Stein $9 \cdot 10.14,15.16$ in Ch 3.
\#9. Show that $\int_{0}^{1} \log (\sin \pi x) d x=-\log 2$.

Solin: it is equivalent to show

$$
\begin{gathered}
\int_{0}^{\pi} \log (\sin x) d x=-\pi \log 2 \\
\sin z=\frac{e^{i z}-e^{-i z}}{2 i}=\frac{e^{i z}}{2 i}\left(1-e^{-2 i z}\right) .
\end{gathered}
$$

To fix the branch of log, we choose the anchor point $z_{0}=\frac{\pi}{2}$. Here $\sin z_{0}=1, \quad$ indeed.

$$
\frac{e^{i \frac{\pi}{2}}}{2 i}\left(1-e^{-2 i \cdot \frac{\pi}{2}}\right)=\frac{i}{2 i}(1-(-1))=1
$$

Now, apply log, we have

$$
\begin{aligned}
\log (\sin z) & =\log \left(\frac{1}{2 i}\right)+\log \left(e^{i z}\right)+\log \left(1-e^{-2 i z}\right) . \\
& =-\log \left(2 e^{i \frac{\pi}{2}}\right)+(i z)+\log \left(1-e^{-2 i z}\right) \\
& =-\log 2-i \frac{\pi}{2}+i z+\log \left(1-e^{-2 i z}\right)
\end{aligned}
$$

Indeed. for $z=z_{0}=\frac{\pi}{2}$, the above expression is $\log (1)=0$.

$$
\because \quad \int_{0}^{\pi}-i \frac{\pi}{2}+i z d z=0, \quad \int_{0}^{\pi}-\log 2 d z=-\pi \log 2 .
$$

\therefore Our main task is then to prove that

$$
\int_{0}^{\pi} \log \left(1-e^{-2 i z}\right) d z=0
$$

Since as $z \rightarrow 0$ or $z \rightarrow \pi . \quad \log \left(1-e^{-2 i z}\right) \rightarrow-\infty$, we should prove

$$
\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{\pi-i} \log \left(1-e^{-2 i z}\right) d z=0
$$

Consider the following contour for $z=x+i y \quad x \in(0, \pi), y \in(0,-Y)$

$$
\begin{aligned}
1-e^{-2 i z} & =1-e^{-2 i x+2 y} \\
& =1-e^{2 y}(\cos 2 x-i \sin 2 x)
\end{aligned}
$$

Heme in the interior and boundary of
the enclosed region. $1-e^{-2 i z}$ has real part positive., and $\log \left(1-e^{-2 i z}\right)$ is single valued and holomophor. Thus.

In the various segments that make up the contour, the yellow part integrate to 0 ;

$$
\begin{aligned}
& \int_{0}^{\pi} \cdot \log \left(1-e^{-2 Y} e^{-2 i \theta}\right) d \theta \\
= & \int_{0}^{2 \pi} \log \left(1-e^{-2 Y} e^{+i \theta}\right) d \theta \\
= & 0 \quad \text { by mean value the to } \log \left(1-e^{-2 Y} z\right) .
\end{aligned}
$$

(vertical two lines).
The purple parts cancels out.

The small radius ε arc: the an near $z=0$. is.

$$
\int_{\substack{z=\varepsilon \cdot e^{i \theta} \\ \theta \in\left(-\frac{\pi}{2}, 0\right)}} \log \left(1-e^{-2 i z}\right) d z \longrightarrow 0 \text { as } \varepsilon \rightarrow 0
$$

Indeed, the imaginary part of $\log \left(1-e^{-2 i z}\right)$ is bounded. heme we only weed to consider the real part

Since $\left|1-e^{-2 i z}\right| /|z| \rightarrow 2$ as $|z| \rightarrow 0$, we have. $\left|\int_{\text {small are }} \log \right| 1-e^{-2 i z}|\cdot d z| \leqq C \cdot \varepsilon \cdot \log \varepsilon \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Similar argument for the small are near $z=\pi$.
Thus, we have concluded that

