#9. Show that
$$\int_0^1 \log(\sin \pi x) dx = -\log 2$$
.

Solin: it is equivalent to show

$$\int_{D}^{T} \log(\sin x) dx = -\pi \log 2.$$

$$\int_{D}^{T} e^{-iz} = \frac{e^{iz}}{2i} (1 - e^{-2iz}).$$

To fix the branch of log, we choose the anchor point
$$\overline{z}_{0}=\frac{TE}{2}$$
.
Here sin $\overline{z}_{0}=1$, indeed.

$$\frac{e^{i\frac{TE}{2}}}{2i}\left(1-e^{-2i\cdot\frac{TE}{2}}\right)=\frac{i}{2i}\left(1-(-i)\right)=1.$$

$$\log(\sin Z) = \log(\frac{1}{2i}) + \log(e^{iZ}) + \log(1 - e^{-2iZ}).$$

= $-\log(2e^{i\frac{\pi}{2}}) + (iZ) + \log(1 - e^{-2iZ}).$
= $-\log_2 - i\frac{\pi}{2} + iZ + \log(1 - e^{-2iZ}).$
Inded. for $Z = Z_0 = \frac{\pi}{2}$, the above expression is $\log(1) = 0.$
: $\int_0^{\pi} -i\frac{\pi}{2} + iZ dZ = 0$, $\int_0^{\pi} -\log_2 dZ = -\pi\log_2 2.$

.: Our main task is then to prove that

$$\int_{D}^{TL} \log \left(1 - e^{-2iZ} \right) dZ = 0$$

$$\int_{Z=Z}^{Z=Z} \int_{Z=Z}^{Z=Z} \int_{$$

$$\lim_{n \to \infty} \int_{a}^{\pi \cdot i} \log (1 - e^{-2i\frac{\pi}{2}}) dz = 0.$$
Consider the following contour
for $z = x + iy$
 $x \in (0, \pi), y \in (0, -Y)$
 $1 - e^{-2i\frac{\pi}{2}} = 1 - e^{-2ix + 2y}$
 $z = 1 - e^{-2i}(42z) + 2i\pi + 2i\pi$
 $z = 1 - e^{2i}(42z) + 2i\pi + 2i\pi$
 $z = 1 - e^{2i}(42z) + 2i\pi + 2i\pi$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-2i\frac{\pi}{2}} + 2i\pi$
 $z = 0$
 $z = 1 - e^{-$

Since
$$|1 - e^{-2it}|/|z| \rightarrow 2$$
 as $(t = 0, we have.$
 $|\int \log |1 - e^{-2it}| dz \leq C: \log z \rightarrow 0$ as $z \rightarrow 0$.
Sind an
Similar argument for the small are near $z = \pi$.
Thus, we have concluded that
 $|im| \left(\int_{z}^{\pi-z} \log (1 - e^{-2it}) dz + \int \log (1 - e^{-2it}) dz + \int \log (1 - e^{-2it}) dz$
 $z \rightarrow 0$ $\left(\int_{z}^{\pi-z} \log (1 - e^{-2it}) dz + \int \log (1 - e^{-2it}) dz + \int \log (1 - e^{-2it}) dz + \int \log (1 - e^{-2it}) dz$
 $z \rightarrow 0$ $\left(\int_{z}^{\pi-z} \log (1 - e^{-2it}) dz + \int \log (1 - e^{$

