- Today: © Residue Theorem
(2) index of a curve around a point ("winding number of a curve around apt").
(3) Example of applications for residue the. $\binom{$ Stein. Ch 3. \$2. }{ Ahffors. Ch 4.}
except at poles $z_{1}, \cdots, z_{k}$.
(1) Residue the: Let $f: \Omega \rightarrow \mathbb{C}$ be a hol'c function on an open set $\Omega$, and let $C$ be a simple closed curve in $\Omega$, such that the interior of $C$ is also contain in $\Omega$. and $z_{1}, \cdots, z_{k}$ are inside $C$. Then

$$
\int_{c} f(z) d z=2 \pi i \cdot \sum_{i=1}^{k} \operatorname{Res}_{z_{i}} f
$$

Pf: deform $C$ so that $C$ breaks into small circles around each $Z_{i}$., say $C_{\varepsilon}\left(z_{i}\right)$. ${ }^{C_{i}}$ Then, use.


$$
\int_{C_{\varepsilon}\left(z_{i}\right)} f(z) d z=2 \pi i \cdot \underbrace{\operatorname{Res}_{z_{i}} f}_{\left({ }_{(*)}\right)}
$$

Indeed, $(*)$ holds by expanding $f(z)$ near $z_{i}$ into form

$$
\begin{aligned}
& f(z)=\frac{a-n_{i}}{\left(z-z_{i}\right)^{n_{i}}}+\frac{a-n_{i+1}}{\left(z-z_{i}\right)^{n_{i}-1}}+\cdots+\frac{a-1}{\left(z-z_{i}\right)^{\prime}}+G(z) . \\
& \quad \int_{c_{\varepsilon}\left(z_{i}\right)} f(z) d z=\int_{c_{\varepsilon}\left(z_{i}\right)} \frac{a_{-1}}{z-z_{i}} d z=2 \pi i \cdot a_{-1}=2 \pi i \cdot \operatorname{Res}_{z_{i}} f .
\end{aligned}
$$

Rok: The limitation on the curve $C$ to be "simple". can be remove, i.e. we can consider crossings. i

integration along $C=$ int along $C_{1}$ then int along $C_{2}$ Pis.
(Anifors)
Lemma: If a (piecewise smooth) closed curve $\gamma$ does not pass through a point $\underline{\underline{a}}$, then the value of the integul

$$
\int_{\gamma} \frac{1}{z-a} d z
$$

is a multiple of $2 \pi i$.


First observation: $\quad \frac{1}{z-a} d z=\frac{1}{z-a} d(z-a)=d \cdot \log (z-a)$

$$
\begin{aligned}
\log (z-a) & =\operatorname{Re}(\log (z-a))+i \operatorname{Im}(\log (z-a)) . \\
& =\underbrace{\underbrace{\log |z-a|}_{\text {is only well-defined }}}_{\begin{array}{c}
\text { well -defined } \\
\text { for }|z-a|>0 .
\end{array}}+\underbrace{\text { of } 2 \pi i .}_{\begin{array}{l}
i \cdot \arg (z-a) . \\
\text { op to a multiple }
\end{array}}
\end{aligned}
$$

informally, $\quad \int_{\gamma} \frac{1}{z-a} d z=i \cdot \frac{\left(\begin{array}{c}\text { change of the argument }\end{array}\right.}{\text { of }(z-a))}$ check: $\quad \int_{r=6} \frac{1}{z-a} d z=2 \pi i$.


$$
\text { - } \quad \int \frac{1}{z-a} d z=4 \pi \cdot i
$$

Formal proof: If $\gamma$ is parametrized by $z(t)$. $\alpha \leqslant t \leqslant \beta$. then, we can consider the function

$$
h(t)=\int_{\alpha}^{t} \frac{z^{\prime}(s)}{z(s)-a} d s
$$



$$
h(\beta)=\int_{\gamma} \frac{1}{z-a} \cdot d z .
$$

It is defined and is continuous on the closed interval $[\alpha, \beta]$.,

$$
h^{\prime}(t)=\frac{z^{\prime}(t)}{z(t)-a}
$$

whenever $z^{\prime}(t)$ is continuous:


Then, the combination $e^{-h(t)} \cdot(z(t)-a)$ has derivative. vanishes. every where in $t \in[\alpha, \beta]$, except at possibly finite many points. This function $H(t)$ is continuous, hence.
$H(t)=$ const along $t \in[\alpha, \beta]$.