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0}\left(\int_{\varepsilon}^{\pi-\varepsilon} \log \left(1-e^{-2 i z}\right) d z+\int_{\substack{\text { small } \\
\text { ers }}} \log \left(1-e^{-2 i z}\right) d z\right. \\
& \left.+\begin{array}{l}
\text { purple } \\
\text { contour }
\end{array}+\text { yellow } \text { contour }\right)=0
\end{aligned}
$$

and since the last 3 terms are zero (offer $\varepsilon \rightarrow 0$ limit), heme the first term is also zero.

$$
\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{\pi-\varepsilon} \log \left(1-e^{-2 i z}\right) d z=0
$$

10 Show that if $a>0$, then

$$
\begin{aligned}
& \quad \int_{0}^{\infty} \frac{\log x}{x^{2}+a^{2}} d x=\frac{\pi}{2 a} \log a . \\
& \text { LHS }=\lim _{\substack{\varepsilon \rightarrow 0 \\
R \rightarrow \infty}} \int_{\varepsilon}^{R} \frac{\log x}{x^{2}+a^{2}} d x .
\end{aligned}
$$

Consider the following contour
$C=C_{1}+C_{2}+C_{3}+C_{4} . \quad \log z$ in the region enclosed by C

$$
\int_{c} \frac{\log z}{z^{2}+a^{2}} d z=2 \pi i R_{z=i a} \frac{\log z}{z^{2}+a^{2}}=\frac{\log (i a)}{2 i a} 2 \pi i
$$

Denote $I_{i}=\int_{C_{i}} \frac{\log z}{z^{2}+a^{2}} d z$, then.

$$
\begin{aligned}
I_{3} & =\int_{C_{3}} \frac{\log (z)}{z^{2}+a^{2}} d z=\int_{\varepsilon}^{R} \frac{\log \left(\rho \cdot e^{\pi i}\right)}{\rho^{2}+a^{2}} d \rho \\
& =\int_{\varepsilon}^{R} \frac{\log \rho}{\rho^{2}+a^{2}}+\frac{\pi i}{\rho^{2}+a^{2}} d \rho=I_{1}+(\pi \pi) \int_{\varepsilon}^{R} \frac{1}{\rho^{2}+a^{2}} d \rho \\
I_{4} & =\int_{\pi}^{0} \frac{\log \left(\varepsilon \cdot e^{i \theta}\right)}{\varepsilon^{2} e^{i \theta}+a^{2}} d\left(\varepsilon \cdot e^{i \theta}\right) \\
& =\varepsilon \cdot \int_{\pi}^{0} \frac{\log \varepsilon+i \theta}{\varepsilon^{2} e^{2 i \theta}+a^{2}} e^{i \theta} \cdot i \cdot d \theta \\
\left|I_{4}\right| & \leqslant\left(c_{1}+c_{2} \log \varepsilon\right) \varepsilon \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0 . \\
I_{2} & =\int_{0}^{\pi} \frac{\log \left(R \cdot e^{i \theta}\right)}{\left(R e^{i \theta}\right)^{2}+a^{2} \cdot} R e^{i \theta} i d \theta \\
\left|I_{2}\right| & \leqslant \frac{1}{R}\left(C_{1}+C_{2} \log R\right) \rightarrow 0 \quad \text { as } R \rightarrow \infty .
\end{aligned}
$$

Finally. $\quad \int_{\varepsilon}^{R} \frac{1}{\rho^{2}+a^{2}} d \rho \xrightarrow{\substack{s \rightarrow \infty \\ R \rightarrow \infty}} \int_{0}^{\infty} \frac{1}{\rho^{2}+a^{2}} d \rho=\frac{1}{2} \int_{-\infty}^{+\infty} \frac{1}{\rho^{2}+a^{2}} d \rho$

$$
=\frac{1}{2} \cdot 2 \pi i \cdot \frac{1}{2 i a .}
$$

Heme $2 \lim _{\substack{z \rightarrow 0 \\ R \rightarrow \infty}} I_{1}+\frac{1}{2} 2 \pi i \cdot \frac{\pi i}{2 i a}=2 \pi i \cdot \frac{\log a+i \frac{\pi}{2}}{2 i a}$

$$
\begin{aligned}
\therefore \quad & 2 \lim _{\substack{s \rightarrow 0 \\
R \rightarrow \infty}} I_{1}=2 \pi i \cdot \frac{\log a}{2 i a .} \\
\text { LIS }= & \lim _{\substack{s \rightarrow 0 \\
k \rightarrow \infty}} I_{1}=\frac{\pi \log a}{2 a .}
\end{aligned}
$$

\#14 Prove that entire function that are also injective take the form $f(z)=a z+b$.

