Today: " more on examples of contour integral

- derivatives of Cauchy integral formula.

1. $\int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x=\frac{\pi}{2}$

- Why this integral is convergent at $x \rightarrow 0$ and $x \rightarrow \infty$? o near 0 : $1-\cos x \approx 1-\left(1-\frac{1}{2} x^{2}\right)=x^{2} / 2$ hence $\frac{1-\cos x}{x^{2}}$ is bounded
- near $\infty: \frac{1-\cos x}{x^{2}}<\frac{2}{x^{2}}, \int_{1}^{\infty} \frac{1}{x^{2}} d x=\int_{1}^{\infty} d\left(\frac{-1}{x}\right)$

$$
=-\left.\frac{1}{x}\right|_{1} ^{\infty} \leqslant \infty
$$

in general $\int^{\infty} \frac{1}{x^{p}} d x$ convergent if $p>1$.

- Let I denote the integral on the Left hand side (LHS)

$$
I=\lim _{\substack{\varepsilon \rightarrow 0 \\ R \rightarrow \infty}} \int_{\varepsilon}^{R} \frac{1-\cos x}{x^{2}} d x
$$

using $\cos x=\frac{e^{i x}+e^{-i x}}{2}$, we have

$$
\begin{aligned}
I & =\lim _{\varepsilon}^{R} \frac{2-\left(e^{i x}+e^{-i x}\right)}{2 x^{2}} d x \\
& =\lim _{\sim} \int_{\varepsilon}^{R} \frac{1-e^{i x}}{2 x^{2}} d x+\int_{\varepsilon}^{R} \frac{1-e^{-i x}}{2 x^{2}} d x \\
& =\lim _{\varepsilon} \int_{\varepsilon}^{R} \frac{1-e^{i x}}{2 x^{2}} d x+\int_{-R}^{-\varepsilon} \frac{1-e^{i u}}{2 u^{2}} d u
\end{aligned}
$$

$$
=\lim _{-R}\left(\int_{-\varepsilon}^{-\varepsilon}+\int_{\varepsilon}^{R}\right)\left(\frac{1-e^{i x}}{2 x^{2}}\right) d x
$$

u back to
warning: $\int_{\varepsilon}^{1} \frac{1-e^{i x}}{x^{2}} d x \sim \int_{\varepsilon}^{1} \frac{1-(1-i x \cdots)}{x^{2}} d x$ $\sim \int_{\varepsilon}^{1} \frac{i}{x} d x \sim-i \ln \varepsilon$ is divergent as $\varepsilon \rightarrow 0$
However, the divergence cancels out with $\int_{-1}^{-\sum} \frac{1-e^{i x}}{x} d x$. compare with the case of $\frac{1-\cos x}{x^{2}}$.

Now, we may add and subtract some auxillary arcs

$$
\left(\int_{C_{-}}+\int_{C_{+}}+\int_{C_{\varepsilon}}+\int_{C_{R}}\right) f(z) d z=0
$$

$\because f(z)$ is holomorphic on the contour \rightarrow and its interior
\therefore by Cauchy theorem, the integral $=0$.

$$
\therefore \quad\left(\int_{C_{-}}+\int_{c_{+}}\right) f(z) d z=-\left(\int_{C_{\varepsilon}}+\int_{C_{R}}\right) f(z) d z
$$

We will show that $I_{R}=\int_{C_{R}} f(z) d z \sim O\left(\frac{1}{R}\right) \xrightarrow{R \rightarrow \infty} \rightarrow 0$

$$
I_{\varepsilon}=\int_{c_{\varepsilon}} f(z) d z=-\frac{\pi}{2}+O(\varepsilon) \rightarrow \frac{-\pi}{2} \text { as } \varepsilon \rightarrow 0
$$

$$
\text { - } I_{\varepsilon}=\int_{C_{\varepsilon}} f(z) d z=\int_{C_{2}} \frac{1-\left(1+\left(i z+\frac{(i z)^{2}}{2}+z^{2} \psi(z)\right)\right.}{2 z^{2}} d z \quad \psi(z) \rightarrow 0
$$

