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tI4 Prove that entire function that are also injective

take the form fCZ azt b
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Prove that there exists a point 2 e C such that
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As 2 move towards the nearest Wj on the unit circle
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Ifcz L
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b Suppose Eo 20 is small enough suchthat
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since the integrand f Z is continuous

in E for 146 anddomain C is compact hence

the integrand is uniformly continuous in E Thus the
result of the integral is continuous in E

1 actually the integrand is hole in E and Ze is
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