Bf: consider $g(w)=f\left(\frac{1}{w}\right)$., and study the possible singularities at $\omega=0$.

- $w=0$ is a removable singularity, then $f(z)$ is hol'c on $\widehat{\mathbb{C}}$, in particular boundal at $z=\infty$. Hence $f=$ constant by Liouville the. Contradicting with injectivity.
- $\omega=0$ is an essential singularity. Then by Casorati- Weierstrass the., for any $R>0$. $g\left(\left\{\omega\left|0<|\omega|<\frac{1}{R}\right\}\right)=f(\{|z|>R\})\right.$ is dense in \mathbb{C}. by open mapping the $f(\{|z|<R\})$ is open in \mathbb{C}.
Hence

$$
f(\{|z|<R\}) \cap f(\{|z|>R\}) \neq \phi
$$

contradicting f is injective. Hence $\omega=0$ is not an essential singularity.

- $\omega=0$ is a pole. Assume the pole is order n. then $f(z)$ is a degree n polynomial. By injectivity, $n=1$. Hence, we can write

$$
\begin{aligned}
& =1 \text {. Hence., we can write } a, b \in \mathbb{C} \\
& f(z)=a z+b \text { for some } a \neq 0 \text {. }
\end{aligned}
$$

\#15 (a) if f is an entire function satifies.

$$
\sup _{|z|=R}|f(z)| \leqslant A \cdot R^{k}+B \text {. }
$$

then f is a polynomial of deg $\leq k$.
$P f=$ Consider $F(z)=\frac{f(z)}{Z^{k}}$, then $F(z)$ at $z=0$ has a pole at most

$$
\sup _{|z|=R}|F(z)| \leqslant A+\frac{B}{R^{k}}
$$ order k.

and $\quad F(z)$ as $z \rightarrow \infty$ is bounded, hence ∞ a removable singularity. We may write
$F\left(\frac{1}{w}\right)$ as a polynomial in w of degree at most k.

$$
F\left(\frac{1}{w}\right)=a_{0}+\cdots+a_{k} \cdot w^{k} \quad \text { for } a_{i} \in \mathbb{C}
$$

thus

$$
\begin{aligned}
f(z) & =F(z) \cdot z^{k}=z^{k}\left(a_{0}+a_{1} \frac{1}{z}+\cdots+a_{k} \frac{1}{z^{k}}\right) \\
& =a_{0} \cdot z^{k}+a_{1} z^{k-1}+\cdots+a_{k}
\end{aligned}
$$

(b) Show that, if f is holomorphic in the unit disk. bounded, and converges uniformly to zero on
sector $\theta<\arg z<\varphi \quad$ as $|z| \rightarrow 1$.
Then $f=0$.

Pf: For $|z|<1$, define $z^{*}=\frac{1}{\bar{z}}$, then $\arg \left(z^{*}\right)=\arg (z)$ and $\left|z^{*}\right| \cdot|z|=1$.
we apply Schwarz reflection principle along the arc $\left\{e^{i \phi} \mid \theta<\phi<\varphi\right\}$, and define for $r>1$

$$
f\left(r \cdot e^{i \phi}\right)=\overline{f\left(\frac{1}{r} e^{i \phi}\right)}
$$

or. $f\left(z^{*}\right)=\overline{f(z)}$ for $0<|z|<\mid, \arg (z) \in(\theta, \varphi)$.
(*) One may check that f is holic. for $0<|z|<\infty \quad \arg (z) \in(\theta, \varphi)$.
and $f(z)=0$ for $|z|=1, \quad \arg (z) \in(\theta, \varphi)$.
This forces $f \equiv 0$ on its domain.,
To check (x) :
We may define a function $F(\omega)$ for $\operatorname{In}(\omega)>0$,

$$
F(\omega)=f\left(e^{i \omega}\right) \quad \because \operatorname{Im}(\omega) 0, \quad \therefore\left|e^{i \omega}\right|<1
$$

then the segment $\arg \left(e^{i \omega}\right) \in(\theta, \varphi)$
$\Leftrightarrow \omega \in(\theta, \varphi)+2 \pi n$ for some $n \in \mathbb{Z}$.