Thus.

$$
\begin{aligned}
& e^{-h(t)}(z(t)-a)=e^{-\frac{h(\alpha)}{}}(z(\alpha)-a) \\
&=z(\alpha)-a . \\
& e^{h(t)}=\frac{z(t)-a}{z(\alpha)-a .}
\end{aligned}
$$

$$
e^{h(\beta)}=\frac{z(\beta)-a}{z(\alpha)-a}=1 \quad \therefore \quad h(\beta)=2 \pi i \cdot \underline{n}
$$

Def:

$$
n(r, a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-a} d z
$$

winding number of $\gamma$ around $a$.

Rok:

- $n(-r, a)=-n(r, a)$.

Slightly More general version of residue the:

- $f: \Omega \rightarrow \mathbb{C} \rightarrow$ has finitely many poles

$$
z_{1}, \cdots, z_{k} .
$$

. $\gamma$ is a cure in $\Omega$, auriding there poles.

$$
\int_{\gamma} f(z) d z=2 \pi i \cdot \sum_{i=1}^{k}\left(\operatorname{Res}_{z_{i}} f\right) \cdot \underline{n\left(\gamma, z_{i}\right)}
$$

Ex:


$$
f(z)=\frac{\alpha}{z}+\frac{\beta}{z-1}
$$

$n(r, 0)=$ we can deform $r$, aslong as $\gamma$ aroid

$=(-1) \quad$ minus because $\gamma^{\prime}$ winds

$$
\begin{aligned}
n(r, 1)= & \\
\int_{\gamma} f(z) d z= & 2 \pi i \cdot\left(\operatorname{Res}_{0} f \cdot n(r, 0)\right. \\
& \left.+\operatorname{Res}_{1} f \cdot n(r, 1)\right) \\
= & 2 \pi\left(\gamma^{\prime \prime}, 1\right)=1 . \\
= & 2 \pi i \cdot(\alpha \cdot(-1)+\beta(+1)) \\
& (\beta-\alpha) .
\end{aligned}
$$

Ex:


$$
\begin{aligned}
& n(r, 0)=0 \\
& n(r, 1)=0 .
\end{aligned}
$$


$\mathbb{C} \cup\{\infty\}$ - $\infty$
$\qquad$ . zero of $f$

- : $\infty \cdot f f$

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\int_{f(\gamma)} \frac{1}{w} d w
$$

$$
w=f(z) .
$$

(argument principle. next time.).

- Application of Residue Thu.
(evaluate definite real integral).
Ex

$$
\int_{-\infty}^{+\infty} \frac{1}{1+x^{2}} d x=\lim _{R \rightarrow+\infty} \int_{-R}^{R} \frac{1}{1+x^{2}} d x
$$



-     - i

$$
f(z)=\frac{1}{1+z^{2}}
$$

$f(z)$ has poles at roots of $z^{2}+1$, ie.

$$
(z+i)(z-i)=0
$$

pole at $z=i, z=-i$

$$
\begin{aligned}
C= & \underline{C_{1}}+C_{R} \\
& \int_{C} f(z) d z=2 \pi i \cdot \operatorname{Res}_{z=i} f(z)
\end{aligned}
$$

order 1 pole at $f(z)$.

$$
\begin{aligned}
\operatorname{Res}_{z=i} f(z) & =\lim _{z \rightarrow i} f(z) \cdot(z-i) \\
& =\lim _{z-i} \frac{(z-i)}{(z-i)(z+i)} \\
& =\left.\frac{1}{z+i}\right|_{z=i}=\frac{1}{2 i}
\end{aligned}
$$

$$
\int_{C} f(z) d z=2 \pi i \cdot \frac{1}{2 i}=\pi
$$

claim:

$$
\text { Thus: } \lim _{R \rightarrow \infty} \int_{-R}^{R} f(z) d z=\int_{C} f(z) \cdot d z-\lim _{R \rightarrow \infty} \int_{C_{R}}^{0} f(z) d z .
$$