we parametrize C_{ε} by $z=\varepsilon \cdot e^{i \theta}, \theta$ from π to 0

$$
\begin{aligned}
& =\int_{\pi}^{0} \frac{-i}{2 \varepsilon \cdot e^{i \theta}} \varepsilon \cdot e^{i \theta} \cdot i d \theta+O(\varepsilon) \\
& =-\int_{0}^{\pi} \frac{1}{2} d \theta+O(\varepsilon)=-\frac{\pi}{2}+O(\varepsilon)
\end{aligned}
$$

$$
\theta \in[0, \pi]
$$

- For z on $C_{R}, \quad z=R \cdot e^{i \theta}=R \cos \theta+i R \sin \theta$.

$$
\begin{aligned}
& e^{i z}=e^{i R \cos \theta-R \sin \theta}=\underline{e^{-R \sin \theta} \cdot \underline{e}^{i R \cos \theta}}{ }, \text { Re(z) } \\
& \left|e^{i z}\right|=e^{-R \sin \theta} \leqslant e^{0}=1 \quad \because \frac{R \sin \theta}{\text { for } \theta \in[0, \pi]} \\
& \therefore\left|\frac{1-e^{i z}}{2 z^{2}}\right| \leqslant \frac{1+\left|e^{i z}\right|}{2|z|^{2}} \leqslant \frac{1}{R^{2}} \cdot \frac{|a \pm b|}{\leqslant|a|+|b|} \\
& \therefore\left|\int c_{R} f(z) \cdot d z\right| \leqslant \max _{z \in G_{R}}|f(z)| \cdot \text { length } C_{R} \\
& \leqslant \frac{1}{R^{2}} \cdot \pi R=O\left(\frac{1}{R}\right) \\
& \therefore I=\lim _{\varepsilon \rightarrow 0}\left(\int_{R \rightarrow \infty} C_{-+} c_{+} f(z) d z\right)=\lim _{\substack{\varepsilon \rightarrow 0 \\
R \rightarrow \infty}}\left(-\int_{C_{\varepsilon}+C_{R}} f(z) d z\right) \\
& =\frac{\pi}{2}
\end{aligned}
$$

Remark: "why we choose to "complete the contour" by adding the 2 arcs in that way? Any alternative approach?

- for C_{R}, we can only complete the contour by going in the upper half plane, to keep $e^{i z}$ bounded $\frac{1-e^{i z}}{2 z^{2}} \xrightarrow[\infty<\infty]{0} e^{i z}$
- for C_{ε}, actually we can choose to add a small are below $z=0$ (instead of above).

$$
\begin{aligned}
& \int_{C_{\varepsilon}^{\prime}}=\frac{\pi}{2}+O(\varepsilon) \\
& \therefore \int_{C_{-}+C_{+}}=\underbrace{}_{=\text {coff }}=\frac{1}{z} \text { term in Lawrenterp- } \\
& \therefore \underbrace{\operatorname{Res}_{z=0}^{\prime}}_{C_{i}^{\prime}} f(z)=2 \pi i \cdot\left(\frac{-i}{2}\right)=\pi \\
& \\
& e^{i z}=e^{i(x+i y)}=e^{i x-y}=e^{-y} \cdot e^{i x}
\end{aligned}
$$

2. Jordan Lemma (useful for $E_{x} 2$ in Homework).

Let $Q(z)$ be a complex valued function on the upper half plane. If $|Q(z)| \rightarrow 0$ uniformly as $|z| \rightarrow \infty$, for $0 \leqslant \arg (z) \leqslant \pi$, then

