1. If $f: D \rightarrow D$ is hol'c, and f(0) = 0, show that |f(z) | < |z| for all |z| < 1. $\frac{Pf}{Pf}: \text{ Let } g(z) = \begin{cases} f(z)/z & z \neq 0, z \in \mathbb{N} \\ f'(0) & z = 0. \end{cases}$ then g(Z) is a hol's function in D\107 and continuous at Z=0. By removable singularity thm, g(z) is hol'c in D. For any orrel, we let Mcr) = sup |g(z)|. By Stein Corollary 4.6, $M(r) = \sup_{|Z|=r} |g(Z)| = \sup_{|Z|=r} |f(Z)| = \frac{1}{r} \sup_{|Z|=r} |f(Z)|$ < - r And, if $r_1 \notin r_2$, $M(r_1) = \sup_{|z| < r_1} |g(z)| \le \sup_{|z| < r_2} |g(z)| = M(r_2)$. Hence, H r<1, M(r) < M(r') < Fr for all r'>r. Take limit $Y' \rightarrow 1$, we get $M(Y) \leq 1$ for all Y < 1. $|Sup||g(z)| = Sup|M(r) \leq |$ Thus, $\forall |z| < 1$, $|f(z)| \leq |z|$.

Ans: 3. By Rouché Hum, let f(z) = (z³,

have in the disk 171<1?

2. How many solution does $Z^7 - 2Z^5 + 6Z^3 - Z + 1 = 0$

 $g(z) = z^7 - zz^5 - z + 1, \text{ then on } |z| = 1, \text{ we have}$ $|f(z)| = 6, \quad |g(z)| \leq |z'| + |z|z^5| + |z| + 1 = 5.$ hence |f(z)| > |g(z)| on |z| = 1. Thus |f(z) + g(z)| has the same number of poots as f(z)in D, namely 3.

3. How many norts does $z^4 - 6z + 3 = 0$ have on the annulus 1 < |z| < 2?

Ans: we will count roots inside |7| < 2 and (2|<1).

For |7| < 2, we let $f(7) = 7^4$, g(7) = 67 + 3. Then on |7| < 2, |f(7)| = |6|, $|g(7)| \le |-67| + 3 = |5|$, home. f(7) + g(7) has the same number of roots as f(7) inside |7| < 2, namely 4.

For $[7]\langle 1$, (et f(7)=-67, $g(7)=7^4+3$, then on (7), |f(7)|=6, $|g(7)|\leq 4$, we have number of norts of f(7) equal to that of f(7) inside [7]=1, namely 1.

Hence, # of norts of \mathbb{Z}^4 - $6\mathbb{Z}+1$ has #-1=3 roots in the annulus $|\mathcal{L}|\mathbb{Z}|\mathcal{L}^2$.

#4: Are the following open maps? 1) $f: C \rightarrow C$, $f(z) = \overline{z}$. yes, since complex conjugation is a linear iso morphism hence is open. 2) $f: \mathbb{C} \to \mathbb{R}, \quad f(z) = |z|^2$ Not open. for any open ball Br(0), $f(B_r(\omega)) = [0, r^2)$, which is not open 3) $f: \mathbb{C} \to \mathbb{R}$. $f(x+iy) = x\cdot y$. Yes. $f(7) = Im(\frac{2}{2})$, hence f is a composition of a holomophic map (-> C, with a projection C→ R. both are open map, home f is open 4) $f: C \rightarrow R$ $f(x) = Re(z^3 + 2z)$ open. same reason as 3). 5. Let $\Omega = C^* = C \setminus \{0\}$. i) let $\gamma_1: [0,1] \to \mathbb{C}^*$ be the unit circle t -> e zni·t ande let 80:[0,1] -> C* be constant path Yo(t) = 1. Show that I'm is not homotopic to be in S.

2) Show that, for any $\gamma: [0,1] \to \mathbb{C}^*$,
s.t. It do no topic to
J8 = (10) = (11) = 1
the constant path.
<u> </u>
The: (1) Consider $\int \frac{1}{z} dz$ along to and t_1 ,
we have
$\int_{\mathcal{X}_1} \frac{1}{2} dz = 2\pi i, \qquad \int_{\mathcal{X}_0} \frac{1}{2} dz = 0,$
Home they are not homotopic.
2) We construct a function $\tilde{\gamma}: [0,1] \rightarrow \mathbb{C}$, set
$\begin{cases} \tilde{r} & \omega = 0. \\ e^{\tilde{r} \cdot \omega} = r(t). \end{cases}$
Indeed, this can be achieved, by letting
$\tilde{\gamma}(t) = (\gamma(t) + i \theta(t)), (\gamma(t), \theta(t) \in \mathbb{R}.$
and $p(t) = log r(t) $, $O(t) = arg(r(t)) \mod 2\pi$.
and Oct) is continuous in t.
Since $\frac{\theta(1) - \theta(0)}{2\pi} = n(\gamma_{i0}) = \frac{1}{2\pi i} \int_{\zeta} \frac{1}{\zeta} d\zeta = 0$.
we have $\theta(1) = \theta(0) = 0$ Also $\rho(1) = \rho(0) = 0$ by construction.
Hence, Y:[0,1] -> C is a loop with endpoints F(0)=F(0=0.
We construct a homotopy from i to the constant map to 0
by linear interpolation:

		$\widetilde{\gamma}$	s(t) =	<u>(l-</u>	$-s) \hat{\gamma}$	ć(t).						
Then	, we	de	fine Vs.	H) =	e	٣, tt)	= ((1-s) °	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
This	່ເຽ	a	homoto	9 4 -	from	γ	to	constan	t map	to 1	- 4	₽.