- Run k: for $f(x)=\frac{P(x)}{Q(x)}$. such that
$Q(x)$ has no roots along the real line. and $\operatorname{deg} P(x) \leqslant \operatorname{deg} Q(x)-2 \quad$ (prof as above) then. $\int_{-\infty}^{+\infty} f(x) d x$ can be evaluated in. the same way,
- Rime (quiz) : can we close ap the contour from below, like $\longrightarrow$

$$
\begin{aligned}
& \left|\int_{C_{R}} \frac{1}{z^{2}+1} d z\right| \leq\left(\begin{array}{ll}
\sup & f(z) \\
C_{R} & -
\end{array}\left|C_{R}\right|\right. \\
& \leq \frac{C}{R^{2}} \cdot 2 \pi R \rightarrow 0 \\
& \text { as } \quad R \rightarrow \infty \text {. } \\
& =\int_{C} f(z) d z=\pi \text {, }
\end{aligned}
$$

Ex: $I=\int_{-\infty}^{+\infty} \frac{e^{a x}}{1+e^{x}} d x \quad 0<a<1$
First check: is this well defined? $a-1<0$
Near + $\quad \sim \int_{R}^{\infty} \frac{e^{a x}}{e^{x}} d x \sim \int_{R}^{\infty} e^{(a-1) x} d x .<\infty$.
near- $\sim \int_{-\infty}^{-R} \frac{e^{a x}}{1} d x \sim-\int_{R}^{\infty} e^{e^{-a u}} d u<\infty$
$u=-x$
again exp decay

- What are the zeros of $e^{z}+1=0$ ?

$$
e^{\pi i}=-1 . \quad \therefore \quad e^{\pi i}+1=0
$$

but $z=\pi i+2 \pi i \cdot n \quad n \in \mathbb{Z} \quad$ all have same value for $e^{z}$.


want: $\int_{c_{1}} f(z) d z$ know $I_{c}=\int_{C} f(z)=2 \pi i \cdot \operatorname{Res}_{z=\pi i}(f(z)$.

$$
=2 \pi i \cdot\left(-e^{a \pi i}\right)
$$

$=\alpha\left(z_{0} \lim _{z \rightarrow z_{0}} p\right.$

$$
\int_{C_{3}} f(z) d z=\int_{u=+\infty}^{-\infty} \frac{e^{a(2 \pi i+u)}}{1+e^{(2 \pi i+u)} d(2 \pi i+u)}=-\int_{-\infty}^{+\infty} \frac{e^{a \cdot 2 \pi i} \cdot e^{a u}}{1+e^{u}} \cdot d u
$$

$z=2 \pi i+u \quad u$ goes from $+\infty$ to $\infty$


$$
\begin{aligned}
\rightarrow & =-e^{a \cdot 2 \pi i} \cdot \int_{-\infty}^{+\infty} \frac{e^{a u}}{1+e^{u}} \cdot d u \\
& =-e^{a \cdot 2 \pi i} \cdot I_{1}
\end{aligned}
$$

- one can also show $I_{2}=\int_{C_{2}} f(z) d z \rightarrow 0$ along vertical

$$
\begin{aligned}
& \text { vertical } \\
& \text { edges. }
\end{aligned} I_{4}=\int_{c_{4}} f \cdot d z \rightarrow 0
$$

$$
\begin{aligned}
& \therefore I_{C} \stackrel{R \rightarrow \infty}{ } I_{1}+I_{2}+I_{3}+I_{4} . \\
& \lim _{R \rightarrow \infty} I_{1}+I_{3}=\lim _{R \rightarrow \infty}\left(1-e^{a \cdot 2 \pi i}\right) I_{1 .} \\
&=\left(1-e^{a \cdot 2 \pi i}\right) \cdot I
\end{aligned}
$$

$$
\begin{aligned}
I & =\frac{I_{c}}{1-e^{2 \pi i \cdot a}}=\frac{2 \pi i \cdot\left(-e^{a \pi i}\right)}{1-e^{2 \pi i \cdot a}} \\
& =\frac{2 \pi i}{e^{\pi i a}-e^{-\pi a i}}=\frac{e^{\pi i a}-e^{-\pi i a}}{\pi i} \\
& =\frac{\pi}{\sin (\pi a)}>0 .
\end{aligned} \begin{aligned}
& 10<a<1 \\
&
\end{aligned} \begin{aligned}
\pi \sin (\pi a)>0
\end{aligned}
$$

