• Today: O Residue Theorem  
• Today: O Residue Theorem  
• D index of a curve around a point (" winding number of  
a curve around a pt").  
• D Example of applications for residue than · (Stein, c. 2, 52)  
• Kuthers c. 4.  
• D Residue Than: Let f: 
$$\Omega \rightarrow C$$
 be a halk function  
on an open set  $\Omega$ , and (at C be a simple closed  
curve in  $\Omega$ , such that the interior of C is also contain in  $\Omega$ ,  
and  $z_{1,1}$ ,  $z_{R}$  are inside C. Then  
•  $\int f(z) dz = \sum z_{R} \cdot \sum_{i=1}^{K} \operatorname{Res}_{z_{i}} \int \Omega$   
Pf: deform C so theat C breaks  
•  $\int f(z) dz = \sum z_{R} \cdot \sum_{i=1}^{K} \operatorname{Res}_{z_{i}} \int \Omega$   
•  $\int f(z) dz = \sum z_{R} \cdot \sum_{i=1}^{K} \operatorname{Res}_{z_{i}} \int \Omega$   
•  $\int f(z) dz = \sum z_{R} \cdot \sum_{i=1}^{K} \operatorname{Res}_{z_{i}} \int \Omega$   
•  $\int f(z) dz = \sum z_{R} \cdot \sum_{i=1}^{K} \operatorname{Res}_{z_{i}} \int \Omega$   
•  $\int f(z) dz = \sum z_{R} \cdot \sum_{i=1}^{K} \operatorname{Res}_{z_{i}} \int \Omega$   
•  $\int f(z) dz = \sum z_{R} \cdot \sum_{i=1}^{K} \operatorname{Res}_{z_{i}} \int \Omega$   
•  $\int f(z) dz = \sum z_{R} \cdot \sum_{i=1}^{K} \operatorname{Res}_{z_{i}} \int \Omega$   
•  $\int f(z) dz = \sum z_{R} \cdot \sum_{i=1}^{K} \operatorname{Res}_{z_{i}} \int \Omega$   
•  $\int f(z) dz = \sum z_{R} \cdot \sum_{i=1}^{K} \operatorname{Res}_{z_{i}} \int \Omega$   
•  $\int f(z) dz = \sum z_{R} \cdot \sum_{i=1}^{K} \operatorname{Res}_{z_{i}} \int \Omega$   
•  $\int f(z) dz = \sum z_{R} \cdot \sum_{i=1}^{K} \operatorname{Res}_{z_{i}} \int \Omega$   
•  $\int f(z) dz = \sum z_{R} \cdot \sum_{i=1}^{K} dz = 2\pi i \cdot d_{-1} = 2\pi i \cdot \operatorname{Res}_{z_{i}} \int \Omega$ 

Rmk: The limitation on the curve C to be "simple". can be remove, j.e. we can consider crossings. i C:  $a \xrightarrow{\circ} C_{1}$   $C \xrightarrow{\downarrow} dZ = 2\pi i \cdot 2$   $C \xrightarrow{\uparrow} Winding number$  $C = C_1 + C_2$  a  $( \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ integration along C = int along C, then int along C2 Pus. (Ahlfors) Lemma: If a (piecewise smooth) closed curve & does not pass through a point a, then the value of the integral  $\int_{X} \frac{1}{Z-a} dZ$ . • a 15 a multiple of 217i. First observation:  $\frac{1}{Z-a}dZ = \frac{1}{Z-a}d(Z-a) = d \cdot \log(Z-a)$  $\log(2-a) = \operatorname{Re}\left(\log(2-a)\right) + i\operatorname{Im}\left(\log(2-a)\right).$ = log [Z-a]. + i. arg (Z-a). well-defined is only well-defined for 1Z-al>O. opto a multiple <sup>of</sup> 2πί, informally, Sy Z-a dZ = i. (change of the argument" of (z-a)) check:  $\int \frac{1}{7-\alpha} dz = 2\pi i$ Y: 🔄