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \underline{Q(z)} \cdot e^{i p z} d z=0
$$

$$
\begin{aligned}
& \left.\left\lvert\, \int_{C_{R}} \frac{e^{i z}}{z}\right.\right) d z \mid \\
& \left.\leqslant \max _{z \in C_{R}} \frac{\frac{e^{i z}}{z}}{\frac{1}{z}} \right\rvert\, \cdot L\left(C_{R}\right) \\
& \frac{1}{R} \cdot R=1
\end{aligned}
$$

for $P>0$. Here C_{R} is the upper semi-circle with radius R, counter clockwise orientation. $z=R e^{i \theta}, 0 \leq \theta \leq \pi$.
$\left[|Q(z)| \rightarrow 0\right.$ uniformly $\lim ^{\text {in } 0 \leq \arg (t) \leq \pi}|z| \rightarrow \infty$ means, $\forall s>0, \exists R>0$,
s.t for any $z \in \mathbb{C}$ with $0 \leqslant \arg z \leqslant \pi$. and $|z|>R$.
$|Q(z)|<\varepsilon$. uniform means independent of $\arg (z)$.
$h_{n}(\theta)=| |\left(n \cdot\left(e^{i \theta}\right)\left|, g_{\theta}(r)=\left|Q\left(r \cdot e^{i \theta}\right)\right| . \quad \theta \in[0, \pi]\right.\right.$. uniform wurst. θ
Pf: when $z \in C_{R}$, let $z=R \cdot e^{i \theta}$. then

$$
\begin{aligned}
& \left|\int_{C_{R}} Q(z) \cdot e^{i p z} d z\right|=\left|\int_{0}^{\pi} Q\left(R e^{i \theta}\right) \cdot e^{i P R(\cos \theta+i \sin \theta)} R e^{i \theta} i d \theta\right| \\
& \leqslant \int_{0}^{\pi}|Q(z)| \cdot\left|e^{i p R \cos \theta-p R \sin \theta}\right| \cdot R \cdot d \theta \\
& \leqslant \max _{z \in C_{R}|Q(z)|} \mid R \cdot \underbrace{\int_{0}^{\pi} e^{-P R} \sin \theta} d \theta
\end{aligned}
$$

It is important to estimate the integral sharply.
idea. $\int_{0}^{\infty} e^{-x} d x=1 \quad e^{-x} \quad$ exponential decay.
$\lambda>0 . \int_{0}^{\infty} e^{-\lambda i x} d x=\frac{1}{\lambda} \quad \begin{array}{r}\text { integral receive contribution } \\ \text { mainly for } x\end{array}$
\therefore near $\theta=0, \quad \sin \theta \approx \theta+O\left(\theta^{3}\right)$

near $\theta=\pi$, let $\theta=\pi-\varphi, \quad \sin (\pi-\varphi)=\sin \varphi=\varphi+o\left(\varphi^{3}\right)$
\therefore integral of $\int_{0}^{\pi} e^{-P R \underline{\sin \theta}} d \theta \sim 2 \int_{0} \underbrace{e^{-P R \underline{\theta}} d \theta} \sim \frac{1}{P R}$
More rigorously; we have

$$
\begin{aligned}
\therefore \quad & \int_{0}^{\pi} \cdot e^{-P R \sin \theta} d \theta=2 \cdot \int_{0}^{\frac{\pi}{2}} e^{-P R \sin \theta} d \theta \\
& \leqq 2 \cdot \int_{0}^{\frac{\pi}{2}} \cdot e^{-P R \cdot \frac{2}{\pi} \theta} d \theta \leqslant 2 \cdot \int_{0}^{\infty} e^{-P R \cdot \frac{2}{\pi} \theta} d \theta \\
& =2 \cdot \frac{\pi}{2 P R}=O\left(\frac{1}{R}\right) \\
\therefore & \left|\int_{C_{R}} Q(z) e^{i P z} d z\right|=\underline{0(1)} \cdot R \cdot \underline{O\left(\frac{1}{R}\right)}=O(1)
\end{aligned}
$$

Little O, Big-O notation. Say as $a(R), b(R)$ are function of R.