Hence, we can extend F across these segments $(\theta, \phi)+2 \pi 2$. by usual schwarz reflection principle.
(C) Let $\omega_{1}, \cdots, \omega_{n}$ be points on the unit circle.C

Prove that thane exists a point $z \in C$. such that

$$
\left|\left(z-w_{1}\right) \cdots\left(z-w_{n}\right)\right| \geqslant 1 .
$$

and furthermore, prove that z can be chosen. such that

$$
\left|\left(z-w_{1}\right) \cdots\left(z-w_{n}\right)\right|=1 .
$$

Pf: let $f(z)=\left(z-w_{1}\right) \cdots\left(z-\omega_{n}\right)$.
Then $|f(0)|=\left|w_{1}\right| \cdots\left|w_{n}\right|=1$. By Maximum principle,

$$
\sup _{|z| \leq 1}|f(z)|=\sup _{|z|=1}|f(z)| \geqslant|f(0)|=1 \text {. Hence the first cain. }
$$

As z rove towards the nearest w_{j} on the unit circle, $|f(z)|$ goes from $\geqslant 1$ to $\rightarrow 0$, hence at certain place, $|f(z)|=1$.
(d) If the real part of an entire function is bounded, then f is constant.

ㅆ: Consider $e^{f(z)}$, then $\left|e^{f}\right|=e^{\operatorname{Ref}}$ is Bounded hence by Lionville the is constant.
Thus $\left(e^{f}\right)^{\prime}=f^{\prime} \cdot e^{f}=0 \Rightarrow f^{\prime}=0$
$\Rightarrow \quad f$ is constant.
\#(6 $\quad \begin{aligned} & \text { 16. . Suppose } f \text { and } g \text { are holomorphic in a region containing the disc }|z| \leq 1 \text {. } \\ & \text { Suppose that } f \text { has a simple zero at } z=0 \text { and vanishes nowhere else in }|z|<1 \text {. }\end{aligned}$ Let

$$
f_{\epsilon}(z)=f(z)+\epsilon g(z)
$$

Show that if ϵ is sufficiently small, then
(a) $f_{\epsilon}(z)$ has a unique zero in $|z| \leq 1$, and
(b) if z_{ϵ} is this zero, the mapping $\epsilon \mapsto z_{\epsilon}$ is continuous.

If (a) follows from Douche the
(b). Suppose $\varepsilon_{0} \geq 0$ is small enough, such that
$\forall \varepsilon \in \mathbb{C}, \quad 0 \leqslant|\varepsilon|<\varepsilon 0, \quad f_{\varepsilon}(z)$ has unique zero $z \varepsilon$ inside $|z| \leqslant 1$. and $\left|z_{\varepsilon}\right|<1$. Then.,

$$
Z_{\varepsilon}=\frac{1}{2 \pi i} \int_{C} \frac{f_{\varepsilon}^{\prime}(z)}{f_{\varepsilon}(z)} z d z
$$

indeed. $\quad \frac{f_{\varepsilon}^{\prime}(z)}{f_{\varepsilon}(z)}=\left(\frac{1}{z-z_{\varepsilon}}+h_{o l} l^{\prime} c\right.$ part $)$.
Hence $\frac{1}{2 \pi_{i}^{\prime}} \int_{C}\left(\frac{1}{z-z_{\varepsilon}}+h_{0} l^{\prime} c\right) \cdot z d z=z_{\varepsilon}$.
Since the integrand $\frac{f_{\varepsilon}^{\prime}(z)}{f_{\varepsilon}(z)}, Z$ is continuous
in ε., for $|\varepsilon|<\varepsilon_{0}$, and domain C is compact, heme the integrand is uniformly continuous in ε, Thus the result of the integral is continuous in ε.
actually, the integrand is hol'c in ε. and z_{ε} is hol'c in ε for $|\varepsilon|<\varepsilon_{0}$

Or, one can prove continuity by implicit function the.