 $\int \frac{1}{Z-a} dz = 4\pi \cdot i$ Formal proof: If V is parametrized by Z(t). détép. then, we can consider the function  $\alpha$  t B  $h(t) = \int_{\alpha}^{t} \frac{z'(s)}{z(s) - \alpha} ds.$   $h(p) = \int_{x}^{t} \frac{z}{z - \alpha} dz.$ It is defined and is continuous on the closed interval  $[\alpha, \beta]$ ,  $h'(t) = \frac{Z'(t)}{Z(t) - \alpha}$ t=d c クセ= t, Z'(+) is not whenever z'(t) is continuous. continuous at t|(t) t=+, Then, the combination  $e^{-h(t)}$  (Z(t)-a) has derivative. vanishes everywhere in tETa, B], except at possibly finite many points. This function H(t) is continuous, hence. H(t) = const along & t E Ta, B].  $e^{-h(t)}$  $e^{-h(t)} = e^{-h(t)} (Z(t) - a)$ Thus. = Z(d) - A.  $= \frac{Z(t) - \alpha}{Z(d) - \alpha}$ 





· Application of Residue Thm. (evaluate definite real integral)  $\int \frac{1}{1+\chi^2} dx = \lim_{R \to to} \int_{-R}^{R} \frac{1}{1+\chi^2} dx.$ Ex γχ CR.  $f(z) = \frac{1}{1+z^2}$ f(2) has poles at R -R  $\mathcal{D}$ roots of Z2+1, i.e. (2ti)(2-i) = 0pole at Z=i, Z=-i  $C = C_1 + C_R$ .  $\int f(z) dz = 2\pi i \cdot \operatorname{Res}_{z=i} f(z)$ order 1 pole at f(2).  $\operatorname{ReS}_{Z=i} f(z) = \lim_{z \to i} f(z) \cdot (z - i)$ (Z-i)z-i (Z-i)(2+i) $\frac{1}{2til_{2=i}} = \frac{1}{2i}$ 



 $E_{X}: I = \int_{-\infty}^{+\infty} \frac{e^{ax}}{1 + e^{x}} dx$ 0<2< First check: is this well defined? a-1<0  $\mathcal{N}_{\mathcal{R}}^{\mathcal{W}} \xrightarrow{e^{a_{\mathcal{X}}}} dx \mathcal{N}_{\mathcal{V}}^{\mathcal{W}} \xrightarrow{e^{(a-i)_{\mathcal{X}}}} dx \mathcal{N}_{\mathcal{V}}^{\mathcal{W}}$ Near +10.  $\frac{1}{1} = \frac{e^{-au}}{e^{-au}} du < \infty$  $\sqrt{}$ U=-x again erp deray · What are the zeros of et1=0?  $e^{\pi i} = -( \cdot \cdot \cdot \cdot \cdot e^{\pi i} + 1 = 0)$ 



continum or apply L'hopital.  $\operatorname{Res}_{\pi i} f(z) = \lim_{z \to \infty} (z - \pi i), f(z).$  $\frac{\zeta}{\left[\lim_{z \to z_{0}} \frac{d(z)}{z \to z_{0}}, \beta(z)\right]} = \lim_{z \to \pi_{1}} \frac{(e^{-az})}{(e^{-az})} \cdot (z - \pi_{1}) = \frac{e^{-a \cdot \pi_{1}^{2}}}{(e^{-az})}$   $\frac{(e^{-az})}{(e^{-az})} \cdot (z - \pi_{1}) = \lim_{z \to \pi_{1}^{2}} \frac{1 + e^{z}}{(e^{-az})}$  $\lim_{z \to \tau} \frac{|te^{z}|}{z - \tau_{i}} = \left( |te^{z}| \right) = e^{z} = -1$ Zərl  $f(z) dz = \int \frac{e^{\alpha(2\pi i+u)}}{1+e^{(2\pi i+u)}d(2\pi i+u)} = -\int \frac{e^{\alpha\cdot 2\pi i}}{1+e^{\alpha\cdot 2\pi i}du} du$ リンナや Z= 2Tii+U U goes from + or to = 10  $C_3$  $e^{a \cdot 2\pi b}$   $\int_{1}^{1} e^{au} du$  $a \cdot 2\pi i$ ·  $I_1$ - P С AS ROP  $I_2 = \int f(z) dz \longrightarrow 0$ can also show one along vertical edses.  $1_4 = \int_{C_1} f \cdot dz \longrightarrow 0,$  $\frac{I_{c}}{\sum_{i=1}^{p \to \infty} I_{i} + I_{2} + I_{3} + I_{4}}{\sum_{i=1}^{p \to \infty} I_{i} + I_{2} + I_{4}}$ À. +  $\lim_{R \to P} I_1 + I_3 = \lim_{R \to P} \left( 1 - e^{0.2\pi i} \right)$ ) I<sub>I.</sub> (1-e<sup>a.2n</sup>i).I Ξ