Denote
$$I_{i} = \int_{C_{i}} \frac{\log 2}{2^{2} + a^{2}} dz$$
, thus,
 $I_{3} = \int_{C_{3}} \frac{\log 2}{2^{2} + a^{2}} dz = \int_{S}^{R} \frac{\log (p \cdot e^{\pi i})}{p^{2} + a^{2}} dp$
 $= \int_{S}^{R} \frac{\log 2}{p^{2} + a^{2}} + \frac{\pi i}{p^{2} + a^{2}} dp = I_{1} + (\pi) \int_{S}^{R} \frac{1}{p^{2} + a^{2}} dp$
 $I_{4} = \int_{\pi}^{0} \frac{\log (S \cdot e^{i\theta})}{s^{2} e^{i\theta} + a^{2}} d(S \cdot e^{i\theta})$.
 $I_{4} = \int_{\pi}^{0} \frac{\log S + i\theta}{s^{2} e^{i\theta} + a^{2}} e^{i\theta} - i \cdot d\theta$
 $I_{4} = \int_{S}^{0} \frac{\log S + i\theta}{s^{2} e^{i\theta} + a^{2}} e^{i\theta} - i \cdot d\theta$
 $I_{4} = \int_{S}^{0} \frac{\log (S \cdot e^{i\theta})}{(R \cdot e^{i\theta})^{2} + a^{2}} e^{i\theta} - i \cdot d\theta$
 $I_{4} = \int_{S}^{0} \frac{\log (S \cdot e^{i\theta})}{(R \cdot e^{i\theta})^{2} + a^{2}} e^{i\theta} - i \cdot d\theta$
 $I_{4} = \int_{S}^{0} \frac{\log (R \cdot e^{i\theta})}{(R \cdot e^{i\theta})^{2} + a^{2}} R \cdot e^{i\theta} i d\theta$
 $I_{5} = \int_{S}^{0} \frac{1}{(R \cdot e^{i\theta})^{2} + a^{2}} R \cdot e^{i\theta} i d\theta$
 $I_{5} = \int_{0}^{0} \frac{1}{p^{2} + a^{2}} dp - \frac{1}{p^{2} + a^{2}} dp = \frac{1}{p} \int_{0}^{0} \frac{1}{p^{2} + a^{2}} dp$
 $= \frac{1}{2} + 2\pi i \cdot \frac{1}{2ia}$
Hence $2 \lim_{R \to 0} I_{1} + \frac{1}{2} 2\pi i \cdot \frac{\log a}{2ia}$
 $\int_{0}^{0} \frac{1}{p^{2} + a^{2}} I_{1} = \frac{\pi \log a}{2ia}$

#14 Prove that entire function that are also injective
take the form
$$f(z) = az + b$$
.
Pf: consider $g(w) = f(\frac{1}{w^2})$, and study the
possible singularities at $w=0$.
 $w = 0$ is a removable singularity, then
 $f(z)$ is hell on \hat{C} , in particular boundal
of $z=w$. Hence $f = constant$ by Lionwille them.
Contradicting with injectivity.
 $w=0$ is an essential singularity. Thus by
Castrati- weierstrass them., for any $R>0$.
 $g(zwl ochockty) = f(1 |z| > R^3)$ is dense in C .
by open mapping them $f(1 |z| > R^3)$ is open in C .
Hence
 $f(z) = 1$ is injective. Hence $w=0$ is
not an essential singularity.
 $w=0$ is a pole. Assume the pole is order H .
then $f(z)$ is a degree n poly nomial. By
injectivity, $n=1$. Hence, we can write $a:b\in C$
 $f(z) = az + b$ for some $a \neq 0$.

$$\frac{\#5}{8} (a) if f is an extire function satisfies.$$

$$\sup |f(i)| \leq A \cdot R^{k} + B.$$

$$\frac{1}{81-R}$$

$$\frac{1}{18} + \frac{1}{18} = \frac{1}{18} + \frac{1$$

sector
$$0 < \arg z < \varphi$$
 as $|z| \rightarrow 1$,
Then $f = 0$.

