:“’ + r)(Re_zi“’ —7) _ Re(R? — 12 + rR(e'? — e71¥))
Rew —r (Re? —r)(Re~% — ) R2? +1r2 4+ 2Rrcosg

R2 _ 7"2
" RZ+ 72+ 2Rrcosp
Problem (12). Let u be a real valued function defined on the unit disk D.
Suppose that u is twice differentiable and harmonic, that is Au(x,y) =0 for all
z,y € D.
(a) Prove that there exists a holomorphic function f on the unit disk, such
that

Re(f) = u
(b) Deduce from this result, the Poisson integration formula. If u is harmonic

in D is is continuous on its closure D, then if z = re'®, one has

1
T or

27
ue) =g [ RO ()

where P,.(0) is the Poisson kernel

1—r2
PO = —ri———
(®) 1—2rcosf +r?2

Solution. (a) Let’s make some observation first. To construct f, we try to
construct its derivative f’ then integrate to get f. If we know a holomorphic
function f(z) = u(z) + iv(2), then f'(z) = 20,u(z), indeed

0.f(2) = 0 f(x,y) = Ox(u(z,y) +iv(2,y)) = Opu — Z'ayu = 20,u(z).



Now we begin the proof. Define g(z) = 20,u(z) = dyu — i0yu. Then g(z) is
once differentiable (though 9,g, 0,9 may not be continuous), since

0z9(z) = 20:0,u(z) = (1/2)Au =10

hence g(z) is holomorphic for all z € D. From Theorem 2.1, we know g has a
primitive F'. We claim that ReF' — u is a constant. Indeed, we have

Oz (ReF — u) + i0y(ReF — u) = 20,(ReF — u) = g(z) — g(2) =0,

hence the partial derivatives of (ReF —u) vanishes, hence ReF —u is a constant.
Denote this constant by ¢, and define f = F — ¢, we then get f a holomorphic
function with Ref = w.

(b) Apply (a) to get a holomorphic function f with Ref = u. If z = €%,
then let R € R such that |z| < R < 1. Then by Exercise 11, we have

Lo Re' + 2
= — g3 _— d
10 =g [ srere (G2 ) ap
Taking the real part on both sides, we get

u(z) = = /27r u(Re'?) 72— d
2 Jo R? — 2Rr cos(p — 0) + r2 7

Let R — 1, by uniform continuity, we get

1

T o

u(z) AﬁuwwﬂHH—wM%

Note that cos(x) is an even function, hence P.(6 — ¢) = P.(p — 0).