- We write " $a(R)=O\left(b(R)\right.$)", if $\exists R_{0}, C>0$, such that for all $R \geqslant R_{0},|a(R)| \leqslant C \cdot|b(R)|$.

$$
\Leftrightarrow \quad \lim _{R \rightarrow 0} \frac{|a(R)|}{|b(R)|}<\infty
$$

- we write " $a(R)=0(b(R))^{\text {", if }} \forall \varepsilon>0$. $\exists R_{0}>0$, such that $\left.\forall R>R_{0} . \quad|a(R)|<\varepsilon \cdot \mid b C R\right) \mid$. i.e. $\quad \limsup _{R \rightarrow 0}-\frac{|a(R)|}{|b(R)|}=0$.
in hus \$2

$$
\int_{C_{R}} \frac{e^{i z}-1}{z} d z=\int_{C_{R}} \frac{e^{i z}}{z} d z+\int_{C_{R}} \frac{-1}{z} d z
$$

Th m:

$$
f(z)=\oint_{|\omega|=1} \frac{f(\omega)}{\omega-z} \frac{d w}{2 \pi i}
$$

$f(z)$ is hol'c on \bar{D} $z \in \mathbb{D}$

Cor:

$$
\begin{aligned}
f^{(n)}(z) & =\oint_{|\omega|=1}\left(\frac{\partial}{\partial z}\right)^{n}\left(\frac{f(w)}{w-z}\right) \frac{d w}{2 \pi i} \\
& =\oint_{|w|=1}(n!) \cdot \frac{f(w)}{(w-z)^{n+1}} \frac{d w}{2 \pi i}
\end{aligned}
$$

Pf: We prove by induction. Say for $n-1$., it works.
Then

$$
\begin{aligned}
& \text { Then } \frac{\partial}{\partial z}\left(f^{(n-1)}(z)\right)=\lim _{h \rightarrow 0} \frac{f^{(n-1)}(z+h)-f^{(n-1)}(z)}{h} \\
& f^{(n-1)}(z+h)-f^{(n-1)}(z)=\frac{(n-1)!}{2 \pi i} \oint \frac{f(w)}{(w-(z+h))^{n}}-\frac{f(\omega)}{(w-z)^{n}} \cdot d w .
\end{aligned}
$$

(smart)

$$
A^{k}-B^{k}=(A-B)(\underbrace{A^{k-1}+A^{k-2} \cdot B+\cdots+B^{k-1}}_{k \text { terms. }})
$$

if $\quad A=\frac{1}{\omega-(z+h)}, \quad B=\frac{1}{\omega-z} \quad, k=n$

$$
\begin{aligned}
& \text { then } A-B=\frac{h .}{(w-(z+b))(w-z)} \cdot A^{k-1-i} B^{i} \xrightarrow{h \rightarrow 0}\left(\frac{1}{w-z}\right)^{k-1} \text {. } \\
& \frac{f^{(n-1)}(z+h)-f^{(n)}(z)}{h .}=\frac{(n-1)!}{2 \pi i} \oint \cdot f(w) \cdot \frac{1}{h} \cdot \frac{h}{(w-(z+h))(w-z)} \cdot(\cdots \cdots) d w \\
& \text { as } h \rightarrow 0 \text {. } \\
& \xrightarrow[\substack{\because \text { integrand } \\
\text { unifonnely convex. }}]{(n-1)!} \frac{(2 \pi i}{2 \pi} \cdot \oint f(\omega) \frac{1}{(\omega-z)^{2}} \cdot \frac{n}{(\omega-z)^{n-1}} \cdot d w \text {. } \\
& =\frac{n!}{2 \pi i} \cdot \oint f(w) \frac{1}{(w-z)^{n+1}} \cdot d w .
\end{aligned}
$$

(brutal force approach). $\quad \frac{1}{w-(z+h)}=\frac{1}{w-z-h}=\frac{1}{w-z} \frac{1}{1-\frac{h}{w-z}}$

$$
\begin{aligned}
& =\frac{1}{w-z}\left(1+\frac{h}{w-z}+O\left(h^{2}\right)\right) \\
\left(\frac{1}{w-(z+h)}\right)^{n} & =\frac{1}{(w-z)^{n}}\left(1+\frac{n h}{w-z}+O\left(h^{2}\right)\right)
\end{aligned}
$$