Pf: For [E]<1, define
$$\mathbb{Z}^* = \frac{1}{\mathbb{Z}}$$
, then
ang $(\mathbb{Z}^*) = \arg(\mathbb{Z})$ and $|\mathbb{Z}^*| \cdot |\mathbb{Z}| = |$.
We apply Schwarz reflection principle along the arc
 $fe^{i\phi} \mid \theta < \phi < \phi_{2}^{2}$, and define for $\gamma > 1$
 $f(\gamma, e^{i\phi}) = f(\pm e^{i\phi})$
or. $f(\mathbb{Z}^*) = \overline{f(\mathbb{Z})}$ for $o < 12|c|$, $\arg(2) \in (B, \Phi)$.
 $(\mathbb{Z}) = 0$ for $o < 12|c|$ ang $(\mathbb{Z}) \in (B, \Phi)$.
 $for o < 12|c|$ ang $(\mathbb{Z}) \in (0, \Phi)$.
and $f(\mathbb{Z}) = 0$ for $|\mathbb{Z}| = 1$, $\arg(\mathbb{Z}) \in (B, \Phi)$.
This forces $f = 0$ on its domain.,
 $for check (\infty)$:
We may define a function $F(\omega)$ for $\operatorname{In}(\omega) > 0$,
 $F(\omega) = f(e^{i\omega})$: In($\omega > 0$, $(\cdot |e^{i\omega}| < 1$.
then the segment $\arg(e^{i\omega}) \in (0, \Phi)$
 $\stackrel{(\mathbb{Z})}{\longrightarrow} \omega \in (0, \Phi) + 2i\pi n$ for some $n \in \mathbb{Z}$.
 u^{ω}
 $\stackrel{(\mathbb{Z})}{\longrightarrow} \omega \in (0, \Phi) + 2i\pi n$ for some $n \in \mathbb{Z}$.
 u^{ω}
 $\stackrel{(\mathbb{Z})}{\longrightarrow} \omega \in (0, \Phi) + 2i\pi n$ for some $n \in \mathbb{Z}$.
 u^{ω}
 $\stackrel{(\mathbb{Z})}{\longrightarrow} \omega \in (0, \Phi)$ there segments $(0, \Phi) + 2\pi \mathbb{Z}$.
 $\stackrel{(\mathbb{Z})}{\longrightarrow} usual Schwarz reflection principle.$

16. Suppose f and g are holomorphic in a region containing the disc $|z| \leq 1$. Suppose that f has a simple zero at z = 0 and vanishes nowhere else in $|z| \leq 1$. Let

$$f_{\epsilon}(z) = f(z) + \epsilon g(z).$$

Show that if ϵ is sufficiently small, then

#16

- (a) $f_{\epsilon}(z)$ has a unique zero in $|z| \leq 1$, and
- (b) if z_{ϵ} is this zero, the mapping $\epsilon \mapsto z_{\epsilon}$ is continuous.

Pf (a) follows from Rouché thm
(b). Suppose
$$\varepsilon_0 \ge 0$$
 is small enough, such that
 $f \ge C$, $0 \le |z| \le z_0$, $f_{z}(\overline{z})$ has unique $\overline{z}ero = \overline{z}z$ inside $|\overline{z}| \le 1$.
and $|\overline{z}_{z}| < 1$. Then.,
 $\overline{z}_{z} = \frac{1}{2\pi i} \int \frac{f'_{z}(\overline{z})}{f_{z}(\overline{z})} z d\overline{z}$
 \overline{z}
indeed, $\frac{f'_{1}(\overline{z})}{f_{z}(\overline{z})} = (\frac{1}{\overline{z}-\overline{z}_{z}} + h_{o}|'_{c}) \cdot \overline{z} d\overline{z} = \overline{z}_{z}$.
Hence $\overline{z}\overline{t}i \int (\frac{1}{\overline{z}-\overline{z}_{z}} + h_{o}|'_{c}) \cdot \overline{z} d\overline{z} = \overline{z}_{z}$.
Since the integrand $\frac{f'_{z}(\overline{z})}{f_{z}(\overline{z})} \cdot \overline{z}$ is continuous
it. ε_{-} , for $|\varepsilon| < \varepsilon_{0}$, and domain C is compact, hence
the integrand is uniformly coefineous in ε_{-} . Thus the
result of the integrand $1 \le coefineous$ in ε_{-} .
Tactually, the integrand $1 \le h_{o}|'_{c}$ in ε_{-} and \overline{z}_{z} is
hol'_{c} in ε_{-} for $|\varepsilon| < \varepsilon_{0}$.