HW 6: Meromorphic Functions

1. Essential singularities.

Consider the function $f(z) = e^{z^3}$.

- 1. For $\theta \in [0, 2\pi)$, let $z = re^{i\theta}$. As $r \to \infty$, for which values of θ does |f(z)| goes to ∞ , goes to zero, or oscillate? Does your answer change if we change f(z) to $P(z)e^{z^3}$ for a polynomial P(z)?
- 2. Is $z = \infty$ is an essential singularity of f(z)? Prove your answer.

2. Rational Function

Let $f(z)=rac{(z-1)(z-3)}{(z-2)}$, and we view f as a function on the extended complex plane \widehat{C} .

- 1. How many zeros and poles in \widehat{C} are there for f?
- 2. Write down the Taylor or Laurent expansion of f near z = 1 and $z = \infty$ (or w = 0, where w = 1/z). You only need to write down the first two terms.

3. Winding number

Recall that the winding number of a curve γ around a point z_0 (which does not lie on the curve) is defined as

$$n(\gamma,z_0)=rac{1}{2\pi i}{ extstyle \int}_{\gamma}rac{1}{z-z_0}dz.$$

Find the winding number of the following γ around $z_0 = 0$.

- 1. Let $f(z) = z^3 + z/2$. Let γ be the image of the unit circle under f(z).
- 2. Let γ be image of the unit circle (counter-clockwise oriented) under the map $f(z) = (z 1/2)^2/(z + 1/2)^2$.

|f(z) | oscillates ----- $(f \cos(30) = 0)$

The asymptotic behavior will not change if we consider $P(z) e^{z^3}$ since there is an R>O, and C>O, sit. for all [2] >R, $\frac{1}{C} \cdot |z|^n \leq |P(z)| \leq C \cdot |z|^n, \quad \text{where} \quad n = \deg(P).$ For any fixed O, $\frac{1}{2} \frac{1}{2} \frac{1}$ · if W330>0 ・ 近 の30 くつ $\frac{|\operatorname{im}|P(z) \cdot e^{32}| \leq |\operatorname{im} \cdot C \cdot e^{\operatorname{pn}} \cdot e$ as $\lim_{p \to \infty} \left(e^{3p} \cos \theta + n \cdot p \right) = -\infty$ since $\cos(3\theta) < 0$. • if $\cos 3/0 = 0$, then $|e^{z^3}| = 1$, and $|im| |e^{z^5} \cdot P(z)| = |im| \cdot P(z_0) = 10$ So the grow or decay behavior is roughly unchanged, except in the interface where oscillation occurs. (2) $Z = \omega$, (or as $\omega = \frac{1}{2}$, $\omega = 0$) is an essential singularity, since as 121-200, If(2) is neither bounded or simply go to ∞ , hence Z= ∞ is neither a removable singularity nor a pole, hence Z=00 is an essential singularity. 2. $f(z) = \frac{(z-1)(z-3)}{(z-z)}$ On Ĉ, fiz) has

$$= \frac{1}{\omega} \left(\left| -2\omega + \cdots \right) \right|$$
$$= \frac{1}{\omega} - 2 + \cdots$$

#3: Find the winding number around O for the following curve : $\gamma = f(C), \quad (= unit circle, \quad f(z) = z^3 + \frac{1}{2}z^3$ $\gamma = - - - - - - , \quad f(z) = \frac{(z - \frac{1}{2})^2}{(z + \frac{1}{2})^2}.$ 0 いアニ

Soln: the winding number is
(1)
$$n(r, o) = \frac{1}{2\pi i} \int \frac{1}{w-o} dw = \frac{1}{2\pi i} \int \frac{1}{\sqrt{23}} dz$$

(1) $n(r, o) = \frac{1}{2\pi i} \int \frac{1}{w-o} dw = \frac{1}{2\pi i} \int \frac{1}{\sqrt{23}} dz$
(1) $n(r, o) = \frac{1}{2\pi i} \int \frac{1}{w-o} dw = \frac{1}{2\pi i} \int \frac{1}{\sqrt{23}} dz$
(1) $n(r, o) = \frac{1}{2\pi i} \int \frac{1}{\sqrt{23}} dw = \frac{1}{\sqrt{23}} \int \frac{1}{\sqrt{23}} dz$
(2) $n(r, o) = \frac{1}{\sqrt{23}} \frac{1}{\sqrt{23}} dw = \frac{1}{\sqrt{23}} \int \frac{1}{\sqrt{23}} dz$
(3) $n(r, o) = \frac{1}{\sqrt{23}} \frac{1}{\sqrt{23}} dw = \frac{1}{\sqrt{23}} \int \frac{1}{\sqrt{23}} dz$
(4) $n(r, o) = \frac{1}{\sqrt{23}} \frac{1}{\sqrt{23}} dw = \frac{1}{\sqrt{23}} \int \frac{1}{\sqrt{23}} dz$
(3) $n(r, o) = \frac{1}{\sqrt{23}} \frac{1}{\sqrt{23}} dz$
(4) $n(r, o) = \frac{1}{\sqrt{23}} \frac{1}{\sqrt{23}} dz$
(3) $n(r, o) = \frac{1}{\sqrt{23}} \frac{1}{\sqrt{23}} dz$
(4) $n(r, o) = \frac{1}{\sqrt{23}} \frac{1}{\sqrt{23}} dz$
(5) $n(r, o) = \frac{1}{\sqrt{23}} \frac{1}{\sqrt{23}} dz$
(6) $n(r, o) = \frac{1}{\sqrt{23}} \frac{1}{\sqrt{23}} dz$
(7) $n(r, o) = \frac{1}{\sqrt{23}} \frac{1}{\sqrt{23}} dz$
(9) $n(r, o) = \frac{1}{\sqrt{23}} \frac{1}{\sqrt{23}} dz$

+4:	For	ang	point	ZED	away	from	the	poles, we	have
		J			J	1		1	
	a	small	disk	Dzz (Z)	that	ίs	free	from poles.	{Z1, Z2, }
				-			1	J I	n h-l
									$\pm u = \frac{1}{n}$

poles:

$$Z_{1} = 0$$

$$Z_{2} = 0$$

$$Z_{1} = \frac{1}{2}$$

$$Z_{1} = \frac{1}{2$$

 $\left| f(z) \right| \leq \left(\sup_{\substack{w \in z \\ |w| = 1}} \frac{|g(w)|}{|w - z|} \right), \quad \frac{\text{Length } C}{2\pi} \leq \frac{C_1}{12! - 1} \longrightarrow 0 \quad \text{as } |z| \rightarrow 0$ (2) and (3). The story goes as follows: We first consider $g(z) = z^{n}$ for ZEC (unit circle,) nez, then for $f(z) = \int_{0}^{n} Z^{n}$ $n \neq 0, \quad f(z) = \int_{0}^{n} D$ [2] <u><</u> | (2) > 1 ||∠| ≤ 0 n < 0 $f(z) = \begin{cases} 0 \\ -z^n \end{cases}$ 12[7] In general, for ZOE C, we have the difference of the two boundary values from inside and outside being g(z): $\lim_{r \to 1} f(r, z_0) - \lim_{r \to 1^+} f(r, z_0) = g(z_0)$ This is clear if g(Z) is a finite linear combination af Z'', $g(z) = a_1 Z'' + a_2 Z'' + \cdots + a_N Z''_N$. This is also true more generally, for any g(2) smooth function on C, or even just continuous function. So the answer for both (2) and (3) is NO.